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The purpose of this paper is to obtain coincidence and fixed point theorems for a pair of 

hybrid contracting maps. 
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1. INTRODUCTION 
 

Consistent with [1], [4], [11], [16], [18], [20] and [23], we will use the following notations, 

where (X, d) is a metric space. Let CL(X) denote the collection of all nonempty closed subsets of X. 

The distance function H on CL(X) is called the generalized Hausdorff metric induced by the metric 

d of X. Further, let d(A, B) denote the ordinary distance between nonempty subsets A and B of X, 

while d(A, x) stands for d(A, B) when B is the singleton  {x}. 

 

Let T : X  CL(X) be a multivalued map and f : X  X a single-valued map. Consider the following 

condition essentially due to Singh and Kulshrestha [21]. 

 

 H(Tx, Ty)     q.max {d(fx, fy), d(fx, Tx), (fy, Ty),                  

                                                  [d(fx, Ty) + d(fy, Tx)]/2}                   (SK)      

for all x, y  X, where q  (0, 1). 
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We remark that (SK) with f = the identity map on X is Ćirić’s generalized multivalued contraction 

(Ćirić [4]), which in turn includes the well-known Nadler multivalued contraction (Nadler, Jr. [16], 

see also [1], [4], [9]-[13], [15], [23] and [25]). 

 

The study of hybrid contracting maps involving single-valued and multivalued maps on 

metric spaces was initiated independently by Bhaskaran and Subrahmanyam [2], Hadžić [5], 

Kaneko [9], Kubiak [15], Naimpally [17] et al. and Singh and Kulshrestha [21]. (Here, according to 

Singh and Mishra [22], “hybrid contracting maps” means a pair of hybrid contraction or 

nonexpansive or contractive). Indeed, Singh and Kulshrestha [op. cit.] (see also [12], [19] and [22]) 

showed that T and f satisfying T(X)  f(X) and (SK) have a coincidence, that is, there exists a point z 

 X such that fz  Tz when f(X) is a complete subspace of X. This result is obviously true when, 

instead of f(X), T(X) is a complete subspace of X . For an immediate excellent generalization of this 

result one may refer to Rhoades et al. [18]. 

 

 In all that follows, Y is an arbitrary nonempty set and (X, d) a metric space. Following Liu 

et al. [14], Singh and Mishra [23] and Tan et al. [26], we shall consider the following condition for 

f : Y  X and  

T : Y  CL(X). 

 

H2(Tx, Ty)  q.m(x, y),                  (1.1) 

where q  (0, 1) and 

  m(x,  y) : = max {d2(fx, fy), d(fx, fy).d(fx, Tx), d(fx, fy).d(fy, Ty), 

 d(fx, fy).[d(fx, Ty) + d(fy, Tx)]/2, d(fx, Tx).d(fy, Ty), 

 d(fx, Tx).[d(fx, Ty) + d(fy, Tx)]/2, d(fy, Ty).[d(fx, Ty)  

+ d(fy, Tx)]/2, d(fx, Ty).d(fy, Tx)}. 

 

 Our main result is under the condition (1.1) (cf. Theorem 3). Following Rhoades et al. [18], 

we present generalized versions of this result as well. 

 

2. RESULTS 

DEFINITION 1. (Itoh and Takahashi [6], see also Singh and Mishra [24, p. 488]). Let Y be a 

nonempty set, f : Y  Y and T : Y  2Y, the collection of all nonempty subsets of Y. Then the hybrid 
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pair (T, f ) is IT- commuting at x  Y if fTx  Tfx for each x  Y. (This formulation in [25] is correct 

with the interchange of symbols for single-valued and mutivalued maps). 

 

We shall need the following result, which is a minor variant of a lemma due to Ćirić [4]. 

 

LEMMA 2. Let A, B  CL(X). Then for an x  A and for some q and k in (0, 1), there exists a y  

B such that 

           d2 (x,  y)  q-k H2 (A, B). 

