(;) Q Fuzzy Subrings

B. Anitha and T. Muthuraji

Department of Mathematics, Govt. Arts College, Chidambaram

Abstract: In this paper we introduce the notions of (;) Q Fuzzy Subrings and (;) Q Fuzzy Ideals. We give example which are (;) Q fuzzy subrings [(;) Q fuzzy ideals] but not Q-fuzzy subrings [Q-fuzzy ideals]. Finally we have characterized (;) Q fuzzy ideals of a ring.

Key words: Q-fuzzy subring, Q-fuzzy ideal, (;) Q Fuzzy Subring, (;) Q Fuzzy ideal and homomorphism.

1 Introduction

Zadeh in 1965 [12] introduced fuzzy sets, after which several researchers explored on the generalization of the notion of fuzzy sets. W. Liu [5] de ned a fuzzy subring of a ring. Bhakat and Das introduced the concepts of (2; 2 _q) fuzzy groups [1, 2] and (2; 2 _q) -fuzzy subring [3]. Yao [10, 11] contined to research (;) fuzzy normal subgroups, (;) fuzzy quotient subgroups and (;) fuzzy subrings. Solairaju et.al. [6, 7, 8] have introduced and de ned a new algebraic structure called Q-fuzzy subring of a ring. P. Sarangapani et.al. [9] introduced Q fuzzy version of (;) fuzzy ideals of near ring. We introduce (;) Qfuzzy subrings, (;) Q fuzzy ideals and established some results.

2 Preliminaries

De nition 2.1. Let X be a non-empty set and Q be a non-empty set. A Q-fuzzy subset A of X is a function $A: X Q![0 ; 1]$:

De nition 2.2. Let ($R ;+;$) be a ring and Q be a non-empty set. A A -fuzzy subset A of R is said to be a Q-fuzzy subring of R if the following conditions are satis ed:
(i) $A(x+y ; q) A(x ; q)^{\wedge} A(y ; q)$
(ii) $A(x ; q) A(x ; q)$
(iii) $A(x y ; q) A(x ; q)^{\wedge} A(y ; q)$; for all $x ; y 2 R ; q 2 Q$:

De nition 2.3. Let A be any Q-fuzzy subset of a ring R : For $t 2[0 ; 1]$; the set $A=$ $f x 2 R=A(x ; q) g$ is called level subset of A :

De nition 2.4. Let be a mapping from ring R_{1} to ring R_{2} : For any fuzzy set B in R_{2}; we de ne a new fuzzy set de ned as ${ }^{1}(B)$ in R_{1} where ${ }^{1}(B)(x ; q)=B((x) ; q) ; 8 \times 2$ R; q 2 Q:
For any fuzzy set A in R; we de ne (A) by

$$
(A)(y ; q)=\operatorname{supf} A(x ; q)=f(x)=y g ; \quad 8 y 2 R_{2}
$$

De nition 2.5. A Q-fuzzy subset A of ring R is called an (; q) Q-fuzzy subring of R if for all $x ; y 2 R$ and $q 2 Q$;
(i) $A(x y ; q) A(x ; q)^{\wedge} A(y ; q)^{\wedge} 0: 5$
(ii) $A(x y ; q) A(x ; q)^{\wedge} A(y ; q)^{\wedge} 0: 5$

De nition 2.6. $A Q$-fuzzy subset A of ring R is called an (; q) Q-fuzzy ideal of R if for all $x ; y 2 R$ and $q 2 Q$;
(i) $A(x y ; q) A(x ; q)^{\wedge} A(y ; q)^{\wedge} 0: 5$
(ii) $A(x y ; q) A(x ; q) \quad A(y ; q)^{\wedge} 0: 5$

3 (;) Q-fuzzy Subrings

De nition 3.1. Let R be a ring and Q be a non-empty set. $A Q$-fuzzy subset A of R is said to be $a(;) Q$-fuzzy subring of R if the following conditions are satis ed.
(i) $A(x+y ; q)_{-} \quad A(x ; q)^{\wedge} A(y ; q)^{\wedge}$:
(ii) $A(x ; q) _A(x ; q)^{\wedge}$:
(iii) $A(x y ; q) _A(x ; q)^{\wedge} A(y ; q)^{\wedge}$:
for all x and y in R and q in Q :
Remark 3.2. An Q-fuzzy subring is a (;)-Q-fuzzy subring with $=0$ and $=1$ and $\mathrm{a}\left(2 ; 2 _\right.$_) -Q-fuzzy subring is $\mathrm{a}(;)$-Q-fuzzy subring with, $=0$ and $=0: 5$:

Thus every Q-fuzzy subring and (2; 2_q) Q-fuzzy subring of R is a (;) -Q-fuzzy subring of R: However, the converse is not necessarily true as shown in the following example.

