FIXED POINT THEOREM FOR HYBRID CONTRACTIONS

Ritu Arora

ABSTRACT

The purpose of this paper is to obtain coincidence and fixed point theorems for a pair of hybrid contracting maps.

Key words and phrases: Coincidence point, fixed point, hybrid contracting maps, hybrid contraction.

1. INTRODUCTION

Consistent with [1], [4], [11], [16], [18], [20] and [23], we will use the following notations, where (X, d) is a metric space. Let CL(X) denote the collection of all nonempty closed subsets of X. The distance function H on CL(X) is called the generalized Hausdorff metric induced by the metric d of X. Further, let d(A, B) denote the ordinary distance between nonempty subsets A and B of X, while d(A, x) stands for d(A, B) when B is the singleton $\{x\}$.

Let $T: X \to CL(X)$ be a multivalued map and $f: X \to X$ a single-valued map. Consider the following condition essentially due to Singh and Kulshrestha [21].

 $H(Tx, Ty) \leq q.\max\{d(fx, fy), d(fx, Tx), (fy, Ty), \\ [d(fx, Ty) + d(fy, Tx)]/2\}$ (SK)

for all $x, y \in X$, where $q \in (0, 1)$.

We remark that (SK) with f = the identity map on X is Ćirić's generalized multivalued contraction (Ćirić [4]), which in turn includes the well-known Nadler multivalued contraction (Nadler, Jr. [16], see also [1], [4], [9]-[13], [15], [23] and [25]).

The study of hybrid contracting maps involving single-valued and multivalued maps on metric spaces was initiated independently by Bhaskaran and Subrahmanyam [2], Hadžić [5], Kaneko [9], Kubiak [15], Naimpally [17] *et al.* and Singh and Kulshrestha [21]. (Here, according to Singh and Mishra [22], "hybrid contracting maps" means a pair of hybrid contraction or nonexpansive or contractive). Indeed, Singh and Kulshrestha [*op. cit.*] (see also [12], [19] and [22]) showed that *T* and *f* satisfying $T(X) \subseteq f(X)$ and (SK) have a coincidence, that is, there exists a point *z* $\in X$ such that $fz \in Tz$ when f(X) is a complete subspace of *X*. This result is obviously true when, instead of f(X), T(X) is a complete subspace of *X*. For an immediate excellent generalization of this result one may refer to Rhoades *et al.* [18].

In all that follows, *Y* is an arbitrary nonempty set and (*X*, *d*) a metric space. Following Liu *et al.* [14], Singh and Mishra [23] and Tan *et al.* [26], we shall consider the following condition for $f: Y \rightarrow X$ and $T: Y \rightarrow CL(X)$.

(1.1)

 $\begin{aligned} H^2(Tx, Ty) &\leq q.m(x, y), \\ \text{where } q \in (0, 1) \text{ and} \\ m(x, y) &:= \max \; \{ d^2(fx, fy), \, d(fx, fy).d(fx, Tx), \, d(fx, fy).d(fy, Ty), \\ & d(fx, fy).[d(fx, Ty) + d(fy, Tx)]/2, \, d(fx, Tx).d(fy, Ty), \\ & d(fx, Tx).[d(fx, Ty) + d(fy, Tx)]/2, \, d(fy, Ty).[d(fx, Ty) + d(fy, Tx)]/2, \, d(fy, Ty).[d(fx, Ty) + d(fy, Tx)]/2, \, d(fy, Tx)]/2, \, d(fy, Tx)]/2, \, d(fx, Ty).d(fy, Tx) \}. \end{aligned}$

Our main result is under the condition (1.1) (cf. Theorem 3). Following Rhoades *et al.* [18], we present generalized versions of this result as well.

2. RESULTS

DEFINITION 1. (Itoh and Takahashi [6], see also Singh and Mishra [24, p. 488]). Let *Y* be a nonempty set, $f: Y \to Y$ and $T: Y \to 2^Y$, the collection of all nonempty subsets of *Y*. Then the hybrid

pair (T, f) is IT- commuting at $x \in Y$ if $fTx \subseteq Tfx$ for each $x \in Y$. (This formulation in [25] is correct with the interchange of symbols for single-valued and mutivalued maps).

We shall need the following result, which is a minor variant of a lemma due to Ćirić [4].

LEMMA 2. Let $A, B \in CL(X)$. Then for an $x \in A$ and for some q and k in (0, 1), there exists a $y \in B$ such that

$$d^2(x, y) \le q^{-k} H^2(A, B).$$

THEOREM 3. Let *Y* be an arbitrary nonempty set and (*X*, *d*) a metric space. Let $T : Y \to CL(X)$ and $f : Y \to X$ be such that $T(Y) \subseteq f(Y)$ and (1.1) holds for all $x, y \in Y$. If T(Y) or f(Y) is a complete subspace of *X* then *T* and *f* have a coincidence. Indeed, for any $x_0 \in Y$, there exists a sequence $\{x_n\}$ in *Y* such that

- (I) $fx_{n+1} \in Tx_n, n = 0, 1, 2, ...;$
- (II) $\{fx_n\}$ converges to fz for some $z \in Y$, and $fz \in Tz$, that is, T and f have a coincidence at z; and
- (III) $d(fx_n, fz) \leq [\beta^{n/(1-\beta)}].d(fx_0, fx_1)$, where $\beta = q^{1-k}[1 + \sqrt{(1 + 8q^{-1+k})}]/4$ for some $k \in (0, 1)$.

