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ABSTRACT :

In this paper a generic definition for SR - Magic Squares is given. and group structure of SR - magic squares
is discussed and SR —magic square are proved to be an abelian group. A function on SR - magic squares is
also defined and it is proved to be a group homomorphism and isomorphism. The paper also deals with
linear transformation, the formation of a vector space for the set of all SR - magic squares and the kernel of
the mapping. And also the SR - magic squares are proved to have a ring structure and some particular SR -
magic squares form commutative ring with unity. The paper also sheds light on the field structure of SR -

magic squares.

Keywords: Magic Square, Magic Constant, SR - Magic Square, Abelian group, Homomorphism,

Isomorphism, Kernel, Linear transformation, Vector space, Ring, Field.

1. INTRODUCTION :

While magic squares are recreational on one hand they can be treated somewhat more seriously in higher
mathematics on the other hand. A normal magic square is a square array of consecutive numbers from 1 ...
n? where the rows, columns, diagonals and co-diagonals add up to the same number. The constant sum is
called magic constant or magic number. Along with the conditions of normal magic squares, SR - magic
square of order 4 have some more property. There are many recreational aspects of SR - magic squares. But,
apart from the usual recreational aspects, it is found that these SR - magic squares possess advanced

mathematical properties.

2. NOTATIONS AND MATHEMATICAL PRELIMINARIES
2.1 Magic Square

A magic square of order n is an n'™" order matrix [a; ;] such that

=1 Qi = a fori=1,2,3,4, ......... N - (1)
D=1 =« fori=1,2,3,4, ......... R (2)
i=1(aiz) =a e 3)
Yie1(@ine1-1) 2 4
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Equation (1) represents the row sum, equation (2) represents the column sum, equation (3) represents the

diagonal and equation (4) represents the co-diagonal sum and symbol « represents the magic constant.

2.2 Magic Constant
The constant « in the above definition is known as the magic constant or magic number. The magic constant

of the magic square A is denoted as «a [A]

2.3 SR MAGIC SQUARE (SRMS) GENERIC DEFINITION :
A SR - magic square over a field R is a matrix A = [a; ;] of order 4 x 4 with entries in R such that, the

following conditions holds.

Sumof (a;; + ag;p + agz + age) = ald] e (1)
Sumof (az; + azp + a3 + Az )= af[A] e (2)
Sumof (as; + azy + azs + asy )= afA] e (3)
Sumof (ag + auy + a4z + auq ) = a[A] s 4)
Sumof(ay; + ay; + az; + ag; )= alA] s (5)
Sumof(ay, + ay, + azy, + agy )= alA] s (6)
Sumof (a3 + azz + asz + as3) = afA] mmemmmmememeeeelommeoeeoee- (7)
Sumof (as + azq + azs + ag )= al4] o mmsmmmeeee- (8)
Sumof (ajq + azp + a3z + Asa )= afA] e 9)
Sumof (a4 + azz + as; + as )= alA] - (10)
Sumof (ajy + @p1 + G33 + a43)= @[d] e (11)
Sumof (a; + azy + aszs + Age )= ald] - (12)
Sumof (ais + azz + az; + aq )= al4] B e (13)
Sumof (ajs + azy + asz; + asp )= ald] e (14)
Sumof (a;3+ agy + agy + azy )= afd] s (15)
Sumof (azs + azs + a4y + gy )= a[A] e (16)
Sumof (a; + ajp, + azz + azs)= afA] e (17)
Sumof (az; + azp + Qg3 + Aga ) = @[A] e (18)
Sumof (a;q + @y + a1 + aps) = a[A] e (19)
Sumof (ay + apq + a3q + azq)= afA] s (20)
Sumof (az; + azq + Ggq + Agq )= a[A] s (21)
Sumof (a; + @, + aaq + Aup )= afA] e (22)
Sumof(ap, + a3 + agy + ay3)= ald] - (23)
Sumof(az+ aqq + ags + age )= a[Ad] e (24)
Sumof (a1 + ap + az + ayy )= ald] s (25)
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Sumof (a;p+ agz + Gy + ap3) = a[A] e (26)
Sumof (a;3+ @ + a3 + Aps) = a[A] e (27)
Sumof (ay; + @z + azy + a3p) = alA] e (28)
Sumof (ay, + @z3 + azp, + a33)= alA] e (29)
Sumof (ayz + azs + a3z + asy )= afA] e (30)
Sumof(as; + azy + agq + agp )= alA] e (31)
Sumof(as, + azz + a4y + auz3 )= alA] e (32)
Sumof (asz + azs + a4z + auy )= afA] e (33)
Sumof(ay; + aq3 + az; + azz)= a[Ad] e (34)
Sumof(ay, + agq + azy + azy)= a[Ad] e (35)
Sumof (ay; + azs + agq + auz )= afA] (36)
Sumof (az, + azs + Ay + Aga )= a[A] e (37)
Sumof (a;q + @ + a1 + Aus )= afA] e (38)
Sumof (ays+ azq + azq + ag2) = afd] e (39)
Sumof(a; + azy + azy + Au3)= ald] - (40)

Equation (1), (2), (3), (4) represents the row sum, equation (5), (6), (7), (8) represents the column sum,

equation (9) represents the diagonal sum and equation (10) represents the co-diagonal sum.

2.3.1 Example
15 | 10 | 3 6

1 8 13 | 12

14 | 11 2 7

4 5 16 9

SR — Magic square of order 4, with magic constant « = 34

2.4 Magic Constant (SRMS)

Given A =[a; ;] be a SR - magic square of order 4. Then its magic constant or magic number is

defined as a[A] =; Ti, X4y ay;

2.5 Group

A group (G, *) is a non empty set G closed under a binary operation * such that the

following axioms are satisfied.