Example 3.3. Consider the ring $R=\left(Z_{4} ; ;\right)$; where $Z_{4}=f 0 ; 1 ; 2 ; 3 g$ and let $Q=f q g$: Let the Q-fuzzy subset A be de ned by $A(0 ; q)=0: 47 ; A(1 ; q)=A(3 ; q)=0: 46 ; A(2$; $q)=0: 48$; Then, by routine calculation A is a $(0: 1 ; 0: 4)-Q$-fuzzy subring of R : But, since $A(22 ; q)=A(0 ; q)=0: 47 A(2 ; q)^{\wedge} A(2 ; q)=0: 48$ and $A(22 ; q)=A(0 ; q)=$ $0: 47 \mathrm{~A}(2 ; q)^{\wedge} A(2 ; q)^{\wedge} 0: 5=0: 48 ; A$ is neither an Q-fuzzy subring of R nor a (2; 2 _q) -Q-fuzzy subring of R :

Theorem 3.4. Let A be $a(;) Q$-fuzzy subring of a ring R : Then $A(0 ; q) _A(x ; q)^{\wedge}$ for all $x 2 R$ and $q 2 Q$; where 0 is the identity in R :

Proof. The proof is straight forward and omitted.

Theorem 3.5. A is a (;) Q-fuzzy subring of a ring R if and only if $A(x y ; q) \quad A(x ; q)$ ${ }^{\wedge} A(y ; q)^{\wedge}$ and $A(x y ; q) \quad A(x ; q)^{\wedge} A(y ; q)^{\wedge}$; for all $x ; y$ in R and q in Q :

Proof. Let A be a (;) -Q-fuzzy subring of R; then

$$
\begin{aligned}
& A(x \quad y ; q)_{-}=\left(A(x \quad y ; q)_{-}\right)_{-} \quad\left(\left(A(x ; q)^{\wedge} A(y ; q)\right)^{\wedge}\right)_{-} \\
& =\left(A(x ; q)_{-}\right)^{\wedge}\left(A(y ; q)_{-}\right)^{\wedge}\left({ }_{-}\right) \quad A(x ; q)^{\wedge}\left(A(y ; q)^{\wedge}\right)^{\wedge}:
\end{aligned}
$$

$$
=A(x ; q)^{\wedge} A(y ; q)^{\wedge}
$$

$A(x y ; q) _A(x ; q) \wedge A(y ; q) \wedge(* A$ is (;) -Q-fuzzy subring)
Conversely, suppose
(i) $A(x y ; q) _A(x ; q)^{\wedge} A(y ; q)^{\wedge}$ and
(ii) $A(x y ; q) _A(x ; q)^{\wedge} A(y ; q)^{\wedge}$:
then $A(0 ; q)_{-} \quad A(x \quad x ; q)_{-} \quad A(x ; q)^{\wedge} A(x ; q)^{\wedge} \quad(b y(i))$

$$
=A(x ; q)^{\wedge}:
$$

$$
\begin{aligned}
A(x ; q)_{-} & =A(0 \quad x ; q)_{-}=A(0 \quad x ; q)_{-}-\left[A(0 ; q)^{\wedge} A(x ; q)^{\wedge}\right] \\
& =\left(A(0 ; q)_{-}\right)^{\wedge}\left(A(x ; q)_{-}\right)^{\wedge}(-)\left(A(x ; q)^{\wedge}\right)^{\wedge}\left(A(x ; q)^{\wedge}\right) \\
& =A(x ; q)^{\wedge}:
\end{aligned}
$$

$$
\begin{aligned}
A(x+y ; q)_{-}= & {\left[A(x \quad(y) ; q)_{-}\right]_{-} \quad\left[A(x ; q)^{\wedge} A(y ; q)^{\wedge}\right]_{-} } \\
= & f\left(A(x ; q)_{-}\right)^{\wedge}\left(A(y ; q)_{-}\right)^{\wedge}\left(_\right. \\
&) g(A(x ; q))^{\wedge}\left(A(y ; q)^{\wedge}\right)^{\wedge} \\
= & A(x ; q)^{\wedge} A(y ; q)^{\wedge}
\end{aligned}
$$

