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Abstract: In this work, we addressed the characteristics of two dimensional magnetic boundary layer flow of Hyperbolic Tangent 

fluid towards vertical cone with uniform suction condition. To develop the mathematical descriptions of Hyperbolic fluid, energy 

and momentum are accounted. By as set of non-similarity transformation, the proposed leading PDEs of flow phenomena are 

converted into non-linearly ODEs with boundary condition and then the solved numerically. The numerical solutions of the non-

dimensional system equations have been illustrated. MATLAB software as well-recognized scheme is operated to solve problem 

for numerous values of governing parameters. 

 

Index Terms - MHD Hyperbolic Fluid, Weissenberg Number, Suction, Injection, MATLAB BVP4C method. 
 

INTRODUCTION 

 

A The flow that excited by a vertical cone is applicable at most of the industrial sector like, extrusion processes in plastic, at metal 

industries and also in manufacturing processes such as spinning of metals, glass fiber, and in wire drawing, etc. [1-4]. The tangent 

hyperbolic fluid is used far for different laboratory experiments. Friedman et al. [5] have used the tangent hyperbolic fluid model for 

large-scale magneto-rheological fluid damper coils. The number of researchers worked on non-Newtonian fluids. Examples of such 

fluids include coal-oil slurries, grease, shampoo, paints, custard, cosmetic products, and physiological liquids. The classical equations 

employed in simulating Newtonian viscous flows i.e. the Navier–Stokes equations fail to simulate a number of characteristics of non-

Newtonian fluid. Recent investigations have implemented, Amanulla et al. [6] described a wide number of numerical solutions for 

Magneto-hydrodynamic and non- Newtonian fluid flow through a vertical cone with the presence of slip effects, using finite 

difference method. Cheng [7] investigated heat transfer of power law nanofluid passed above a truncated cone embedded in a porous 

medium. Elbashbeshy et al. [8] analyzed radiation effects non-Newtonian fluid flow past a vertical truncated cone. Amanulla et al. 

[9] discussed the velocity slip and temperature jump conditions on hydrodynamic fluid flow over a circular cylinder. Reddy and 

Pradeepa [10] studied viscous dissipation and sorret effects on natural convection flow over a truncated cone in the presence of Biot 

number. Several authors [11-13] investigated heat transfer of non-Newtonian fluid of various physical problems. 

 

The present work, we inspect theoretically and also computationally the steady-state transport things in magneto-hydrodynamic 

non-Newtonian fluid flow from a vertical cone by means of Convective heating effects. It has been found that the Magnetic field is 

extremely influence the characteristics of heat transfer and velocity in the flows over curved body. Relevant examples are expressed 

by Bég et al. [14] (used for cylindrical geometries), Alkasasbeh et al. [15] who addressed radiative effects, and also considered the 

drag effects of porous medium and Kasim et al. [16] who utilized a prominent viscoelastic model. With above analysis in mind, we 

are interested in analytical approximation of convective flow (non-Newtonian) in vertical cone. The reduced highly nonlinear partial 

differential equations are solved with help of accurate Keller-Box Technique (finite difference) (5-10). The impact of various 

pertinent parameters, like Prandtl number (Pr), Weissenberg parameter (We), Power law index (m), Magnetic parameter (M) and 

Suction/Injection parameter are plotted and discussed 

 

MATHEMICAL FORMULATION: 

 

Consider a steady, two dimensional free convective heat transfers along the vertical porous plate embedded in non-

Newtonian Tangent Hyperbolic fluid. The x-coordinate (tangential) is measured along the surface of the porous plate from the 

lowest point and the y-coordinate (radial) is directed perpendicular to the surface. The equations for continuity, momentum and 

energy can be written as follows:  

 

A steady, laminar, two dimensional boundary layer flows and heat transfer of an incompressible tangent hyperbolic fluid 

over a vertical porous plate. Both the plate and Tangent Hyperbolic fluid are maintained primarily at the equivalent temperature. 

straight away they are raised to a temperature wT T , the ambient temperature of the fluid which remains unchanged.  
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where u and v are the velocity components in the x- and y-directions respectively, ν=μ/ρ is the kinematic viscosity of the 

