ALGEBRAIC STRUCTURES ON SR – MAGIC SQUARE OF ORDER FOUR

J.Suresh Kumar, M.Sc., M.Phil., B.Ed., Assistant Professor, Department of Mathematics St Thomas College of Arts and Science, Chennai, Tamil Nadu, India.

ABSTRACT :

In this paper a generic definition for SR - Magic Squares is given. and group structure of SR - magic squares is discussed and SR –magic square are proved to be an abelian group. A function on SR - magic squares is also defined and it is proved to be a group homomorphism and isomorphism. The paper also deals with linear transformation, the formation of a vector space for the set of all SR - magic squares and the kernel of the mapping. And also the SR - magic squares are proved to have a ring structure and some particular SR - magic squares form commutative ring with unity. The paper also sheds light on the field structure of SR - magic squares.

Keywords: Magic Square, Magic Constant, SR - Magic Square, Abelian group, Homomorphism, Isomorphism, Kernel, Linear transformation, Vector space, Ring, Field.

1. INTRODUCTION :

While magic squares are recreational on one hand they can be treated somewhat more seriously in higher mathematics on the other hand. A normal magic square is a square array of consecutive numbers from $1 \dots n^2$ where the rows, columns, diagonals and co-diagonals add up to the same number. The constant sum is called magic constant or magic number. Along with the conditions of normal magic squares, SR - magic square of order 4 have some more property. There are many recreational aspects of SR - magic squares. But, apart from the usual recreational aspects, it is found that these SR - magic squares possess advanced mathematical properties.

2. NOTATIONS AND MATHEMATICAL PRELIMINARIES

2.1 Magic Square

A magic square of order n is an nth order matrix $[a_{i,i}]$ such that

$\sum_{j=1}^{n} a_{i,j}$	$= \alpha$	for i=1, 2, 3, 4,n	(1)
$\sum_{j=1}^{n} a_{j,i}$	$= \alpha$	for i=1, 2, 3, 4,n	(2)
$\sum_{i=1}^{n} (a_{i,i})$	$= \alpha$		(3)
$\sum_{i=1}^{n} (a_{i,n+1-i})$	$= \alpha$		(4)

Equation (1) represents the row sum, equation (2) represents the column sum, equation (3) represents the diagonal and equation (4) represents the co-diagonal sum and symbol α represents the magic constant.

2.2 Magic Constant

The constant α in the above definition is known as the magic constant or magic number. The magic constant of the magic square A is denoted as α [A]

2.3 SR MAGIC SQUARE (SRMS) GENERIC DEFINITION :

A SR - magic square over a field R is a matrix $A = [a_{i,j}]$ of order 4×4 with entries in R such that, the following conditions holds.