Clearly $A(x y ; q) \quad A(x ; q)^{\wedge} A(y ; q)^{\wedge}$:
Therefore A is $a(;)$-Q-fuzzy subring of R :

Proposition 3.6. Let A be a non-empty subset of a ring R and f be a Qfuzzy subset de ned by $f(x ; q)=\begin{gathered}\substack{\begin{subarray}{c}{c \\<} }} \\{>} \\ ; \text { if } \times 2 A \\ \text { if } \times 2=A \text {; where } 0\end{gathered}$

Then f is $a(;)-Q$-fuzzy subring of R if and only if A is a subring of R :

Proof. Let f be $a(;)-Q-f u z z y ~ s u b r i n g ~ o f ~ R ~ a n d ~ x ; ~ y ~ 2 ~ A ; ~ q ~ 2 ~ Q: ~$
Then, (a) $f(x ; q)=f(y ; q)=$ and by assumption $f(x y ; q) \quad f(x ; q)$
${ }^{\wedge}(y ; q)^{\wedge}=;$ which implies that $f(x y ; q)=($ since $0<1$:) Hence $x y$
2 A:
(b) Similarly, $f(x y ; q) \quad f(x ; q)^{\wedge} f(y ; q)^{\wedge}=$; which implies that $f(x y$;
$q)=($ since $0<1:)$ Hence xy $2 A$: Therefore A is a subring of R :

Conversely, suppose that A is a subring of R and x; $y 2 R$:
(a)(i)lf x ; y 2 A ; q 2 Q ; then by assumption x
y 2 A; which implies that
$f(x \quad y ; q)=\quad=f(x ; q)^{\wedge} f(y ; q): S o f(x \quad y ; q) \quad f(x ; q)^{\wedge} f(y ; q)^{\wedge}:$
(ii) If x ; $\mathrm{y} 2=\mathrm{A}$; (or one of x and $\mathrm{y} 2=\mathrm{A}$) q 2 Q ; then $\mathrm{f}(\mathrm{x} ; \mathrm{q})^{\wedge} \mathrm{f}(\mathrm{y} ; \mathrm{q})=$ and $\mathrm{f}(\mathrm{x} y)=$ or ; this implies that $f(x y ; q) f(x ; q)^{\wedge} f(y ; q)$ and $f(x y ; q)_{_}=f(x ; q)^{\wedge} f(y ; q)^{\wedge}$ (b)(i)If x ; y 2 A ; q 2 Q ; then by assumption xy 2 A ; which implies that $\mathrm{f}(\mathrm{xy} ; \mathrm{q})==$ $f(x ; q)^{\wedge} f(y ; q)$: So $f(x y ; q) \quad f(x ; q)^{\wedge} f(y ; q)^{\wedge}$:
(ii) If x; $y 2=A$; (or one of x and $y 2=A$) $q 2$ Q; then $f(x ; q)^{\wedge} f(y ; q)=$ and $f(x y)=$ or ; this implies that $f(x y ; q) f(x ; q)^{\wedge} f(y ; q)$ and $f(x y ; q) \quad f^{f}(x ; q)^{\wedge} f(y ; q)^{\wedge}$:
Therefore f is $\mathrm{a}(;)-\mathrm{Q}$-fuzzy subring of
R :

Theorem 3.7. If A and B are two (;) Q-fuzzy subrings of a ring R; then their intersection $A \backslash B$ is a (;) Q -fuzzy subring of R :