Tangent Hyperbolic fluid, β is the coefficient of thermal expansion, α is the thermal diffusivity, β is the temperature, and ρ is the 

density of the fluid. The Tangent Hyperbolic fluid model therefore introduces a mixed derivative (second order, first degree) into 

the momentum boundary layer Eq. (2). Boundary conditions are: 
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Here T
 is the free stream temperature, k is the thermal conductivity, 

wh is the convective heat transfer coefficient, and 
wT  is the 

convective fluid temperature. The stream function is defined by u
y





and v
x
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
, and therefore, the continuity equation is 

automatically satisfied.  

In order to provide the governing equations and the boundary conditions in dimensionless form, the following non-

dimensional quantities are introduced.  
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In view of the transformations defined in (5). The boundary layer equations (2)-(3) are reduced to the following nonlinear, 

dimensionless partial differential equations for momentum, energy for the regime.
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The transformed dimensionless boundary conditions are as follows:  
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The skin friction coefficient (shear stress at the sphere surface) and Nusselt number (heat transfer rate) can be defined 

using the transformations described above with the following expressions.  
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NUMERICAL SOLUTION WITH KELLER-BOX IMPLICIT METHOD  
 

The Keller-Box implicit difference method is implemented to solve the nonlinear boundary value problem defined by eqns. 

(7)–(8) with boundary conditions (10).This technique despite recent developments in other numerical methods as elaborated by 

Keller, 1978. This method has been used widely and efficiently for over three decades in a large spectrum of nonlinear fluid 

mechanics problems. These include laminar transport phenomena [17-18] and Viscoelastic boundary layer flows [19-20]. 

 

RESULTS AND DISCUSSIONS  

 

In order to obtain a physical approaching into the problem, a representative set of numerical results are presented in Figs. 

1-5. The numerical problem comprises of two independent variables ( , )  , two dependent fluid dynamic variables ( , )f   and 

thermo-physical and body force control parameters, viz., We, n, Pr, M, fw. The following default parameter values i.e., We = 0.3, n 

= 0.1, Pr = 1.0, M = 1.0, fw = 0.3 are discussed. 
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Figure 1(a)-1(b) depict the velocity ( )f  , temperature ( )   distributions for various values of Prandtl number Pr. It is 

observed that an increase in the Prandtl number significantly decelerates the flow i.e., velocity and temperature decreases. Figure 

2(a)-2(b) shows the velocity ( )f  , temperature ( )   distributions, the influence of Weissenberg numberWe , absorbed that 

velocity increases, temperature and concentration are decreases. 

Figures 3(a) - 3(b) illustrates the effect of the power law index, n, on the velocity ( )f   and temperature ( )   distributions through 

the boundary layer regime. Increasing n velocity is increased. Conversely temperature is consistently reduced with increasing values 

of n. 

Figures 4(a)-4(b) the dimensionless velocity ( )f  , temperature ( )  for various values of magnetic parameter M are shown. Fig. 

4(a) represents the velocity profile for the different values of magnetic field parameter M. It is observed that velocity of the flow 

decreases significantly with increasing values of magnetic parameter M. In Fig. 3(b), the temperature distribution increases with 

increasing magnetic values.  

Figure 5(a)-5(b) this plots indicates the influence of Suction/ Injection parameter
wf . We observed that increase the Suction/ 

Injection
wf  parameter throughout the region decreases the velocity ( )f   and temperature ( )  . 

 

CONCLUSIONS: 
 

Mathematical solutions have been obtained for the convection heat transfer boundary layer flow through the vertical porous 

plate the presence of Suction/Injection effects, using the local non-similarity finite difference method. 

1. Increasing Weissenberg numberWe , decreases velocity, whereas increases temperature. 

2. Increasing power law index, n, increases velocity, whereas, decreases temperature. 

3. Increasing Suction/Injection fw, decreases velocity, temperature. 

4. Increasing magnetic parameter M, increases velocity, whereas, decreases temperature.  
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