Irregular Chromatic number of Line graph of Neighbourly Irregular Chemical Graph among sblock and p-block elements

J.Arockia Aruldoss¹, U.Gogulalakshmi²

Assistant Professor¹, Research Scholar²,

PG and Research Department of Mathematics,

St.Joseph's College of Arts and Science (Autonomous), Cuddalore-1

Abstract

Let G be a Neighbourly Irregular Chemical Graph(NICG). We obtain the Line graph L(G) from the graph G for some chemical graph, in which each atoms of L(G) represents an covalent bonds of G. In this paper, finding the Irregular Chromatic Number $\chi_{ir}(G)$ of Line Graph by using different codes and colors. And also, discuss about some examples of Line graph L(G) and Complete bipartite K_{1,n}(G) of NIC graph.

Keywords: Irregular colouring, line graph , complete bipartite graph.

1. Introduction

In a graph G = (V,E) considered as a pair of vertices and edges. Here ,we consider the V as atoms and E be an covalent bond in chemical term of molecular structure of the Neighbourly Irregular Chemical Graph (NICG) which is finite, undirected, and without loop and isolated atom[1]. Mary Radcliffe and Ping Zhang [2], introduce the concept of irregular colouring of graphs. In 1932, H.Whitney invented the line graph [3]. In this paper, we define the concept of Irregular Chromatic number of line graph of graph (NICG).

2.Basic Definitons:

Definition 2.1

For the molecular structure of chemical graph corresponding element of the atoms has different valency in its adjacent atoms is said to be a Neighbourly Irregular Chemical Graph (NICG).

Example: 2.1.1

Definition 2.2

Let G be a graph and let V(G) be the set of all vertices of G and let $\{1,2,...,k\}$ be denote the set of all colours which are assigned to each vertex of G. A proper vertex colouring of a graph G is a mapping c: V(G) $\rightarrow \{1,2,...,k\}$ such that $c(u) \neq c(v)$ for all arbitrary adjacent vertices $u, v \in V(G)$.

Definition 2.3

If distinct vertices have distinct color codes and the colouring c is called irregular colouring.

Definition 2.4

The irregular chromatic number $\chi_{ir}(G)$ of G is the minimum positive integer k for which G has an irregular k-colouring. An irregular k- colouring with $\chi_{ir}(G) = k$ is a minimum irregular coloring.

Definition 2.5

Let G = (V, X) be a graph. The Complement \overline{G} of G is defined to be the graph which has V as its set of points and two points are adjacent in \overline{G} if and only if they are not adjacent in G.

Definition 2.6

A graph G is called a bigraph or bipartite graph if V can be partitioned into two disjoint subsets V_1 and V_2 such that every line of G joins a point of V_1 to a point V_2 . (V_1, V_2) is called a bipartition of G. If further G contains every line joining the points V_1 to the points of V_2 then G is called a complete bigraph. $K_{1,m}$ is called a star for $m \ge 1$.

Definition 2.7

A line graph L(G) (also called an adjoint, covering) of a simple graph G such that each vertex of L(G) represents an edge of G and two vertices of L(G) are adjacent iff their corresponding edges are incident in G

Example: 2.1.2

3.Irregular Chromatic Number of Line graph of NICG:

Theorem 3.1

For some line graph of Neighbourly Irregular Chemical Graph its chromic number $\chi_{ir}(L(G))$ is either 3 or 4 for $n \ge 4$ atoms of molecular structure.

Proof:

Let $\{v_1, v_2, v_3, \dots, v_9\}$ be the maximum number of atoms of molecular structure of NIC graph G of order 9.

And $\{e_1, e_2, e_3, \dots, e_8\}$ be an covalent bond of graph

Here, covalent bond is considered as atoms of line graph which shown in fig 3.2

: Irregular chromatic number for line graph $\chi_{ir}(L(G)) = 4$.

Moreover, $\{v_1, v_2, v_3, \dots, v_{10}\}$ be an atom of NIC graph of maximum order 10.

Covalent bond for line graph is $\{e_1, e_2, e_3, \dots, e_{12}\}$

Here the same process followed as above and shown in fig 3.4

$$\therefore \chi_{ir}(L(G)) = 4.$$

L(G) of Sevoflurane(C4H3F7O)

Figure 3.2

L(G) of Arsenic Trioxide (As₄O₆)

Figure 3.4

3.2 Irregular Chromatic Number of Line graph of Complete bipartite NICG

Theorem 3.2

For every line graph L(G) of Complete bipartite NIC graph G of order n, then $\chi_{ir}(L(K_{1,m})) = m$ $\forall m \ge 3$

Proof:

Let $\{v_1, v_2, v_3, \dots, v_n\}$ be an atom of Complete bipartite NIC graph $K_{1,n}$ and $\{e_1, e_2, e_3, \dots, e_n\}$ be an covalent bond of such graph.