Proof. Let x ; y $2 \mathrm{R} ; \mathrm{q} ;$; q 22 Q and $\mathrm{C}=\mathrm{A} \backslash \mathrm{B}$:

$$
\begin{aligned}
& C(x \quad y ; q)_{_}= {\left[A(x \quad y ; q)^{\wedge} B(x \quad y ; q)\right]^{\prime} } \\
&= {\left[A(x y ; q)_{-}\right]^{\wedge}\left[B(x y ; q)_{-}\right] } \\
& {\left[A(x ; q)^{\wedge} A(y ; q)^{\wedge}\right]^{\wedge}\left[B(x ; q)^{\wedge} B(y ; q)^{\wedge}\right]=A(x ;} \\
&q)^{\wedge} A(y ; q)^{\wedge} B(x ; q)^{\wedge} B(y ; q)^{\wedge} \\
&= {\left[A(x ; q)^{\wedge} B(x ; q)\right]^{\wedge}\left(A(y ; q)^{\wedge} B(y ; q)^{\wedge}\right) } \\
&= C(x ; q)^{\wedge} C(y ; q)^{\wedge} \\
&= {\left[A(x y ; q) _\right]^{\wedge}[B(x y ; q)-] } \\
& {\left[A(x ; q)^{\wedge} A(y ; q)^{\wedge}\right]^{\wedge}\left[B(x ; q)^{\wedge} B(y ; q)^{\wedge}\right]=[A(x ;} \\
&\left.q)^{\wedge} A(y ; q)^{\wedge} B(x ; q)^{\wedge} B(y ; q)\right]^{\wedge} \\
&= {\left[A(x ; q)^{\wedge} B(x ; q)\right]^{\wedge}\left[A(y ; q)^{\wedge} B(y ; q)\right]^{\wedge} } \\
&= C(x ; q)^{\wedge} C(y ; q)^{\wedge}
\end{aligned}
$$

6

Hence $C=A \backslash B$ is a (;) Q-fuzzy subring of R :
Proposition 3.8. Let R be a ring and C_{A} be the characteristic function of a subset A of R : Then $\quad C_{A}$ is a (;) -Q-fuzzy subring of R if and only if A is

a subring of R :

Proof. Since $\mathrm{C}_{\mathrm{A}}(\mathrm{x} ; \mathrm{q})=81$ if x 2 A

$$
{ }^{<} 0 ; \quad \text { if } x=A ;
$$

C ; : 2
2A; q 2 Q:Then,
Suppose A is a () - ${ }^{\text {- }}$
(a) $C_{A}(x ; q)=C_{A}(y ; q)=1$ and by assumption $C_{A}(x y ; q) \quad C_{A}(x ; q)^{\wedge} C_{A}(y ; q)^{\wedge}=$
; which implies that $\left.C_{A}(x y ; q)=6=0\right) C_{A}(x y ; q)=1$ Thus x y $2 A$:
(b) Similarly, $C_{A}(x y ; q) _C_{A}(x ; q)^{\wedge} C_{A}(y ; q){ }^{\wedge}=6=0$ which implies that $C_{A}(x y ; q)$ $=1$: Thus xy $2 A$: Therefore A is a subring of R :

Conversely, suppose that A is a subring of R and $x ; y 2 R$:
(a)Let x; y 2 R be such that x ; y 2 A ; q 2 Q ; then by assumption
x y $2 A$; $x y 2 A$:Thus $C_{A}(x y ; q)=1 \quad C_{A}(x ; q)^{\wedge} C_{A}(y ; q)$ and
$C_{A}(x y ; q)=1 \quad C_{A}(x ; q)^{\wedge} C_{A}(y ; q):$
(b)If x; y 2=A; q 2 Q; then $C_{A}(x \quad y ; q) \quad C_{A}(x ; q)^{\wedge} C_{A}(y ; q)=0$ and
$C_{A}(x y ; q) C_{A}(x ; q)^{\wedge} C_{A c}(y ; q)=0$:
(c) If $x 2 A$ and $y 2=A$ or $x 2=A$ and y $2 A$ then $C_{A}(x y ; q) C_{A}(x ; q)^{\wedge}$
$C_{A}(y ; q)=0$ and $C_{A}(x y ; q) \quad C_{A}(x ; q)^{\wedge} C_{A}(y ; q)=0$:
Thus C_{A} is a Q-fuzzy subring of R and by Remark C_{A} is a (;) -Q-fuzzy subring of R :

Theorem 3.9. Let A be a Q -fuzzy subset of a ring R: Then A is a (;) Q - fuzzy subring of $R i A$ is a subring of R; for all $2(;]$:

Proof. Let A be $\mathrm{a}($;) $\quad \mathrm{Q}$ fuzzy subring of R :
Let 2 (;] and x ; y 2 A then

$$
A(x \quad y ; q)_{-} A(x ; q)^{\wedge} A(y ; q)^{\wedge} \quad>
$$

So $A(x \quad y ; q)$ and x y $2 A$: Similarly $x y$ A:

Conversely, let A be a Q-fuzzy subring of R for all 2 (; ; If there exist $x ; y 2 R$; such that $A(x y ; q) \quad<=A(x ; q)^{\wedge} A(y ; q)^{\wedge}$; then $x ; y 2 A$ and $x y 2=A$: This is a contradiction with that A is subring.

Hence $A(x \quad y){ }_{\text {_ }} \quad A(x ; q)^{\wedge} A(y ; q)^{\wedge}$
holds for all $x ; y 2 R$: Similarly, we have $A(x y ; q) \quad A(x ; q)^{\wedge} A(y ; q)^{\wedge}$:
Therefore A is a (;) $\quad Q$-fuzzy subring of R :
De nition 3.10. Let A be a Q -fuzzy subset of R: Then A is called a (;) Q -fuzzy ideal of R if
(i) $A(x y ; q) _A(x ; q)^{\wedge} A(y ; q)^{\wedge}$:
(ii) $A(x y ; q) _\left[A(x ; q) _A(y ; q)\right]^{\wedge}$; for all $x ; y 2 R$ and $q 2 Q$:

Remark 3.11. A Q-fuzzy ideal is a (;) -Q-fuzzy ideal with $\quad=0$ and $=1$ and a (2; 2 _q) -Q-fuzzy ideal is a (;) -Q-fuzzy ideal with, $=0$ and $=0: 5$:

Thus every Q-fuzzy ideal and (2; 2 _q) -Q-fuzzy ideal of R is a (;) -Q-fuzzy ideal of R : However, the converse is not necessarily true as shown in the following example.

Example 3.12. Consider the ring $R=\left(Z_{4} ;\right.$; $)$; where $Z_{4}=f 0 ; 1 ; 2 ; 3 g$ and let $Q=$ fqg: Let the Q-fuzzy subset A be de ned by $A(0 ; q)=0: 47 ; A(1 ; q)=A(3 ; q)=$ $0: 45 ; A(2 ; q)=0: 48$; Then, by routine calculation A is a $(0: 1 ; 0: 4) Q$-fuzzy ideal of R : But, since $A(22 ; q)=A(0 ; q)=0: 47 A(2 ; q)^{\wedge} A(2 ; q)=0: 48$ and $A(22 ; q)=$ $A(0 ; q)=0: 47 A(2 ; q)^{\wedge} A(2 ; q)^{\wedge} 0: 5=0: 48 ; A$ is neither a Q-fuzzy ideal of R nor a (2; 2 _q) -Q-fuzzy ideal of

R

Theorem 3.13. Let A be a Q -fuzzy subset of R: Then A is a (;) Q -fuzzy ideal of RiA is a ideal of R for all 2 (; $;$:

Proof. Let A be a (;) Q -fuzzy ideal of R; then for all 2 (;]; we have that A is a subring of R from Theorem 3.4. Let $\times 2$ A ; 2 R then
$A(x ; q) \quad$ and $A(x r ; q) \quad A(x ; q)^{\wedge} A(r ; q)^{\wedge} \quad>$: So $A(x r ; q)$
and $x r 2 A$: Similarly $r x 2 A$: Hence $A \quad$ is an ideal of R :
Conversely, let A be an ideal of R for all $2($;]: If there exist x; y $2 R$
such that $A(x y ; q)_{-} \ll\left[A(x ; q) A_{-}(y ; q)\right]^{\wedge}$: Now
$\left[A(x ; q) _A(y ; q)\right]^{\wedge}>\quad$:Then $A(x ; q) \quad ; A(y ; q) \quad$ and : Hence
x; y $2 A$ and A being an ideal of R; x 2 A and $A(x y ; q)$
It is contradiction. It follows that
$A(x y ; q) _\left(A(x ; q) _A(y ; q)\right)^{\wedge}$ for all $x ; y 2 R$ and $q 2 Q$: From Theorem 3.4 we have that
$A(x \quad y ; q)_{_} \quad A(x ; q)^{\wedge} A(y ; q)^{\wedge} \quad$ for all $x ; y 2 R ; q 2 Q:$
Therefore A is $a(;) \quad Q$-fuzzy ideal of R :
Theorem 3.14. Let R_{1} and R_{2} be two rings and $f: R_{1}$! R_{2} be a homomorphism.
If B is $a(;)-Q$ fuzzy subring(ideal) of R_{2}; then the pre image $f{ }^{1}(B)$ of R_{2} under f is $a(;)-Q$ fuzzy subring(ideal) of R_{1} :

