
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904I36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 218

Understanding Software Systems Using Reverse

Engineering Technology

 Muthu Dayalan
 Senior Software Developer,Chennai, India

Abstract – In the world of technological advancements,

software systems hold a central position in the

performance of software. Software engineering has

therefore, been more reliable in the construction of stable

software systems. However, the maintenance and analysis

of the software systems has been neglected for a long time.

In recent research, it has been illustrated that software

maintenance is necessitated to provide end users with a

more reliable experience. To solve issues in the software

systems defects, reverse engineering is used to correct

changes and restore possible loss of information. In this

paper, the concept of proper balancing in software

engineering is discussed. The software programming

concept is also discussed and how it relates to reverse

engineering. The concept and approaches of reverse

engineering are discussed to show how software systems in

need for proper maintenance. Six objectives of reverse

engineering discussed in the paper reflects on why reverse

engineering is more effective and affordable compared to

making of new software systems.

Keywords— software engineering, reverse

engineering, source code, software construction,

software articraft.

I. INTRODUCTION

Software engineering has been in existence since the

1968 and has become so siginificant in organizational

development. This is evident due to the ever first

software engineering conference held in Garnisch,

Germany. In this case, software engineering refers to the

application of enginering to develop software in a

systematic way [1]. It is through software engineering

that user needs are analyzed and designed through

consturction and testing of the end user applications.

Unlike simple programming, sogtware engineering has

been used for larger and more complex software system

making software systems critical for businesses and

organizations. In the process of software development,

software engineering tends to engelct aspecys such as

maintenance and evolution leading to a software

becoming less effective than its intended purpose.

Reverse engineering is therefore introduced as a possible

solution to program understanding and software analysis

[2]. It has become an essential [art of development since

software pioneers did not anticipatethat their software

that they constructed in the 1960’s and early 1970’s

would become modified years later. With cush software

crisis existing, software systems crises have been

minimized through reverse engineering. Some of the

software that have been transformed include the

telephone switching systems, banking systems, health

systems, and pervasive computer vendor products.

Health information, for instance, require to rapidly adopt

to the new changes thus practitioners will be willing to

support their software re-engineering process. In the

process of re-engineering, it is likely that the historical

concepts will be wiped off and replaced with more

critical components of software systems. It is therefore

important, for software developers to first learn and

understand how software systems are impacted by the

software reverse engineering technological processes

[3]. In this research paper, the knowledge on reverse

engineering, balancing act in the reverse engineering,

program understanding via reverse engineering,

approaches to reverse engineering, and an example of

the Rigi Project.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904I36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 219

II. NEED FOR BALANCING SOFTWARE

ANALYSIS AND SOFTWARE

CONSTRUCTION

The software developers are in a crisis for only

concentrating more on software construction and not

balancing between software construction and software

analysis. In the late twentieth century, the software

engineers have been concentrating on the software

construction systems and negelcted software

development and evolution [4]. Under software

construction, some of the tools and methodologies that

have been used include the programming languages,

programming environments, and development of early

phases in the software life cycle. As a result, there have

been imbalances in software engineering education in

both the industry and academia. As a result, there have

been pressure to software engineers to be encouraged to

have fresh creation and synthesis of concepts such as

architecture, consistency, and completeness. There will

always be new and software thus it will remain

economical to maintain and ajust the existing one to

meet the changes in its applications [5].

For a proper balance between software maintenance and

construction processes, it is essential for users and

developers to have knowledge of architectural concepts

in larg software systems. Reverse engineering architectur

include parts such as subsystem structures, layered

structures, aggregation, specialization, and inheritance

hierachies. To have software forward and reverse

engineering, there are three dependent factors

considered: existence of a life-cycle model, the presence

of a subject system, and the identification of abstraction

levels. It is worth noting that orderly life-cycle meodel

exists for the software development process thus

software models can be iterated with stages. Reverse

engineering is, therefore, not focused on changing the

sunbject system but rather to examining without changes

or replication [6].

III. SOFTWARE PROGRAMMING THROUGH

REVERSE ENGINEERING

There are several definitions offered on what reverse

enginerring refers to. The basic concept is that reverse

engineering is the process of analyzing a subject system

to identify the system’s components and their

interelationships through creation of representation in

the software systems to transofrm it to a higher a level of

abstraction. The basoc step to reverse engineering is

program understanding how reverse engineering works.

Programmers use the programming knowledge, domain

knowledge, and comprehension strategies to understand

how a software system operates. In the worls of Brooks,

the theory of domain bridging has descibed how

programming process are constructed through mappings

from the problem domain to the implementation domain

[6]. Program understanding thus involves reconstruction

of part or all the identified mappings. Morever, the

programming process is cognitive and involves

assembling of the programming plans. Resultantly,

program understanding thus attempts to explain the

patterns that match between a set of known plans and the

source code of the subject software [7: 8]. The following

figure illustrates on how reverse engineering looks like

and how the related processes are transformational

between or within abstraction levels.

