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Abstract:  Previously, several works have been carried out on hierarchical scheduling frameworks from a theoretical point of 

view. In the recent past, hierarchical scheduling frameworks have been implemented on uniprocessor system. In this paper I 

present my initial proposal of the implementation of my hierarchical scheduling framework in a commercial operating system like 

Vx Works for Symmetric Multiprocessing based (SMP) Real Time Systems. In this paper I perform analysis of the previous 

implementations and demonstrate feasibility of my implementation in a commercial operating system, without having to modify 

the kernel source code. I present the SMP structure of Works and how it can be used by extension of previous designs of 

hierarchical scheduling framework. 

 

Index Terms – Multicore, real time, Symmetric multiprocessing, VxWorks. 

I. INTRODUCTION 

     

Microprocessor technology is rapidly developing, therefore, multiprocessor and multi-core designs are becoming an attractive 

solution to fulfil increasing performance demands. 

In the real-time systems community, there has been a growing interest in real-time multiprocessor scheduling theories. Multi-

core architectures have received significant interest as thermal and power consumption problems limit further increase of speed in 

single-cores. In the multi-core research community a considerable amount of work has been done on real-time multi-core 

scheduling algorithms where it is assumed tasks are independent. In general, existing real-time scheduling approaches over „m‟ 

processors can fall into two categories: partitioned and global scheduling. Each task under partitioned scheduling is statically 

assigned to a single processor and is allowed to execute on that processor only. Under global scheduling, tasks are allowed to 

dynamically migrate across m processors and execute on any of them. 

Hierarchical scheduling has shown to be a useful mechanism in supporting modularity of real-time software by providing 

temporal partitioning among applications. In hierarchical scheduling, a system can be hierarchically divided into a number of 

subsystems that are scheduled by a global (system-level) scheduler. Each subsystem contains a set of tasks that are scheduled by a 

local (subsystem-level) scheduler. The Hierarchical Scheduling Framework (HSF) allows for a subsystem to be developed and 

analysed in isolation, with its own local scheduler, and then at a later stage, using an arbitrary global scheduler, it allows for the 

integration of multiple subsystems without violating the temporal properties of the individual subsystems analysed in isolation. 

The integration involves a system level schedulability test, verifying that all timing requirements are met. Hence, hierarchical 

scheduling frameworks naturally support concurrent development of subsystems. My overall goal is to make hierarchical 

scheduling a cost-efficient approach applicable for a wide domain of applications, including automotive, automation, aerospace 

and consumer electronics. 

    Over the years, there has been a growing attention to HSFs for real-time systems. Since a two-level HSF [1] has been 

introduced for open environments, many studies have been proposed for its schedulability analysis of HSFs [2]-[3]. Various 

processor models, such as bounded-delay [4] and periodic [5], have been proposed for multi-level HSFs, and schedulability 

analysis techniques have been developed for the proposed processor models [6]-[12]. Recent studies have been introduced for 

supporting logical resource sharing in HSFs [13]-[15]. However, those studies have worked on various aspects of HSFs from a 

theoretical point of view up until now. This paper presents my work towards a full implementation of a hierarchical scheduling 

framework.  
   I have chosen to implement it in a commercial operating system like VxWorks, since there is plenty of industrial embedded 

software available, which can run in the hierarchical scheduling framework. 

II. RELATED WORK 

Related works have recently implemented different schedulers in commercial real-time operating systems, where it is not 

feasible to implement the scheduler directly inside the kernel (as the kernel source code is not available). Also, some work related 

to efficient implementations of schedulers are outlined in this paper. Many partitioning algorithms and global scheduling algorithms 

have been proposed in the past. Partitioning algorithms which allow a task to execute on at most two processors have been 

proposed in the past by Andersson et al. [15] and Kato and Yamasaki [16]. These studies focus on implicit-deadline task. In another 

direction, global scheduling algorithms, US-EDF[m/2m−1] [17] and fp-EDF [18], which give special treatment to certain high 

utilization tasks have also been proposed. Baruah and Carpenter [19] introduced an approach that can restrict the processor 

migration of jobs, in order to alleviate the inflexibility of partitioned scheduling and the processor migration overhead of global 

scheduling. Their approach can be categorized as job-level partitioned scheduling. They shoId that task-level and job-level 