Sum of (a_{11} +	<i>a</i> ₁₂ +	a ₁₃ +	$a_{14}) =$	$\alpha[A]$	 (1)
Sum of (a_{21} +	a ₂₂ +	a ₂₃ +	$a_{24}) =$	$\alpha[A]$	 (2)
Sum of (a_{31} +	a ₃₂ +	a ₃₃ +	a_{34}) =	<i>α</i> [<i>A</i>]	 (3)
Sum of (a_{41} +	a ₄₂ +	a ₄₃ +	$a_{44}) =$	$\alpha[A]$	(4)
Sum of (a_{11} +	a ₂₁ +	a ₃₁ +	$a_{41}) =$	<i>α</i> [<i>A</i>]	 (5)
Sum of (a_{12} +	a ₂₂ +	a ₃₂ +	a_{42}) =	<i>α</i> [<i>A</i>]	(6)
Sum of (a_{13} +	a ₂₃ +	a ₃₃ +	$a_{43}) =$	$\alpha[A]$	 (7)
Sum of (a_{14} +	a ₂₄ +	a ₃₄ +	a_{44}) =	α[A]	 (8)
Sum of (a_{11} +	a ₂₂ +	a ₃₃ +	a_{44}) =	α[A]	 (9)
Sum of (a_{14} +	a ₂₃ +	a ₃₂ +	$a_{41}) =$	α[A]	 (10)
Sum of (a_{11} +	a ₂₁ +	a_{33} +	$a_{43}) =$	<i>α</i> [<i>A</i>]	 (11)
Sum of (a_{12} +	a ₂₂ +	a ₃₄ +	$a_{44}) =$	<i>α</i> [<i>A</i>]	 (12)
Sum of (a_{13} +	$a_{23} +$	$a_{31} +$	$a_{41}) =$	$\alpha[A]$	 (13)
Sum of (a_{14} +	a ₂₄ +	a ₃₂ +	a_{42}) =	$\alpha[A]$	 (14)
Sum of (a_{13} +	<i>a</i> ₁₄ +	a ₃₁ +	a ₃₂) =	$\alpha[A]$	 (15)
Sum of (a_{23} +	$a_{24} +$	a ₄₁ +	a_{42}) =	$\alpha[A]$	 (16)
Sum of (a_{11} +	a ₁₂ +	a ₃₃ +	$a_{34}) =$	$\alpha[A]$	 (17)
Sum of (a_{21} +	a ₂₂ +	a ₄₃ +	a_{44}) =	$\alpha[A]$	 (18)
Sum of (a_{11} +	<i>a</i> ₁₄ +	a ₂₁ +	$a_{24}) =$	$\alpha[A]$	 (19)
Sum of (a_{21} +	$a_{24} +$	$a_{31} +$	$a_{34}) =$	$\alpha[A]$	 (20)
Sum of (a_{31} +	a ₃₄ +	a ₄₁ +	a_{44}) =	$\alpha[A]$	 (21)
Sum of (a_{11} +	a ₁₂ +	a ₄₁ +	a_{42}) =	$\alpha[A]$	 (22)
Sum of (a_{12} +	<i>a</i> ₁₃ +	a ₄₂ +	a_{43}) =	$\alpha[A]$	 (23)
Sum of (a_{13} +	a ₁₄ +	a ₄₃ +	a_{44}) =	$\alpha[A]$	 (24)
Sum of (a_{11} +	a_{12} +	a_{21} +	$a_{22}) =$	$\alpha[A]$	 (25)

Sum of (a_{12} +	<i>a</i> ₁₃	+	a ₂₂ +	a_{23}) =	$\alpha[A]$	(26)	
Sum of (a_{13} +	<i>a</i> ₁₄	+	a ₂₃ +	$a_{24}) =$	$\alpha[A]$	(27)	
Sum of (a_{21} +	a ₂₂	+	a ₃₁ +	a ₃₂) =	$\alpha[A]$	(28)	
Sum of (a_{22} +	a ₂₃	+	a ₃₂ +	a ₃₃) =	$\alpha[A]$	(29)	
Sum of (a_{23} +	a ₂₄	+	a ₃₃ +	a ₃₄) =	$\alpha[A]$	(30)	
Sum of (a_{31} +	a ₃₂	+	a ₄₁ +	a ₄₂) =	$\alpha[A]$	(31)	
Sum of (a_{32} +	a ₃₃	+	a ₄₂ +	a_{43}) =	$\alpha[A]$	(32)	
Sum of (a_{33} +	a ₃₄	+	a ₄₃ +	a ₄₄) =	$\alpha[A]$	(33)	
Sum of (a_{11} +	<i>a</i> ₁₃	+	<i>a</i> ₃₁ +	<i>a</i> ₃₃) =	$\alpha[A]$	(34)	
Sum of (a_{12} +	<i>a</i> ₁₄	+	a ₃₂ +	$a_{34}) =$	$\alpha[A]$	(35)	
Sum of (a_{21} +	a ₂₃	+	a ₄₁ +	$a_{43}) =$	$\alpha[A]$	(36)	
Sum of (a_{22} +	a ₂₄	+	a ₄₂ +	a_{44}) =	$\alpha[A]$	(37)	
Sum of (a_{11} +	<i>a</i> ₁₄	+	a ₄₁ +	a ₄₄) =	<i>α</i> [<i>A</i>]	(38)	
Sum of (a_{13} +	a ₂₄	+	a ₃₁ +	$a_{42}) =$	$\alpha[A]$	(39)	
Sum of (a_{12} +	<i>a</i> ₂₁	+	a ₃₄ +	a ₄₃) =	<i>α</i> [<i>A</i>]	(40)	

Equation (1), (2), (3), (4) represents the row sum, equation (5), (6), (7), (8) represents the column sum, equation (9) represents the diagonal sum and equation (10) represents the co-diagonal sum.