 Source: Chikofsky & Cross

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904I36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 220

IV. CONCEPTS OF REVERESE ENGINEERING

The common goal of reverese engineering is to extract

information from exisiting software systems to better

understand them. Reengineering consists of three stages,

which include, reverse reengineering, restructuring, and

forward engineering [3]. Reverse engineering involves

two distinct phases. First step involves identification of

the system’s current components and captures their

dependencies. Second phase discovers design

information and generates system abstractions. The

second phase is more interactiveand have more cognitive

activities. During the reverse engineering process, it is

critical that the source code is not altered despite

additional information being generated. When making

comparisosns, the business process re-engineering re-

examines and streamlines how businesses work.

Similarly, infromation technology is the key driver to

reverse engineering and is therefore, often introduced

into the workplace to simply automate old ways of doing

business. Software-reengineering onvolves many risks.

Before embarking on a significant re-engineering

project, the goals must be very clear.

V. APPROACHES TO REVERSE

ENGINEERING

Reverse engineering has many supporting aspects. In

some instances, it may focus on features such as control

flows, global variables, data structures, and resource

exhanges. At a higher level, it tends to focus on features

such as memory usage, unutilized variables, value

ranges, and algorithimic plans. With the many revere

and re-engineering tools available, the research on

reverse engineering consists of many diverse approaches

[8]. The three common approaches used are the formal

transformations, pattern recognition, and the reuse-

orinetned approaches. The pattern recognition approach

seeks to find matching patterns and further involves

defect filtering, syntatic cliches, user interface analysis,

characterizing design decisions, function abstraction,

information abstraction, and the graph parsing [9].

Under formal transformation approaches some of the

main activities include: concept recognition amd

transformation, and the least common abstractions.

Finally, under the re-use approach, some of the re-use

concepts used include: reuse-oriented software

development, design recovery, and teleological

maintenance. An example that illustrates on how

software reverse engineering is being used is the

Rigiproject, initated at the University of Victoria. Rigi

project promotes reconstruction of the design of existing

software is seen to be complex [8]. Rigi’s framework

primarily consists of a parsing subsystems thus have a

structured representation of the desired software system

[8].

VI. PURPOSE OF REVERSE ENGINEERING

The accomplishments intended form reverse engineering

in a software system is primarily to increase the overall

comprehensibility of the system for both maintenance

and new development. There are six main objecives

discussed and associated with the purposes of reverse

engineering. Firstly, reverese engineering helps to cope

with complexity. Software system developers must

develop methods to efficiently deal with the shear

volume and complexity systems. The channel and

direction to control these attributes is having automated

support. Reverse-engineering methods are combined

with other tools to better deal with the small volume and

complexity of systems. The second objective involves

generation of alternate views with use of graphical

representations that have long been accepted as

comprehension aids [10]. However, creating and

maintaining them continues to be a bottleneck in the

process. The reverese engineering tools facilitate

graphical representations from other forms to aid review

and verification. The third objective is retrieval of lost

information in software systems. Woth the continous

evolution of large, long-lived systems, there is a

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904I36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 221

tendency to lose information about the system design.

Modifications are not always reflected on the

documentation of a software system, especially in the

coding. Design recovery is introduced in reverse

engineering to salvage whatever can be spared from the

existing system [11]. The other objective of reverse

engineering is to detection of side effects of a software

system. Both risky and successive modifications are

necessary and in some cases may lead to indeliberate

ramificationsand side effects that impede a system’s

performance. Reverse engineering thus provide

observational analysis leading to better evaluation in

forward-engineering. Anaomalities can therefore be

easily detected before software users identify them as

bugs [14]. The fifth objective of reverse engineering is

that reverse engineering synthesize higher abstractions.

Methods applied to create alternative views transcends to

higher abstraction levels. Clearly, the expert system

technology will play a major role in achieving the full

potential of generating high-level abstraction. The sixth

major objective is that reverse engineering allows re-use

which aids in the shift towardssoftware reusability even

in a pool of large existing software components.