partitioned scheduling approaches do not dominate each other. Behnam [20] has implemented HSF on VxWorks for uniprocessor 

systems. The work presented in this paper differs from the last work in [20] in the sense that it implements a hierarchical scheduling 
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framework in a commercial operating system like VxWorks for multicore systems. Furthermore, the work can be considered as an 

extension from the above approaches in the sense that it implements a hierarchical scheduling framework intended for open 

environments [1], and Symmetric Multiprocessing (SMP) systems where real-time applications may be developed independently 

and unaware of each other and still there should be no problems in the integration of these applications into one environment. A key 

here is the use of Ill-defined interfaces representing the collective resource requirements by an application, rich enough to allow for 

integration with an arbitrary set of other applications without having to redo any kind of application internal analysis. 

III. SMP ON VXWORKS 

VxWorks SMP is a configuration of VxWorks designed for symmetric multiprocessing (SMP). It provides the same 

distinguishing RTOS characteristics of performance and determinism as the uniprocessor (UP) configuration. The differences 

between the SMP and UP configurations are limited, and strictly related to support for multiprocessing. Multiprocessing systems 

include two or more processors in a single system. Symmetric multiprocessing (SMP) is a variant of multiprocessing technology 

in which one instance of an operating system controls all processors, and in which memory is shared. SMP differs from 

asymmetric multiprocessing (AMP) in that an AMP system has a separate instance of an operating system executing on each 

processor (and each instance may or may not be the same type of operating system). My proposed work is restricted to SMP only. 

The terms CPU and processor are often used interchangeably in computer documentation. However, it is useful to distinguish 

between the two for hardware that supports SMP. In the context of VxWorks SMP, the terms are used as follows [21]: 

CPU: A single processing entity capable of executing program instructions and processing data (also referred to as a core, as in 

multicore). 

Processor:  A silicon unit that contains one or more CPUs. 

Multiprocessor: A single hardware system with two or more processors.  
Uniprocessor: A silicon unit that contains a single CPU. With few exceptions, the SMP and uniprocessor (UP) configurations 

of VxWorks share the same API--the difference amounts to only a few routines. A few uniprocessor APIs are not suitable for an 

SMP system, and they are therefore not provided. Similarly, SMP-specific APIs are not relevant to a uniprocessor system--but 

default to appropriate uniprocessor behaviours (such as task spinlocks defaulting to task locking), or have no effect. VxWorks 

SMP is designed for symmetric target hardware. That is, each CPU has equivalent access to all memory and all devices as shown 

in Fig. 1. [21]. VxWorks SMP can therefore run on targets with multiple single-core processors or with multicore processors, as 

long as they provide uniform memory access (UMA) architecture with hardware managed cache-coherency.  
Regardless of the number of CPUs (typically 2, 4 or 8) in an SMP system, the important characteristics are the same: 

1. Each CPU accesses the very same physical memory subsystem; there is no memory local to a CPU. This means it is 

irrelevant which CPU executes code. 

2. Each CPU has its own memory management unit that allows concurrent execution of tasks with different virtual memory 

contexts. 

3. Each CPU has access to all devices. Interrupts from these devices can be routed to any one of the CPUs through a 

programmable interrupt controller. This means that it is irrelevant which CPU executes interrupt service routines 

(ISRs) when handling interrupts. 

4. Tasks and ISRs can be synchronized across CPUs and mutual exclusion enforced by using spinlocks.Bus snooping logic 

ensures the data caches between CPUs are always coherent. This means that the operating system does not normally 

need to perform special data cache operations in order to maintain coherent caches. However, this implies that only 

memory access attributes that allow bus snooping are used in the system. Restrictions in terms of memory access 

modes allowed in an SMP system, if any, are specific to hardware architecture. 

IV. IMPLEMENTATION 

VxWorks offers two different modes for application-tasks to execute; either kernel mode or user mode. In kernel mode, 

application-tasks can access the hardware resources directly. In user mode, on the other hand, tasks cannot directly access 

hardware resources, which provide greater protection (e.g., in user mode, tasks cannot crash the kernel). Kernel mode is provided 

in all versions of VxWorks while user mode was provided as a part of the Real Time Process (RTP) model, and it has been 

introduced with VxWorks version 6.0 and beyond. 