2.3.1 Example

15	10	3	6
1	8	13	12
14	11	2	7
4	5	16	9

SR – Magic square of order 4, with magic constant $\alpha = 34$

2.4 Magic Constant (SRMS)

Given A = $[a_{i,i}]$ be a SR - magic square of order 4. Then its magic constant or magic number is

defined as $\alpha[A] = \frac{1}{4} \sum_{i=1}^{4} \sum_{j=1}^{4} a_{i,j}$

2.5 Group

A group (G, *) is a non empty set G closed under a binary operation * such that the following axioms are satisfied.

(i) * is associative in G. i.e, a * (b * c) = (a * b) * c, \forall a, b, c \in G

(ii) $\exists e \in G$, such that $e^* a = a^* e$, $\forall a \in G$, where e is the identity element for *.

(iii) Corresponding to each $a \in G$; $\exists b \in G$ such that a * b = b * a = e, where b is the inverse of a.

2.6 Abelian Group

A group G is abelian if its binary operation * is commutative.

2.7 Vector Space

A non-empty set V together with two operations + and . called addition and scalar multiplication

respectively, is called a vector space or linear space over a field F if the following conditions are satisfied.

(i) $\langle V, + \rangle$ is an abelian group.

(ii) $\forall \lambda \in F$ and $a \in V, \lambda, a \in V$.

- (iii) $\forall \lambda \in F$ and $a, b \in V, \lambda(a + b) = \lambda \cdot a + \lambda \cdot b$
- (iv) $\forall \lambda, \mu \in F$ and $a \in V$, $(\lambda + \mu)$. $a = \lambda \cdot a + \mu \cdot b$

(v) $\forall \lambda, \mu \in F$ and $a \in V$, $(\lambda \mu)$. $a = \lambda$. (μa)

(vi) 1. $a = a, \forall a \in V$ and 1 is the unity element of the field *F*.

2.8 Group homomorphism

A mapping f from a group $\langle G, * \rangle$ into a group $\langle G', *' \rangle$ is a homomorphism of G into G' if f(A * B) = f(A) *' f(B) for all $A, B \in G$.

2.9 A one to one and onto mapping

A function : X \rightarrow Y is one to one if $f(x_1) = f(x_2)$ only when $x_1 = x_2$.

The function *f* is onto of Y if the range of *f* is Y

2.10 Group isomorphism

A one to one onto homomorphism f from a group $\langle G, * \rangle$ into a group $\langle G', *' \rangle$ is defined as isomorphism.

2.11 Linear Transformation

Let *U* and *V* be two vector spaces over the same field *F*. Then a mapping $f: U \to V$ is called linear transformation of *U* into *V* if $(\lambda a + \mu b) = (a) + (b) \forall \lambda, \mu \in F$ and $a, b \in U$.

2.12 Kernel of a Homomorphism

If φ is a homomorphism of a group *G* into *G'*, then the kernel of φ is denoted as $ker \varphi$ and is defined as $ker \varphi = \{ g \in G; \varphi(g) = e' \}$, where *e'* is the identity of *G'*.

2.13 Rings

A non-empty set *R* together with two binary operations + and \cdot called addition and multiplication respectively is called a ring denoted as $\langle R, +, \cdot \rangle$ if the following axioms are satisfied.

i. $\langle R, + \rangle$ is an abelian group.

ii. Multiplication is associative., i.e., $a . (b.c) = (a.b).c \forall a, b, c \in R$

iii. Multiplication is distributive with respect to the addition,

i.e., a.(b+c)=a.b + a.c (Left distributive law) and (b+c).a=b.a + c.a (Right distributive law)

2.14 Commutative Ring

A ring in which the multiplication is commutative is called a commutative ring. A ring with a multiplicative identity element 1 is called a ring with unity.

2.15 Field

A ring R with at least two elements is called a field if it

- i. is commutative
- ii. has unity

iii. is such that each non zero element possesses multiplicative inverse.