VII. SUMMARY

Software systems are vulnerable to being old after a

proper construction process. It is critical for software

developers in the softwware industry to deal effectively

with issues of evolution and comprehensive software

systems legacy. With the changing trends of construction

of new software, reverse engineering has become useful

in explaining how software systems operate in the day-

to-day basis. Software engineering, reseath and

construction must have major adjustments to effectively

meet the needs of end users. In particular, more

resources are required to be channeled to reverse

engineering to have effective software systems.effective

reverse engineering technologies is considered to have a

significant impact on the maintenance and evolution of

these systems [15]. An example of the Rigi project,

shows how the approach to reverse engineering focus on

critical software analysis. Software architecture is used

to analyze the different operating environments. The

software system structures are analyzed through

identification, exploration, summarization, and

evaluation of the environment in which a software

structure lies within. Reverse engineering approaches

used in software structures differ based on the exact need

required to protect organizational development [10, 12,

14]. The role of the reverse engineering has been

identified to include at least six objectives that promote

effectiveness in the long-run. Abstractions in minds of

software engineers require further implementation of

software reverse engineering require to be strategically

changes to ensure reliability and promotion.

REFERENCES

[1] Anonymous "Press Release: Perceptron Launches

Smart3D(TM) Laser Scanning System Revolution in

Automatic Reverse Engineering," Dow Jones

Institutional News, 2015. Available:

https://search.proquest.com/docview/2069556696?accou

ntid=45049.

[2] R. Brooks. Towards a theory of the comprehension

of computer programs. International Journal of Man-

Machine Studies, 18:543- 554, 1983.

[3] S. Freiberger, M. Albrecht and J. Käufl, "Reverse

Engineering Technologies for Remanufacturing of

Automotive Systems Communicating via CAN Bus,"

Journal of Remanufacturing, vol. 1, (1), pp. 1-14, 2011.

Available:https://search.proquest.com/docview/1652978

886?accountid=45049. DOI:

http://dx.doi.org/10.1186/2210-4690-1-6.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904I36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 222

[4] R. Perez-Castillo et al, "Reengineering

Technologies," IEEE Software, vol. 28, (6), pp. 13-17,

2011. Available:

https://search.proquest.com/docview/898842162?accoun

tid=45049.

[5] D. Seng, "REVERSE ENGINEERING THE NEW

REVERSE ENGINEERING PROVISIONS IN THE

COPYRIGHT (AMENDMENT) ACT 2004," Singapore

Journal of Legal Studies, pp. 234-245, 2005. Available:

https://search.proquest.com/docview/222725442?accoun

tid=45049.

[6] S. Rugaber and K. Stirewalt, "Model-driven reverse

engineering," IEEE Software, vol. 21, (4), pp. 45-53,

2004. Available:

https://search.proquest.com/docview/215843843?accoun

tid=45049. DOI: http://dx.doi.org/10.1109/MS.2004.23.

[7] R. Behling, C. Behling and K. Sousa, "Software re-

engineering: concepts and methodology," Industrial

Manag, ement & Data Systems, vol. 96, (6), pp. 3-10,

1996. Available:

https://search.proquest.com/docview/234917397?accoun

tid=45049.

[8] H. A. Miller. Rigi -A Model for Software System

Construction, Integration, and Evolution based on

Module Interface Specifications. PhD thesis, Rice

University, August 1986.

[9] E. J. Chikofsky and J. Cross II H., "Reverse

Engineering and Design Recovery: A Taxonomy," IEEE

Software, vol. 7, (1), pp. 13-17, 1990.

Available:https://search.proquest.com/docview/2158345

39?accountid=45049. DOI:

http://dx.doi.org/10.1109/52.43044.

[10] G. Canfora, M.D. Penta, and L. Cerulo,

“Achievements and Challenges in Software Reverse

Engineering,” Comm. ACM, vol. 54, no. 4, 2011, pp.

142–151.

[11] H.M. Sneed, “Estimating the Costs of a

Reengineering Project,” Proc. 12th Working Conf.

Reverse Eng., IEEE CS Press, 2005, pp.111–119.

[12] H. M•uller and J. Uhl. Composing subsystem

structures using (k; 2)-partite graphs. In Proceedings of

the 1990 Conference on Software Maintenance (CSM

'90), (San Diego, California; November 26-29, 1990),

pages 12{19, November 1990. IEEE Computer Society

Press (Order Number 2091).

[13] R. Mall, Fundamentals of software engineering.

PHI Learning Pvt. Ltd, 2018.

[14] S. Senthivel, S. Dhungana, H. Yoo, I.Ahmed, and

V. Roussev. "Denial of Engineering Operations Attacks

in Industrial Control Systems." In Proceedings of the

Eighth ACM Conference on Data and Application

Security and Privacy, pp. 319-329. ACM, 2018.

[15] J. Duchêne, C. Le Guernic, E. Alata, V. Nicomette,

and M. Kaâniche. "State of the art of network protocol

reverse engineering tools." Journal of Computer

Virology and Hacking Techniques 14, no. 1 (2018):

pp.53-68.

http://www.jetir.org/
https://search.proquest.com/docview/234917397?accountid=45049
https://search.proquest.com/docview/234917397?accountid=45049
http://dx.doi.org/10.1109/52.43044