In this paper, I are considering kernel mode tasks since such a design would be compatible with all versions of VxWorks I are 

also considering fixed priority preemptive scheduling policy for the kernel scheduler (not the round robin scheduler). A tasks 

priority should be set when the task is created, and the task’s priority can be changed during the execution. Then, during runtime, 

the highest priority ready task will always execute. If a task with priority higher than that of the running task becomes ready to 

execute, then the scheduler stops the execution of the running task and instead executes the one with higher priority. When the 

running task finishes its execution, the task with the highest priority among the ready tasks will execute. 
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Periodic Tasks 

In this paper I consider a periodic task model, τi(Ti,Ci,Di) similar to [20]. Where Ti is the task period, Ci is a worst-case 

execution time requirement, and Di is a relative deadline (0 < Ci ≤Di ≤ T i ). The set of all tasks is denoted by Γ(Γ ={τi | for all i= 

1, .., n}where n is the number of tasks). A task that becomes ready for execution periodically once every nth time unit which 

means a new instant of the task is executed every constant period of time is a periodic task. VxWorks including most commercial 

operating systems do not directly support the periodic task model [22]. A periodic task can be implemented by allowing a task to 

sleep until the beginning of its next period when a task finishes its execution. Such periodic behavior can be implemented in the 

task by the usage of timers. An important point here is that a task typically does not finish its execution at the same time always, 

as execution times and response times vary from one period to another. Hence, whenever a task finishes its execution use of 

timers may not be easy and accurate as the task needs to evaluate the time for next period relative to the current time. The reason 

for this is that preemption may happen between the time measurement and calling the sleep function. Support for periodic 

activation of servers is required in order to implement the hierarchical scheduling framework. My hierarchical scheduling 

framework is based around the periodic resource model [5] and [20]. Similar to [20], 23]-[24] , I have implemented the periodic 

resource model by the usage of a server based approach that replenish their budget every constant period, i.e., the servers behave 

like periodic tasks. 

 

Supporting Arbitrary Schedulers 

Similar to [20] in this paper I propose to use an Interrupt Service Routine (ISR) to manipulate the tasks in the ready queue. 

Apart from changing their priorities, the ISR is responsible for adding tasks in the ready queue according to the hierarchical 

scheduling policy in use. I would prefer to use User Scheduling Routine (USR) instead of ISR in rest of the paper. Any desired 

scheduling policy can be implemented by using the USR including the much common types such as Rate Monotonic (RM) and 

Earliest Deadline First (EDF). 

 

Hierarchical Scheduling Implementation 

There exist (to the best of my knowledge) four known hierarchical multi-core scheduling schemes for real-time systems, where 

one of these has been implemented in Linux. Shin et al. [25] has proposed analysis for cluster-based scheduling. In this setup, 

tasks are scheduled with G-EDF (global EDF) at the local level, i.e., the ready queue is ordered by shortest deadline and tasks are 

transferred to the different cores until they are all occupied. At the global level, each subsystem, i.e., group of tasks and servers 

are assigned a subset of the cores. The global scheduler schedules the subsystems servers based on G-EDF and the assigned cores. 

The subsystem has the same amount of servers as the amount of assigned cores, and all servers have the same period, but the 

budget is distributed among them. This distribution is not fair, e.g., 3 servers with budget 2.5 will result in budgets 1, 1 and 0.5. In 

Checconi et al. [26] (has an implementation in Linux), each subsystem will have access to all cores, and the number of servers (in 

each subsystem) are the same as the number of cores. Locally, tasks are scheduled with global multi-core fixed priority, globally, 

each core has its own H-CBS (Hard Constant Bandwidth Server) scheduler, scheduling one server from each subsystem. Note that 

the global scheduling is done in parallel (several H-CBS schedulers). Nemati et al. [27] has a scheme where the servers are 

scheduled with a global multi-core scheduling scheme (fixed or dynamic priority), and locally, each subsystem is scheduled with 

partitioned multi-core (fixed or dynamic priority) scheduling, i.e., each subsystem has maximum one server (that may run on any 

core), so tasks always execute on the same core. A fourth scheme [28] could be to schedule servers in sequence, thereby 

scheduling tasks, within each subsystem, with global multi-core on all cores. The difference from [26] is that there is only one 

global scheduler. In Shin et al. [25], the servers of a subsystem typically occupies a subset of all cores at a time (depending on the 