2.16 Other Notations

- 1. G denotes the set of all SR-Magic Square of order 4 (SRMS).
- 2. G_a denotes the set of all SR Magic Square of order 4 such that $a_{ij} = a$, for

every i, j = 1, 2, 3, 4. ie. If A = $[a_{ij}] \in G_a$ then each $a_{ij} = a$, for some a ϵ R. we denote A = [a].

3. G_0 denotes the set of all SR - Magic Square of order 4 such that $a_{ij} = 0$, for every i, j = 1, 2, 3, 4.

4. If A = $[a_{ij}] \in G$, then its magic constant of A, $\alpha[A] = \frac{1}{4} \sum_{i=1}^{4} \sum_{j=1}^{4} a_{ij}$

5. If A = $[a_{ij}] \in G_a$, then its magic constant of A, $\alpha[A] = 4a$

6. If A = $[a_{ij}] \in G_0$, then its magic constant of A, $\alpha[A] = 0$

3. PROPOSITIONS AND THEOREMS

Proposition 3.1 : If A and B are two SR – Magic Square of Order 4 with $\alpha[A] = a$ and $\alpha[B] = b$, then C = $(\lambda + \mu) (A + B)$ is also a SR – Magic Square of Order 4 with magic constant $(\lambda + \mu) (\alpha[A] + \alpha[B])$, for every $\lambda, \mu \in R$.

Proof:

Let A = $[a_{ij}]$ and B = $[b_{ij}]$ then C = $(\lambda + \mu) (A + B) = [(\lambda + \mu) (A + B)]$ Sum of the *ith* row elements of C = $\sum_{j=1}^{4} c_{ij} = (\lambda + \mu) (\sum_{j=1}^{4} a_{ij} + \sum_{j=1}^{4} b_{ij})$ = $(\lambda + \mu) (a + b)$ $= (\lambda + \mu) (\alpha[a] + \alpha[b])$

A similar computation holds for column sum, diagonal and co-diagonal sum.

From the above propositions the following results can be obtained by putting suitable values for λ and μ .

Results: For every $A, B \in G$ and $\lambda, \mu \in R$, then **3.1 a:** $\lambda (A + B) \in G$, with magic constant $\alpha [\lambda(A + B)] = \lambda (\alpha [A] + \alpha [B])$ **Proof:** Taking $\mu = 0$ In the above proposition 3. 1

3.1 b: $(A + B) \in G$, with magic constant $\alpha [(A + B)] = \alpha [A] + \alpha [B]$ **Proof:** By putting $\lambda = 1$ in result 3.1 a

3.1 c: $\lambda A \in G$, with magic constant $\alpha [\lambda A] = \lambda \cdot \alpha [A]$ **Proof:** It can be easily verified by putting *B*=0 in result 3.1 a

3.1 d: $(\lambda + \mu)(A) \in G$, with magic constant $\alpha[(\lambda + \mu)(A)] = (\lambda + \mu) \alpha[A]$ **Proof:** In the Proposition 3.1 put B = 0, where $\in G$.

3.1 e: $\lambda A + \mu B \in G$, with magic constant $\alpha[(\lambda A + \mu B)] = \lambda \cdot \alpha[A] + \mu \cdot \alpha[B]$ **Proof:** It can be deduced from result 3.1 b and 3.1 c.

3.1 f: $-A \in G$, with magic constant $\alpha[(-A)] = -\alpha[A]$ **Proof:** By Putting $\lambda = -1$ in result 3.1 c, it can be obtained.

3.1 g: $(A - B) \in G$, with magic constant $\alpha [(A - B)] = \alpha [A] - \alpha [B]$ **Proof:** From the above result 3.1.b and 3.1.f it can be deduced

Theorem 3.2 : < G,+> forms an abelian group.

Proof:

Closure property :

If $A, B \in G$, then $A + B \in G$. (from above result 3.1 b)

Associativity :

If $A, B, C \in G$, then $A + (B + C) = (A + B) + C \in G$ (Since matrix addition is associative.) Existence of Identity:

There exists 0 matrix in G so that A + 0 = 0 + A = 0, where 0 acts as the identity element.

Existence of additive inverse:

For every $A \in G$, there exists $-A \in G$ so that A + (-A) = 0 where $0 \in G$ (from result 3.1 f).