Further, if Y = X and the pair (T, f) is IT-commuting at z then T and f have a common fixed point provided that ffz = fz.

PROOF. Pick a point x_0 in Y. Let k be a positive number such that k < 1. Following Singh and Kulshrestha [21] (see also [12]), we construct sequences $\{x_n\} \subseteq Y$ and $\{fx_n\} \subseteq X$ in the following manner.

Since $T(Y) \subseteq f(Y)$, we may choose a point $x_1 \in Y$ such that

 $fx_1 \in Tx_0$. If $Tx_0 = Tx_1$ then $x_1 = z$ is a coincidence point of *T* and *f*, and we are done. So assume that $Tx_0 \neq Tx_1$ and choose $x_2 \in Y$ such that

 $fx_2 \in Tx_1$ and, by Lemma 2,

$$d^2(fx_1, fx_2) \le q^{-k} H^2(Tx_0, Tx_1).$$

If $Tx_1 = Tx_2$, then x_2 becomes a coincidence point of T and f. If not, continue the process. In

general, if $Tx_n \neq Tx_{n+1}$, we choose $fx_{n+2} \in Tx_{n+1}$ such that

$$d^{2}(fx_{n+1}, fx_{n+2}) \leq q^{-k} H^{2}(Tx_{n}, Tx_{n+1}).$$

Then by (1.1),

$$\begin{aligned} d^{2}(fx_{n+1}, fx_{n+2}) &\leq q^{-k}H^{2}(Tx_{n}, Tx_{n+1}) \\ &\leq q^{1-k}\max\{d^{2}(fx_{n}, fx_{n+1}), d(fx_{n}, fx_{n+1}).d(fx_{n}, Tx_{n}), d(fx_{n}, fx_{n+1}).d(fx_{n+1}, Tx_{n+1}), \\ d(fx_{n}, fx_{n+1}).[d(fx_{n}, Tx_{n+1}) + d(fx_{n+1}, Tx_{n})]/2, \ d(fx_{n}, Tx_{n}).d(fx_{n+1}, Tx_{n+1}), \\ d(fx_{n}, Tx_{n}).[d(fx_{n}, Tx_{n+1}) + d(fx_{n+1}, Tx_{n})]/2, \ d(fx_{n+1}, Tx_{n+1}).[d(fx_{n}, Tx_{n+1}) + d(fx_{n+1}, Tx_{n})]/2, \ d(fx_{n+1}, Tx_{n+1}).[d(fx_{n+1}, Tx_$$

For the sake of simplicity, let $d_n := d(fx_n, fx_{n+1})$. Then the above inequality, after simplification, reduces to $d_{n+1}^2 \le q^{1-k}$. max $\{d_n^2, d_n d_{n+1}, d_n [d_n + d_{n+1}]/2, d_{n+1} [d_n + d_{n+1}]/2\}$. (3.1)

We remark that in the construction of sequences $\{x_n\}$ and $\{fx_n\}$, x_n (for each *n*) is not a coincidence point of *T* and *f*. This together with

 $Tx_n \neq Tx_{n+1}$ means that $fx_n \neq fx_{n+1}$. Indeed, if at any stage $fx_n = fx_{n+1}$ then

 $fx_n \in Tx_n$, and x_n is a coincidence point of *T* and *f*. Therefore, according to our construction of the sequences, $d_n \neq 0$. Hence the inequality (3.1) implies one of the following:

$$d_{n+1} \leq \lambda \ d_{n+1}, \quad \text{where } \lambda = q^{1-k};$$

 $d_{n+1}^2 \leq \lambda \ d_n^2;$
 $d_{n+1} \leq [\lambda/4 + \sqrt{(\lambda^2/16 + \lambda/2)}]d_n;$
 $d_{n+1} \leq [\lambda/(2 - \lambda)]d_n.$

Consequently,

 $d_{n+1} \le \max \{\sqrt{\lambda}, \lambda, [\lambda/4 + \sqrt{(\lambda^2/16 + \lambda/2)}], [\lambda/(2 - \lambda)]\} d_n.$ This gives $d_{n+1} \le \beta d_n$, when $\beta = [\lambda/4 + \sqrt{(\lambda^2/16 + \lambda/2)}]$. Notice that $0 < \beta < 1$. Hence $\{fx_n\}$ is a Cauchy sequence.

Now let f(Y) be a complete subspace of Y. Then the sequence $\{fx_n\}$ has a limit f(Y). Call it b. Hence there exists a point $z \in Y$ such that fz = b.

Since $d(fz, Tz) \le d(fz, fx_{n+1}) + H(Tx_n, Tz)$, applying (1.1) to the last term of this inequality and

making $n \to \infty$, the inequality gives

 $d(f_z, T_z) \le \sqrt{q} \cdot d(f_z, T_z)$, and $f_z \in T_z$, since $\sqrt{q} < 1$ and T_z is closed. This argument applies to the case when T(Y) is a complete subspace of *Y*, since $T(Y) \subseteq f(Y)$.