 

THEOREM 3. Let Y be an arbitrary nonempty set and (X, d) a metric space. Let T : Y  CL(X) 

and f : Y  X be such that T(Y)  f(Y) and (1.1) holds for all x, y  Y. If T(Y) or f(Y) is a complete 

subspace of X then T and f  have a coincidence. Indeed, for any x0  Y, there exists a sequence 

{xn} in Y such that 

 

(I)      fxn+1  Txn, n = 0, 1, 2, …; 

(II)    {fxn} converges to fz for some z  Y, and fz  Tz,  

          that is, T and f  have a coincidence at z; and  

(III)   d(fxn, fz)   [ n/(1-)].d(fx0, fx1), where  = q1-k[1 + (1 + 8q-1+k)]/4 

          for some k  (0, 1). 

Further, if Y = X and the pair (T,  f ) is IT-commuting at z then T and f  have a common fixed point 

provided that  ffz = fz. 

 

PROOF. Pick a point x0 in Y. Let k be a positive number such that k < 1. Following Singh and 

Kulshrestha [21] (see also [12]), we construct sequences {xn}  Y and {fxn}  X in the following 

manner.  

 

Since T(Y)  f(Y), we may choose a point x1  Y such that  

fx1  Tx0. If Tx0 = Tx1 then x1  = z is a coincidence point of T and f, and we are done. So assume that 

Tx0  Tx1 and choose x2  Y such that  

fx2  Tx1 and, by Lemma 2,  

d2(fx1,  fx2)  q-k H2(Tx0, Tx1). 

If  Tx1 = Tx2, then x2 becomes a coincidence point of T and f. If not, continue the process. In 
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general, if Txn  Txn+1, we choose fxn+2   Txn+1 such that 

d2(fxn+1, fxn+2)  q-k H2(Txn, Txn+1). 

Then by (1.1), 

d2(fxn+1, fxn+2)    q-kH2(Txn, Txn+1) 

 q1-kmax {d2(fxn, fxn+1), d(fxn,  fxn+1).d(fxn, Txn), d(fxn, fxn+1).d(fxn+1, Txn+1), 

   d(fxn, fxn+1).[d(fxn, Txn+1) + d(fxn+1, Txn)]/2,  d(fxn, Txn).d(fxn+1, Txn+1), 

  d(fxn, Txn).[d(fxn, Txn+1) + d(fxn+1, Txn)]/2, d(fxn+1, Txn+1).[d(fxn, Txn+1)  

  + d(fxn+1, Txn)]/2,  d(fxn, Txn+1. d(fxn+1, Txn)}. 

 

For the sake of simplicity, let dn : = d(fxn, fxn+1).  

Then the above inequality, after simplification, reduces to  

dn+1  q1-k. max {dn , dndn+1, dn[dn + dn+1]/2, dn+1[dn + dn+1]/2}.           (3.1) 

 

 We remark that in the construction of sequences {xn} and {fxn}, xn (for each n) is not a 

coincidence point of T and f. This together with  

Txn  Txn+1 means that fxn  fxn+1. Indeed, if at any stage fxn = fxn+1 then  

fxn  Txn, and  xn is a coincidence point of T and  f. Therefore, according to our construction of the 

sequences, dn  0. Hence the inequality (3.1) implies one of the following: 

dn+1   dn+1,      where  = q1-k ; 

dn+1   dn; 

dn+1  [/4 + (2/16 + /2)]dn; 

dn+1  [/(2 - )]dn. 

 

Consequently, 

dn+1  max {, , [/4 +  (2/16 + /2)], [/ (2 - )]} dn. 

This gives dn+1  dn, when  = [/4 + (2/16 + /2)]. Notice that  

0 <  < 1. Hence {fxn} is a Cauchy sequence. 

 

 Now let f(Y) be a complete subspace of Y. Then the sequence {fxn} has a limit f(Y). Call it b. 

Hence there exists a point z  Y such that fz = b. 

Since d(fz, Tz)  d(fz, fxn+1) + H(Txn, Tz), applying (1.1) to the last term of this inequality and 
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making n  , the inequality gives  

d(fz, Tz)  q.d(fz, Tz), and fz  Tz, since q < 1 and Tz is closed. This argument applies to the case 

when T(Y) is a complete subspace of Y, since T(Y)  f(Y). 

 

This proves (I) and (II). To see (III), let m > n. Then, 

d(fxn, fxm)  d(fxn,  fxn+1) + . . .  + d(fxm+1, fxm) 

                   (n + n+1 + . . . + m-1). d(fx0,  fx1) 

                  < n/(1 - ).d(fx0,  fx1). 

Making m  , we get (III). 
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