Irregular Chromatic number of Line graph of Neighbourly Irregular Chemical Graph among sblock and p-block elements

J.Arockia Aruldoss ${ }^{1}$, U.Gogulalakshmi ${ }^{2}$
Assistant Professor ${ }^{1}$, Research Scholar ${ }^{2}$, PG and Research Department of Mathematics, St.Joseph's College of Arts and Science (Autonomous), Cuddalore-1

Abstract

Let G be a Neighbourly Irregular Chemical Graph(NICG). We obtain the Line graph $\mathrm{L}(\mathrm{G})$ from the graph G for some chemical graph, in which each atoms of L(G) represents an covalent bonds of G. In this paper, finding the Irregular Chromatic Number $\chi_{i r}(G)$ of Line Graph by using different codes and colors. And also, discuss about some examples of Line graph $L(G)$ and Complete bipartite $K_{1, n}(G)$ of NIC graph.

Keywords: Irregular colouring, line graph, complete bipartite graph.

1. Introduction

In a graph $G=(V, E)$ considered as a pair of vertices and edges. Here, we consider the V as atoms and E be an covalent bond in chemical term of molecular structure of the Neighbourly Irregular Chemical Graph (NICG) which is finite, undirected, and without loop and isolated atom[1]. Mary Radcliffe and Ping Zhang [2], introduce the concept of irregular colouring of graphs. In 1932, H.Whitney invented the line graph [3]. In this paper, we define the concept of Irregular Chromatic number of line graph of graph (NICG).

2.Basic Definitons:

Definition 2.1

For the molecular structure of chemical graph corresponding element of the atoms has different valency in its adjacent atoms is said to be a Neighbourly Irregular Chemical Graph (NICG).

Example: 2.1.1

Figure 2.1

Definition 2.2

Let G be a graph and let $V(G)$ be the set of all vertices of G and let $\{1,2, \ldots . k\}$ be denote the set of all colours which are assigned to each vertex of G. A proper vertex colouring of a graph G is a mapping $c: V(G)$ $\rightarrow\{1,2, \ldots . k\}$ such that $\mathrm{c}(\mathrm{u}) \neq \mathrm{c}(\mathrm{v})$ for all arbitrary adjacent vertices $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$.

Definition 2.3

If distinct vertices have distinct color codes and the colouring c is called irregular colouring.

Definition 2.4

The irregular chromatic number $\chi_{i r}(G)$ of G is the minimum positive integer k for which G has an irregular k-colouring. An irregular k- colouring with $\chi_{i r}(G)=\mathrm{k}$ is a minimum irregular coloring.

Definition 2.5

Let $\mathrm{G}=(\mathrm{V}, \mathrm{X})$ be a graph. The Complement \bar{G} of G is defined to be the graph which has V as its set of points and two points are adjacent in \bar{G} if and only if they are not adjacent in G.

Definition 2.6

A graph G is called a bigraph or bipartite graph if V can be partitioned into two disjoint subsets V_{1} and V_{2} such that every line of G joins a point of V_{1} to a point V_{2}. $\left(V_{1}, V_{2}\right)$ is called a bipartition of G. If further G contains every line joining the points V_{1} to the points of V_{2} then G is called a complete bigraph. $K_{1, \mathrm{~m}}$ is called a star for $\mathrm{m} \geq 1$.

Definition 2.7

A line graph $L(G)$ (also called an adjoint, covering) of a simple graph G such that each vertex of $L(G)$ represents an edge of G and two vertices of $L(G)$ are adjacent iff their corresponding edges are incident in G

Example: 2.1.2

Figure 2.2

3.Irregular Chromatic Number of Line graph of NICG:

Theorem 3.1

For some line graph of Neighbourly Irregular Chemical Graph its chromtic number $\chi_{i r}(L(G))$ is either 3 or 4 for $n \geq 4$ atoms of molecular structure.

Proof:

Let $\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{v}_{3}, \ldots \ldots \mathrm{v}_{9}\right\}$ be the maximum number of atoms of molecular structure of NIC graph G of order 9.

And $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots \ldots . \mathrm{e}_{8}\right\}$ be an covalent bond of graph
Here, covalent bond is considered as atoms of line graph which shown in fig 3.2
\therefore Irregular chromatic number for line graph $\chi_{i r}(L(G))=4$.
Moreover, $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots \ldots . \mathrm{v}_{10}\right\}$ be an atom of NIC graph of maximum order 10.

Covalent bond for line graph is $\left\{\mathrm{e}_{1,} \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots \ldots \mathrm{e}_{12}\right\}$
Here the same process followed as above and shown in fig 3.4
$\therefore \chi_{i r}(L(G))=4$.

Sevoflurane $\left(\mathbf{C}_{4} \mathbf{H}_{3} \mathrm{~F}_{7} \mathrm{O}\right)$

Figure 3.1

$\mathrm{L}(\mathrm{G})$ of Sevoflurane $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~F}_{7} \mathrm{O}\right)$

Figure 3.2

Arsenic Trioxide ($\mathrm{As}_{4} \mathrm{O}_{6}$)
Figure 3.3
$\mathrm{L}(\mathrm{G})$ of Arsenic Trioxide $\left(\mathrm{As}_{4} \mathrm{O}_{\mathbf{6}}\right)$
Figure 3.4

3.2 Irregular Chromatic Number of Line graph of Complete bipartite NICG

Theorem 3.2

For every line graph $\mathrm{L}(\mathrm{G})$ of Complete bipartite NIC graph G of order n , then $\chi_{i r}\left(L\left(K_{1, m}\right)\right)=m$ $\forall m \geq 3$

Proof:

Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots \ldots \mathrm{v}_{\mathrm{n}}\right\}$ be an atom of Complete bipartite NIC graph $\mathrm{K}_{1, n}$ and $\left\{\mathrm{e}_{1,} \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots \ldots \mathrm{e}_{\mathrm{n}}\right\}$ be an covalent bond of such graph.