Proof. Let B is $a(;)-Q$ fuzzy subring of R_{2} :
Let $x_{1} ; x_{2} 2 R_{1}$ and $q_{;} q_{1} ; q_{2} 2 Q$:

$$
\begin{aligned}
f^{1}(B)\left(x_{1} \quad x_{2} ; q\right)_{-} & =B\left(f\left(x_{1} \quad x_{2}\right) ; q\right)- \\
& =B\left(f(x ; q) f\left(x_{2} ; q\right)\right)^{\prime} \\
& B(f(x ; q))^{\wedge} B\left(f\left(x_{2} ; q\right)\right)^{\wedge} \\
& =f^{1}(B)\left(x_{1} ; q\right)^{\wedge} f^{1}(B)\left(x_{2} ; q\right)^{\wedge}: \\
f^{1}(B)\left(x_{1} x_{2} ; q\right)_{-}= & B\left(f\left(x_{1} x_{2}\right) ; q\right)_{-} \\
= & B\left(f(x ; q) f\left(x_{2} ; q\right)\right)_{-} \\
= & B(f(x ; q))^{\wedge} B\left(f\left(x_{2} ; q\right)\right)^{\wedge} \\
= & f^{1}(B)\left(x_{1} ; q\right)^{\wedge} f^{1}(B)\left(x_{2} ; q\right)^{\wedge}: \\
f^{1}(B)\left(x ; q_{1} q_{2}\right)- & B\left(f(x) ; q_{1} q_{2}\right)_{-} \\
& B\left(f(x) ; q_{1}\right)^{\wedge} B\left(f(x) ; q_{2}\right)^{\wedge} \\
& =f^{1}(B)\left(x^{\wedge} ; q_{1}\right)^{\wedge} f^{1}(B)\left(x ; q_{2}\right)^{\wedge}:
\end{aligned}
$$

Hence $f^{1}(B)$ is a $(;)-Q$ fuzzy subring.

Theorem 3.15. Let $f: R_{1}!R_{2}$ be a homomorphism of rings and let A be a (;) -Q fuzzy subring(ideal) of R_{1} : Then $f(A)$ is a (;) -Q fuzzy subring(ideal) of R_{2} :