Commutativity:

If $A, B \in G$, then $A + B = B + A \in G$ (Since matrix addition is commutative.) This completes the proof.

Proposition 3.3 : G_a forms a subgroup of the abelian group G.

Proof:

It is clear that $G_a \subset G$. For $A, B \in G_a$; A = [a] and B = [b], then clearly $A - B = [a - b] \in G_a$ Thus G_a forms a subgroup of the abelian group G.

Proposition 3.4 : G_0 forms a subgroup of the abelian group G.

Proof:

It is clear that $G_0 \subset G$ Take $A, B \in G_0$, then $\alpha[A] = 0 = \alpha[B]$ Now $\alpha[A - B] = \alpha[A] - \alpha[B] = 0$ Therefore $A - B \in G_0$.

Thus G_0 forms a subgroup of the abelian group G.

Proposition 3.5 : For all $A, B \in G, \lambda, \mu \in R$;

- a) $\lambda(A + B) = \lambda A + \lambda B$
- b) $(\lambda + \mu)$. $A = \lambda$. $A + \mu$. A
- c) (λ, μ) . $A = \lambda$. (μ, A)
- d) 1. A = A

Proof:

Since A, B \in G; A = [a_{ij}] and B = [b_{ij}]

a)
$$A + B = [a_{ij}] + [b_{ij}]$$

 $(A + B) = \lambda ([a_{ij}] + [b_{ij}])$
 $= \lambda [a_{ij}] + \lambda [b_{ij}]$
 $= \lambda A + \lambda B$
b) $(\lambda + \mu) A = (\lambda + \mu) [a_{ij}]$
 $= \lambda . [a_{ij}] + \mu [a_{ij}]$
 $= \lambda . A + . A$
c) $(\lambda, \mu) A = (\lambda, \mu) [a_{ij}]$
 $= [\lambda, \mu, (a_{ij})]$
 $= \lambda . [\mu, a_{ij}]$

 $= \lambda. (\mu. A)$ d) 1. A = 1. [a_{ij}] = [1.a_{ij}] = [a_{ij}] = A

Theorem 3.6 : $\langle G, +, \rangle$ forms a vector space over the field of real numbers. **Proof:**

It is an immediate consequence of Theorem 3.2 and Proposition 3.5

Theorem 3.7: $\langle G_a, +, \rangle$ forms a vector space over the field of real numbers.

Proof:

Since $G_a \subset G$; and G is a vector space over the field of real numbers R with respect to the addition of matrices as addition of vectors and multiplication of a matrix by a scalar as scalar multiplication, it is enough to show that G_a is a subspace of G.

This can be verified by the fact; for every λ , $\mu \in R$, and $A, B \in G_a$; $\lambda A + \mu B \in G_a$

Since $A, B \in G_a$, A = [a] and B = [b]

$$\lambda A + \mu B = [a] + \mu [b]$$
$$= [\lambda A] + [\mu B]$$
$$= [\lambda A + \mu B] \in G_0$$

Theorem 3.8 : $\langle G_0, +, \rangle$ forms a vector space over the field of real numbers. **Proof:**

Proceeding as in Proposition 3.7 it is enough to show that for every λ , $\mu \in R$, and $A, B \in G_0$; $\lambda A + \mu B \in G_0$

Since $A, B \in G_0$; $\alpha[A] = 0$ and $\alpha[B] = 0$

Now $\alpha[\lambda A + \mu B]$

 $= \lambda \alpha[A] + \mu \alpha[A] \text{ (From result 3.1 e)}$ $= \lambda \cdot 0 + \cdot 0 = 0$ Thus $\lambda A + \mu B \in G_0$

Proposition 3.9 : The mapping $f : G \to R$ defined by $f(A) = \alpha[A]$ for all $A \in G$ is a group homomorphism.

Proof:

Let A, $B \in G$, then

 $f(A + B) = \alpha[A + B]$

 $= \alpha[A] + \alpha[B]$ (By result 3.1 b and Proposition 3.3)

Proposition 3.7 : The mapping $f : G_a \to \mathbb{R}$ defined by $f(A) = \alpha[A]$ for all $A \in G_a$ is a group homomorphism.