This covalent bond are considered as atoms of line graph of Complete bipartite graph $\mathrm{L}\left(\mathrm{K}_{1, \mathrm{~m}}\right)$.

For $m=3$ atom,
$\chi_{i r}\left(L\left(K_{1,3}\right)\right)=3$
For $\mathrm{m}=4$ atom,
$\chi_{i r}\left(L\left(K_{1,4}\right)\right)=4$
For $\mathrm{m}=5$ atom,
$\chi_{i r}\left(L\left(K_{1,5}\right)\right)=5$
It is true for $\mathrm{m}=4,5,6$ atom, and by induction method
Hence the result is true for $\mathrm{m}-1$.
Therefore $\chi_{i r}\left(L\left(K_{1, m}\right)\right)=m$

Example:3.2.1

Consider the line graph $\mathrm{L}(\mathrm{G})$ of complete bipartite graph $\mathrm{K}_{1,3}$ of Aluminium hydroxide $\left(\mathrm{Al}(\mathrm{OH})_{3}\right)$

G

Aluminium hydroxide $(\mathbf{A l}(\mathbf{O H}) \mathbf{3})$

Figure 3.5

2
3

$$
\chi_{i r}\left(L\left(K_{1,3}\right)\right)=3
$$

Figure 3.6

Example:3.2.2

Consider the line graph $\mathrm{L}(\mathrm{G})$ of Complete bipartite graph $\mathrm{K}_{1,4}$ of Carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$
${ }^{\mathrm{Cl}}$
Cl

Carbon tetrachloride ($\mathbf{C C l}_{4}$)

1

Figure 3.7

Example:3.2.3

Consider the line graph $\mathrm{L}(\mathrm{G})$ of complete bipartite graph $\mathrm{K}_{1,5}$ of Phosphorous pentabromide $\left(\mathrm{PBr}_{5}\right)$

Br

V5

Phosphorous pentabromide (PBr_{5})

G

Figure 3.8

Problem :3.3

If $\mathrm{L}(\mathrm{G})$ and $L(\bar{G})$ are line graph and its Complement of NIC graph G, which is molecular structure of Arsenic trioxide $\left(\mathrm{As}_{4} \mathrm{O}_{6}\right)$, both graph has same irregular chromatic number.

Solution :

Let G be an arsenic trioxide which is Neighbourly Irregular Chemical Graph as shown in figure 3.3
Its irregular chromatic number is 2 .
The irregular chromatic number for line graph of arsenic trioxide is 4 as shown in figure 3.4
And Complement of $\mathrm{L}(\mathrm{G})$ graph of arsenic trioxide is shown figure 3.9 in have valency bond 8 .
$\chi_{i r}(L(\bar{G}))=4$

Complement of $L(G)$ graph of Arsenic trioxide
Figure 3.9
Colour codes for Line graph and it's Complement graph:

$\mathrm{c}\left(\mathrm{e}_{8}\right)$	10210	23032
$\mathrm{c}\left(\mathrm{e}_{9}\right)$	22010	43230
$\mathrm{c}\left(\mathrm{e}_{10}\right)$	10120	42330
$\mathrm{c}\left(\mathrm{e}_{11}\right)$	31101	43320
$\mathrm{c}\left(\mathrm{e}_{12}\right)$	41110	33302

Adjacent atom for Line graph and it's Complement graph has distinct codes.
But they has same chromatic number
i.e.) $\chi_{i r}(L(G))=4$.
$\chi_{i r}(L(\bar{G}))=4$
$\chi_{i r}(L(G))=\chi_{i r}(L(\bar{G}))$
Observation: 3.4

Number of atoms of NICG	$\chi_{i r}(L(G))$	Molecular structure name 4
5	3	Arsenic chloride $\left(\mathrm{Ascl}_{3}\right)$
6	4	Pentaborane $\left(\mathrm{B}_{5} \mathrm{H}_{9}\right)$
7	3	Disulfur tetrafluoride $\left(\mathrm{F}_{4} \mathrm{~S}_{2}\right)$
8	4	Dinitrogen pentaoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$
9	4	Diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$
10	4	Arsenic trioxide $\left(\mathrm{As}_{4} \mathrm{O}_{6}\right)$
11	3	Beryllium borohydride $\left(B e\left(\mathrm{BH}_{4}\right)_{2}\right)$

4. Conclusion

In this paper, we consider the Line Graph of Neighbourly Irregular Chemical Graph. Further constructing the Irregular Chromatic number for line graph and its Complement graph of NICG.

References

[1] J.Arockia Aruldoss and S.Gnana soundari, " Dominator chromatic number of various central neighbourly irregular chemical graph among s-block and p- block elements", JETIR, vol 5, pg 870-880, (2018).
[2] Mary Radcliffe and Ping Zhang, " On irregular colorings of graphs", Department of mathematics, pg 115, (2006)
[3] L.Jethruth emelda mary, "Star colouring of line graph formed from the cartesian product of cycle and path graphs", pg 203-212, (2018).
[4] R.Avudainayaki, B.Selvam and K.Thirusangu, "Irregular coloring of some classes of graphs", pg 119-127, (2016).
[5] S.Arumugam and S.Ramachandran, " Invitation to graph theory" pg 5-25.
[6] Selvam avadayappan, M.Bhuvaneshwari and R.Sindhu, "Support neighbourly irregular graphs", pg 40094014, (2016).