This proves (I) and (II). To see (III), let m > n. Then,

$$d(fx_n, fx_m) \le d(fx_n, fx_{n+1}) + \ldots + d(fx_{m+1}, fx_m)$$

$$\le (\beta^n + \beta^{n+1} + \ldots + \beta^{m-1}). \ d(fx_0, fx_1)$$

$$< \beta^n / (1 - \beta). d(fx_0, fx_1).$$

Making $m \to \infty$, we get (III).

REFERENCES

- 1. Ismat Beg and Akbar Azam, Fixed points of asymptotically regular multivalued mappings, Internat, J. Math. Math. Sci. 15 (1992), 15-30.
- 2. R. Bhaskaran and P. V. Subrahmanyam, Common fixed points in metrically convex spaces, J. Math. Phys. Sci. 18 (5) (1984), 65-70.
- **3.** H. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl. 120 (1986), 528-532.
- 4. Lj. B. Ćirić, Fixed points for generalized multivalued contractions, Math. Vesnik, 9 (24) (1972), 265-272.
- 5. O. Hadžić, A coincidence theorem for multivalued mappings in metric spaces, Studia Univ. Babes-Bolyai Math. 26(1981), No. 4, 65-67.
- 6. S. Itoh and W. Takahashi, Single-valued mappings, multivalued mappings and fixed point theorems, J. Math. Anal. Appl. 59 (1977), 514-521.
- 7. J. Jachymski, On Reich's question concerning fixed points of multimap, Boll. Un. Mat. Ital. (7) 9-A (1995), 453-460.
- 8. G. Jungck and B. E. Rhoadeds, Fixed points for set-valued functions without continuity, Indian J. pure Appl. Math. 29 (1998), 227-238.
- 9. H. Kaneko, Single valued and multivalued f-contractions, Boll. Un. Mat. Ital. (6) 4-A (1985), 29-33.
- 10. H. Kaneko, A comparison of contractive conditions for multivalued mappings, Kobe J. Math. 3 (1986), 37-45.
- 11. H. Kaneko and S. Seesa, Fixed point theorems for compatible multivalued and single valued mappings, Internat. J. Math. Sci. 12 (1989), 257-262.
- 12. C. Kulshrestha, Single-valued mappings, multi-valued mappings and fixed points theorems in

metric spaces, Ph.D. Thesis (supervised by Prof. S. L. Singh), Garhwal University, Srinagar, 1983.

- **13.** T. Kubiak, Two coincidence theorems for contractive type multivalued mappings, Studia Univ. Babes-Bolyai Math. 30 (1985), 65-68.
- 14. Z. Liu, F. Zhang and J. Mao, Common fixed points for compatible mappings of type (A), Bull. Malaysian Math. Soc. 22 (1999), 67-86.
- 15. S. N. Mishra, S. L. Singh and Rekha Talwar, Nonlinear hybrid contractions on Menger and Uniform spaces, Indian J. Pure Appl. Math. 25 (1994), 1039-1052.
- 16. S. B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math.30 (1969), 475-488.
- 17. S. A. Naimpally, S. L. Singh and J. H. M. Whitfield : Coincidence theorems for hybrid contractions, Math. Nachr. 127(1986), 177-180.
- 18. B. E. Rhoades, S. L. Singh and C. Kulshrestha, Coincidence theorems for some multivalued mappings, Internat. J. Math. Math. Sci. 7(1984), 429-434.
- 19. K. P. R Sastry, I. H. N. Rao and K. P. R. Rao, A fixed point theorem for mutimaps, Indian J. Phy. Natur. Sci. 3 (sec B), (1983), 1-4.
- 20. S. L. Singh, K. S. Ha and Y. J. Cho, Coincidence and fixed points of nonlinear hybrid contractions, Internat. J. Math. Math. Sci. 12 (1989), 247-256.
- 21. S. L. Singh and Kulshrestha, Coincidence theorem in metric spaces, Indian J. Phy. Natur. Sci. 2B (1982), 19-22.
- 22. S. L. Singh and S. N. Mishra, Nonlinear hybrid contractions, Journal of Natural & Physical Sciences 5-8 (1993), 191-206.
- 23. S. L. Singh and S. N. Mishra, On general hybrid contractions, J. Austral. Math. Soc. (Series A) 66 (1999), 244-254.
- 24. S. L. Singh and S. N. Mishra, Coincidences and fixed points of nonself hybrid contractions, J. Math. Anal. and Appl. 256 (2001), 486-497.
- 25. S. L. Singh and S. N. Mishra, Coincidences and fixed points of reciprocally continuous and compatible hybrid maps, Internat J. Math. Sci. 30 (2002), 627-635.
- 26. Dejun Tan, Zeqing Liu and Jong Kyu Kin, Common fixed points for compatible mappings of Type (P) in 2-metric spaces, Nonlinear Funct. Anal. & Appl., Vol. 8, NO. 2 (2003), 215-232.