Proof:

It can be easily verified since $G_a \subset G$

Proposition 3.8 : The mapping $f : G_0 \to \mathbb{R}$ defined by $f(A) = \alpha[A]$ for all $A \in G_0$ is a group homomorphism.

Proof:

It can be easily verified since $G_0 \subset G$

Proposition 3.9 : The mapping $f : G_a \to \mathbb{R}$ defined by $f(A) = \alpha[A]$ for all $A \in G_a$ is a group isomorphism.

Proof:

Let A, B $\in G_a$, A = $[a_{ij}]$, B = $[b_{ij}]$ then $\alpha[A] = 4a$ and $\alpha[B] = 4b$

- (i) To show that f is one to one f (A) = f (B)
- $\Rightarrow \alpha[A] = \alpha[B]$
- \Rightarrow 4a = 4b
- \Rightarrow a = b
- (ii) To show that f is onto

For every $a \in R$, there exists $A = \begin{bmatrix} a \\ 4 \end{bmatrix} \in G_a$ such that $\alpha[A] = a$ Since *f* is 1–1 and onto and from Proposition 3, it can be deduced.

Proposition 3.10 : The mapping $f : G \to R$ defined by $f(A) = \alpha[A]$ for all $A \in G$ is a linear transformation.

Proof:

Let A, B \in G, then $f (\lambda A + \mu B) = \alpha [\lambda A + \mu B]$ $= \lambda \alpha [A] + \mu \alpha [A]$ (By Result 1.4 and Theorem 3.6) $= \lambda f(A) + \mu f(B)$

Proposition 3.11 : The mapping $f : G_a \to \mathbb{R}$ defined by $f(A) = \alpha[A]$ for all $A \in G_a$ is a linear transformation.

Proof:

Let A, B $\in G_a$, then A = [a], B = [b] such that $\alpha[A] = 4a$ and $\alpha[B] = 4b$

From Result 1.4 and Theorem 3.7

 $f (\lambda A + \mu B) = \alpha [\lambda A + \mu B]$ $= \lambda \alpha [A] + \mu \alpha [A]$ $= \lambda f(A) + \mu f(B)$

Hence G_a is a linear transformation.

Proposition 3.12 : The mapping $f : G_0 \to \mathbb{R}$ defined by $f(A) = \alpha[A]$ for all $A \in G_0$ is a linear transformation.

Proof:

Let A, B $\in G_0$, then $\alpha[A] = 0$ and $\alpha[B] = 0$ $f(\lambda A + \mu B) = \alpha[\lambda A + \mu B]$ $= \lambda \alpha[A] + \mu \alpha[A]$ (By Result 1.4 and Theorem 3.8) $= \lambda f(A) + \mu f(B)$

Hence G_0 is a linear transformation.

Theorem 3.16 : The mapping $f : G_a \to \mathbb{R}$ defined by $f(A) = \alpha[A]$ for all $A \in G_a$ is a ring homomorphism.

Proof:

Let A, B \in G_a, A = [a_{ij}], B = [b_{ij}] then $\alpha[A] = 4a$ and $\alpha[B] = 4b$ f (A + B) = α (A + B) = α (A) + α (B) = f (A) + f (B) Now AB = [4ab] with $\alpha[AB] = 16ab$ f (AB) = α [AB] α [AB] = 16ab = 4a.4b = $\alpha[a] \cdot \alpha$ [b] = f (A) · f (B)

Theorem 3.17: The mapping $f: G_a \to \mathbb{R}$ defined by $f(A) = \alpha[A]$ for all $A \in G_a$ is a ring isomorphism.

Proof:

From Proposition 3.6 and Proposition 3.5 it can be deduced

Theorem 3.17 : $\langle G_a, +, \rangle$ is forms a ring.

Proof:

Since

- a) G_a is an abelian group under matrix addition.
- b) Matrix multiplication is associative and distributive over addition.
- c) G_a is closed under matrix multiplication.

 $< G_a, +, .>$ forms a ring.