priority of other subsystems and its assigned number of cores). Checconi et al. [26] differs in that there is one scheduler per core, 

scheduling independently of one another. A subsystem has one server per core with the same parameters. In Nemati et al. [27], 
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there is maximum one subsystem server running at once, but it may migrate, as illustrated. My proposed scheme, the sequential 

approach, is an extension of [20] and [28-33], and it will execute the subsystems in sequential order, occupying each core with 

one server on the VxWorks system. The Global scheduling layer supports both FPS and EDF scheduling together with the 

periodic server model. Global scheduler is responsible for handling all events in the system which can be local task sub-system 

events, server period events or server budget events. Local scheduler is not aware of the fact that it schedules different task 

systems; its interface to Global Scheduler is a server which has its own task tcb and task TEQ's (Total Event Queue). TEQ is a 

sorted queue where the USR stores the next activation time of all tasks (absolute times) according to the closest time event. Server 

periods are stored in the server event queue including a reference to its associated server. The server event queue is examined in 

the case of a server period interrupt execution. The server period events can easily be handled due to the reference to the server 

TCB. The server TCB is referenced into the server ready queue when the server has a period start. Those tasks that are in the 

VxWorks ready queue have a reference from the queue to its TCB. Each node in the period_event_queue and 

deadline_event_queue (Fig. 2) has each a reference to its associated tasks TCB. In the case of task period interrupt execution, the 

TCB can easily be referenced and put in the task ready queue. The global scheduler chooses the closest event of the running 

servers task deadline TEQ, the task period TEQ, the server budget TEQ (only one node) and the server period TEQ (I assume that 

server period is equal to server deadline). In Fig. 2, the next event would be a task, (task1 in this case) if server 1 was the active 

server at that point. Fig. 2 also illustrates that each server has a reference to a part of the VxWorks task ready queue; this is hidden 

from the local scheduler which schedules as if this is the whole task tcb of the system. Each server in the ready queue is 

sequentially assigned to a core. There will be separate VxWorks ready queues for each core in the system. The allotment of the 

ready queues is not fixed to any particular core. 

 
 

Example 

Fig. 3 illustrates the implementation of hierarchical scheduling framework on a single processor whereas Fig. 4 illustrates my 

modified implementation which includes an example with three servers S1, S2, S3 with global and local RM schedulers, the 

priority of S1 is the highest and the priority of S3 is the lowest. Suppose a new period of S2 and S3 start at time t0 and t1with a 

budget equal to Q3. Then, the USR will change the state of S2 and S3 to Ready, and 

1. Add the time at which the budget will expire, which equals to t0 + Q3, t1 + Q3 for S2 and S3 respectively into the 

server event queue and also add the next period event in the server event queue. 

2. Check all previous events that have occurred while the server was not active by checking if there are task releases or 

deadline checks in the time interval of [t∗, t0], [t1∗, t1], where t0∗ and t1* are the latest time at which the budget of S2 

and S3 have been expired. 

3. Start the local scheduler. 

At time t1 the server S2 becomes ready and it has higher priority than S3. Unlike in [20], S2 will not preempt S3 and, 

the USR will not remove tasks that belong to S3 from the ready queue. Instead, S3 will continue on the core to which 

it is attached and S2 will be assigned a different core. S2 will preempt S3 only if no free core is available at that time. 

V. CONCLUSION 

This paper has presented my initial analysis and implementation of a hierarchical scheduling framework on a commercial 

operating system like VxWorks for SMP hardware. Although previous works on similar lines [20], have been proposed, I have 

tried to improvise them in my work by extending their implementation on SMP architecture. The decision to choose VxWorks as 

the target Operating System is to understand and explore the intricacies of such an industry dominant operating system. Another 

motivation for my work is to develop case studies both for academia and industry. I are able to identify that a hierarchical 

scheduling framework can effectively be implemented on multicore architectures with some overheads and can achieve the clean 

separation of subsystems in terms of timing characteristics. However, my proposed implementation does not consider the 

utilization of the cores with resource sharing. There is tremendous amount of future scope for my work that includes support for 

sporadic as Ill as aperiodic tasks. Sporadic tasks can be supported in response to specific events such as external interrupts. 
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Support for aperiodic tasks could be done by bounding their interference to periodic tasks by the use of some server based 

mechanisms. Future implementation may also include support for AMP based systems. 
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