This covalent bond are considered as atoms of line graph of Complete bipartite graph L(K_{1,m}).

For m = 3 atom,

$$\chi_{ir}(L(K_{1,3})) = 3$$

For m = 4 atom,

$$\chi_{ir}\left(L(K_{1,4})\right) = 4$$

For m = 5 atom,

$$\chi_{ir}\left(L\left(K_{1,5}\right)\right) = 5$$

It is true for m = 4,5,6 atom, and by induction method

Hence the result is true for m -1.

Therefore $\chi_{ir}(L(K_{1,m})) = m$

Example:3.2.1

Consider the line graph L(G) of complete bipartite graph K_{1,3} of Aluminium hydroxide (Al(OH)₃)

Aluminium hydroxide (Al(OH)3)

e4 '

 $\chi_{ir}\left(L\left(K_{1,4}\right)\right) = 4$

Figure 3.7

e₄ 3

Example:3.2.3

Consider the line graph L(G) of complete bipartite graph $K_{1,5}$ of Phosphorous pentabromide (PBr₅)

Problem :3.3

If L(G) and $L(\overline{G})$ are line graph and its Complement of NIC graph G, which is molecular structure of Arsenic trioxide (As₄O₆), both graph has same irregular chromatic number.

Solution :

Let G be an arsenic trioxide which is Neighbourly Irregular Chemical Graph as shown in figure 3.3 Its irregular chromatic number is 2.

The irregular chromatic number for line graph of arsenic trioxide is 4 as shown in figure 3.4

And Complement of L(G) graph of arsenic trioxide is shown figure 3.9 in have valency bond 8.

 $\chi_{ir}(L(\overline{G})) = 4$

Complement of L(G) graph of Arsenic trioxide

Figure 3.9

Colour codes for Line graph and it's Complement graph:

Colour codes for each atoms	Line Graph of Arsenic Trioxide	Complement of Line graph of Arsenic Trioxide
$c(e_1)$	10210	10233
$c(e_2)$	22010	10323
$c(e_3)$	22010	22033
$c(e_4)$	32100	10332
$c(e_5)$	10201	32303
$c(e_6)$	31200	23023
c(e ₇)	21011	33203

JETIR1904K96 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 675

© 2019 JETIR April 2019, Volume 6, Issue 4

c(e ₈)	10210	23032
$c(e_9)$	22010	43230
$c(e_{10})$	10120	42330
c(e ₁₁)	31101	43320
c(e ₁₂)	41110	33302

Adjacent atom for Line graph and it's Complement graph has distinct codes.

But they has same chromatic number

- i.e.) $\chi_{ir}(L(G)) = 4$.
 - $\chi_{ir}(L(\overline{G})) = 4$
- $\chi_{ir}(L(G)) = \chi_{ir}(L(\overline{G}))$

Observation: 3.4

$\chi_{ir}(L(G)) = \chi_{ir}(L(\overline{G}))$		
Observation: 3.4	JELL	K
Number of atoms of NICG	$\chi_{ir}(L(G))$	Molecular structure name
4	3	Arsenic chloride (Ascl ₃)
5	3	Pentaborane (B ₅ H ₉)
6	4	Disulfur tetrafluoride (F ₄ S ₂)
7	3	Dinitrogen pentaoxide (N ₂ O ₅)
8	4	Diborane (B ₂ H ₆)
9	4	Sevoflurane (C ₄ H ₃ F ₇ O)
10	4	Arsenic trioxide (As ₄ O ₆)
11	3	Beryllium borohydride (Be(BH ₄) ₂)

4. Conclusion

In this paper, we consider the Line Graph of Neighbourly Irregular Chemical Graph. Further constructing the Irregular Chromatic number for line graph and its Complement graph of NICG.

References

^[1] J.Arockia Aruldoss and S.Gnana soundari, "Dominator chromatic number of various central neighbourly irregular chemical graph among s-block and p- block elements", JETIR, vol 5, pg 870-880, (2018).

[2] Mary Radcliffe and Ping Zhang, "On irregular colorings of graphs", Department of mathematics, pg 1-15, (2006)

[3] L.Jethruth emelda mary, "Star colouring of line graph formed from the cartesian product of cycle and path graphs", pg 203-212, (2018).

[4] R.Avudainayaki, B.Selvam and K.Thirusangu, "Irregular coloring of some classes of graphs", pg 119-127, (2016).

[5] S.Arumugam and S.Ramachandran, "Invitation to graph theory" pg 5-25.

[6] Selvam avadayappan, M.Bhuvaneshwari and R.Sindhu, "Support neighbourly irregular graphs", pg 4009-4014, (2016).