Theorem 3.18 : Let $A = [a], B = [b] \in G_a$, then $A \cdot B = B \cdot A$

Proof:

Since
$$A, \in G_a$$

$$A = [a] = \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} and B = [b] = \begin{bmatrix} b & b & b \\ b & b & b \\ b & b & b \end{bmatrix}$$
Then $A.B = \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} \begin{bmatrix} b & b & b \\ b & b & b \\ b & b & b \end{bmatrix} = \begin{bmatrix} 4ab & 4ab & 4ab \\ 4ab & 4ab & 4ab \\ 4ab & 4ab & 4ab \end{bmatrix}$

$$= [4ab]$$

$$= [4ba]$$

$$= \begin{bmatrix} 4ba \\ 4ba & 4ba & 4ba \\ 4ba & 4ba & 4ba \\ 4ba & 4ba & 4ba \end{bmatrix}$$

$$= \begin{bmatrix} b & b & b \\ b & b & b \\ b & b & b \end{bmatrix} \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix}$$

$$= B \cdot A$$
Hence $A.B = B.A$

Theorem 3.18 : $\langle G_a, +, \rangle$ is a commutative ring with unity $I_a = \begin{bmatrix} \frac{1}{4} \end{bmatrix}$

Proof :

To prove $I_a = \begin{bmatrix} \frac{1}{4} \end{bmatrix}$ is the unity, it is enough to prove that $A \cdot I_a = I_a \cdot A = A$

For
$$A \in G_a$$
, $A = [a] = \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix}$ and $I_a = \begin{bmatrix} \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$, clearly $I_a \in G_a$.
 $A \cdot I_a = \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} = A$

also

1_

$$I_{a} \cdot A = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} = \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} = A$$

hence A . $I_a = I_a$. A = A and by theorem 3.17 and 3.18, $\langle G_a, +, \rangle$ is a commutative ring with unity $I_a = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$

Theorem 3.19: If $A \in G_a$, then A has a multiplicative inverse in G_a . (Here $A \neq 0$)

Proof:

Let $A \in G_a$, then A = [a]. Now we have to find out an element $B \in G_a$ such that $A \cdot B = I_a$, the identity element of G_a .

Take
$$B = \begin{bmatrix} \frac{1}{16a} \end{bmatrix}$$
 then clearly $B \in G_a$ and $A.B = [a]$. $\begin{bmatrix} \frac{1}{16a} \end{bmatrix} = \begin{bmatrix} \frac{1}{16a} \end{bmatrix}$. $[a] = B.A = \begin{bmatrix} \frac{1}{4} \end{bmatrix} = I_a$.
Hence *A* has a multiplicative inverse in *G*.

Hence A has a multiplicative inverse in G_a

Theorem 3.20: $< G_0, +, ... >$ forms a field.

Proof:

Since $\langle G_0, +, \rangle$ > forms a commutative ring with unity (Theorem 3.18) and it has a multiplicative inverse (Theorem 3.19), it will form a field.

4. CONCLUSION :

The study of SR - magic squares is an emerging innovative area in which mathematical analysis can be done. Here some advanced properties regarding SR - magic squares namely Group structure, Abelian, Vector spaces, Group homomorphism, Group isomorphism, Vector space isomorphism, Linear transformation, Kernel of transformation are described. This will help in applying SR - magic squares in different areas. Physical application of magic squares is still a new topic that needs to be explored more. Further studies are being carried out by the authors on the scope for further research and the application of SR - Magic Squares.

5. REFERENCES

- 1. Andres, W. S. 1960. Magic Squares and Cubes, New York: Dover.
- 2. Andrews, W. S. Magic Squares and Cubes, 2nd rev. ed. New York: Dover, 1960
- Suresh kumar, J. (2018). SR magic square (SRMS) of fourth order on some special numbers. International Journal of Creative Research Thoughts, Volume 6, Issue 1 March 2018 | ISSN: 2320-2882. pp. 113-118.

- Suresh kumar, J. (2018). "<u>SR Multiplicative Magic Square (SRMMS) Of Fourth Order</u>", International Journal Of Scientific Research And Review (IJSRR), UGC Approved – 64650, ISSN NO: 2279-543X, Volume.7, Issue 4, Page No pp.431-444, 2018.
- Sreeranjini, M. M. (2014). Morphisms between the Groups of Semi Magic Squares and Real Numbers. International Journal of Algebra, Volume 8(Number 19), pp.903-907.