Proof. For all y_{1}; y $2 \mathrm{R}_{2}$: We have

$$
\begin{aligned}
& f(A)\left(y_{1} \quad y_{2} ; q\right)_{-}=\operatorname{supf} A\left(x_{1} \quad x_{2} ; q\right)=f\left(x_{1} \quad x_{2}\right)=y_{1} \quad y_{2} g_{-} \\
& =\operatorname{supf} A\left(x_{1} \quad x_{2} ; q_{1}\right)_{-}=f\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)=y_{1} \quad y_{2} g \\
& \operatorname{supf} A\left(x_{1} ; q\right)^{\wedge} A\left(x_{2} ; q\right)^{\wedge}=f\left(x_{1}\right)=y_{1} ; f\left(x_{2}\right)=y_{2} g \\
& =\operatorname{supf} A\left(x_{1} ; q\right)=f\left(x_{1}\right)=y_{1} g^{\wedge} \operatorname{supf} A\left(x_{2} ; q\right)=f\left(x_{2}\right)=y_{2} g^{\wedge} \\
& =f(A)\left(y_{1} ; q\right) ; f(A)\left(y_{2} ; q\right)^{\wedge} \text { : } \\
& f(A)\left(y_{1} y_{2} ; q\right)_{-}=\operatorname{supf} A\left(x_{1} x_{2} ; q\right)=f\left(x_{1} x_{2}\right)=y_{1} \quad y_{2} g_{-} \\
& =\operatorname{supf} A\left(x_{1} x_{2} ; q\right)_{-}=f\left(x_{1} x_{2}\right)=y_{1} \quad y_{2} g \\
& \operatorname{supf} A\left(x_{1} ; q\right)^{\wedge} A\left(x_{2} ; q\right)^{\wedge}=f\left(x_{1}\right)=y_{1} ; f\left(x_{2}\right)=y_{2} g \\
& =\operatorname{supf} A\left(x_{1} ; q\right)=f\left(x_{1}\right)=y_{1} g^{\wedge} \operatorname{supf} A\left(x_{2} ; q\right)=f\left(x_{2}\right)=y_{2} g^{\wedge} \\
& =f(A)\left(y_{1} ; q\right) ; f(A)\left(y_{2} ; q\right)^{\wedge} \text { : } \\
& f(A)\left(x_{1} ; q_{1} q_{2}\right)_{-}=\operatorname{supf} A\left(x_{1} ; q_{1} q_{2}\right)=f\left(x_{1}\right)=y_{1} g_{-} \\
& =\operatorname{supf} A\left(x_{1} ; q_{1} q_{2}\right)_{-}=f\left(x_{1}\right)=y_{1} g \\
& \operatorname{supf} A\left(x_{1} ; q_{1}\right)^{\wedge} A\left(x_{1} ; q_{2}\right)^{\wedge}=f\left(x_{1}\right)=y_{1} g \\
& =\operatorname{supf} A\left(x_{1} ; q_{1}\right)=f\left(x_{1}\right)=y_{1} g^{\wedge} \operatorname{supf} A\left(x_{1} ; q_{2}\right)=f\left(x_{1}\right)=y_{1} g^{\wedge} \\
& =f(A)\left(x ; q_{1}\right)^{\wedge} f(A)\left(x ; q_{2}\right)^{\wedge} \text { : }
\end{aligned}
$$

Hence $f(A)$ is a (;) - Q fuzzy subring.

References

[1] Bhakat. S. K and P. Das, (2; 2 _q) -fuzzy group Fuzzy Sets and Systems 80(1996) 359-368.
[2] Bhakat. S. K and P. Das, Fuzzy subrings and ideals rede ned Fuzzy Sets and Systems 81(1996) 383-393.
[3] Bhakat. S. K. and P. Das, (2; 2 _q) -fuzzy normal, quasi normal and maximal sub-groups Fuzzy Sets and Systems 112(2000) 299-312.
[4] S. Hemalatha, S. Naganathan and K. Arjunan, Some Theorem On Q -Fuzzy Subrings of a Ring, Int. J. Emerging Technology and Advanced Engineering, 2 (12) (2012) 581-585.
[5] W. Liu, Fuzzy Invariant Subgroups and Fuzzy Ideals, Fuzzy Sets and Systems, 8 (1982) 133-139.
[6] A. Solairaju Na R. Nagaraju, Q -Fuzzy Left R -Subgroups of Near-rings with respect to t-norms, Antattica Journal of Mathematics, 5 (1-2)(2008) 59-63.
[7] A. Solairaju Na R. Nagaraju, A New Structure and Construction of Q - fuzzy Groups, Advanced in Fuzzy Mathematics, 4 (1)(2009) 23-29.
[8] A. Solairaju Na R. Nagaraju, Lattice Valued Q -fuzzy Left R -submodules of near-rings with respect to T -norms, Advanced in Fuzzy Mathematics, 4 (2)(2009) 137-145.
[9] P. Sarangapani and P. Muruganantham, Q -fuzzy version of (;) -Fuzzy ideals via near ring, Int. J. of Mathematics Trends and Technology, 30 (1)(2016) 23-29.
[10] B. Yao, (;) -fuzzy normal subgroups, (;) -fuzzy quotient subgroups, The Journal of Fuzzy Mathematics, 13 (3)(2005) 695-705.
[11] B. Yao, (;) -fuzzy subrings and (;) -fuzzy ideals, The Journal of Fuzzy Mathematics, 15 (4)(2007) 981-987.
[12] L.A. Zadeh, Fuzzy Set, Information and Control 8 (1965) 338-353.