(i) * isassociative in G.i.e,a*(b*c)=(a*b)*c,V a,b,ce G

(i3 e €G,suchthate*a=a*e, vV a€ G, where e is the identity element for *.

(iii) Corresponding to eacha € G; 3 b € Gsuch thata * b = b * a = e, where b is the inverse of a.
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2.6 Abelian Group
A group G is abelian if its binary operation * is commutative.

2.7 Vector Space

A non-empty set v together with two operations + and . called addition and scalar multiplication
respectively, is called a vector space or linear space over a field F if the following conditions are satisfied.
(i) <V, +> isan abelian group.

(il)VA eFandaeV,da €V.

(ii)vA eFanda,beV,A(a+b)=Aa+Ab

(ivyVAu eFandaeV,(A+ u).a=Aa+ub

(V)VApu eFandaeV,(Au).a=1(ua)

(vi)1.a=a,vae Vand1lis the unity element of the field F.

2.8 Group homomorphism
A mapping f fromagroup < G, * > into a group < G',*' > is a homomorphism of G into G’ if

F(A*B)=f(A)+ f(B)forall A BEG.

2.9 A one to one and onto mapping
A function : X — Yisonetooneif f (x;) = f (x, ) only when x; = x,.

The function f is onto of Y if the range of f is Y

2.10 Group isomorphism

A one to one onto homomorphism f from a group < G, * > into a group < G',+' > is defined as isomorphism.

2.11 Linear Transformation
Let U and V be two vector spaces over the same field F. Then a mapping f: U — V is called linear

transformation of U into V if (Aa+ ub) =(a) + (b)) V A, n € Fanda,b € U.

2.12 Kernel of a Homomorphism
If ¢ is @a homomorphism of a group G into G, then the kernel of ¢ is denoted as ker ¢ and is defined as ker

o={9g€ G;¢(g)=e'},whereeis the identity of G'.

2.13 Rings
A non-empty set R together with two binary operations + and - called addition and multiplication

respectively is called a ring denoted as <R, +, -> if the following axioms are satisfied.
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I. <R, +>is an abelian group.
ii. Multiplication is associative., i.e., a .(b.c)=(a.b).c V a,b,c ER
iii. Multiplication is distributive with respect to the addition,

i.e., a.(b+c)=a.b + a.c (Left distributive law) and (b+c).a=b.a + c.a (Right distributive law)

2.14 Commutative Ring
A ring in which the multiplication is commutative is called a commutative ring. A ring with a multiplicative

identity element 1 is called a ring with unity.

2.15 Field

A ring R with at least two elements is called a field if it
I. IS commutative

ii. has unity

iii. is such that each non zero element possesses multiplicative inverse.

2.16 Other Notations
1. G denotes the set of all SR-Magic Square of order 4 (SRMS).
2. G4 denotes the set of all SR - Magic Square of order 4 such that a; ; = a, for
everyi,j=1,2 3,4 ie. IfA=[a;;] € G, theneach a;; =a, for some ae R. we denote A = [a].
3. G, denotes the set of all SR - Magic Square of order 4 such that a; ; = 0, for everyi,j=1, 2, 3, 4.
4.1f A=[a; ;] € G, then its magic constant of A, a[A] :% 1 X1 Gy
5. 1f A=[a; ;] € G4, then its magic constant of A, a[A] =4a
6. If A= [a; ;] € Gy, then its magic constant of A, a[4] =0

3. PROPOSITIONS AND THEOREMS
Proposition 3.1 : If A and B are two SR — Magic Square of Order 4 with a[A] =a and a[B] = b, then C =
(A+ u) (A+B)isalsoa SR — Magic Square of Order 4 with magic constant
(A+ u) (a[A] + a[B]), for every A, u € R.
Proof:
Let A=[a;;] and B = [b;}]
thenC=A+ pu)(A+B)=[A+ p)(A+B)]
Sum of the i*" row elements of
C=Xlic; = @A+ u)(Tioay +Xjo1by)
=(A+ u)(@+b)
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=+ p)(ala] +afb])
A similar computation holds for column sum, diagonal and co-diagonal sum.

From the above propositions the following results can be obtained by putting suitable values for A and p.

Results: Forevery A,B € Gand A,u € R, then
3.1a: A(A+ B) € G, with magic constant o. [A(A + B) | =A(a [A] + a[B])
Proof: Taking p =0 In the above proposition 3. 1

3.1b: (A + B) € G, with magic constanta. [(A + B)] = a [A] + «a|B]
Proof: By putting A =1 inresult3.1a

3.1c: 1A € G, with magic constanta[A4 | = L. a[A]
Proof: It can be easily verified by putting B=0 in result 3.1 a

3.1d: (A+ u)(A) € G, with magic constant a[(A + w)(A) ] = A+ p) o [4]
Proof: In the Proposition 3.1 put B = 0, where € G.

3.1e: 1A + uB € G, with magic constant a[(14 + uB) ] = A.a [A] + p.a[B]

Proof: It can be deduced from result 3.1 b and 3.1 c.

3.1f: -A € G,with magic constant a[(- A4 )] = — a[A]
Proof: By Putting A =—1 in result 3.1 c, it can be obtained.

3.19: (A — B) € G, with magic constant o. [(A — B)] = a [A] — a[B]

Proof: From the above result 3.1.b and 3.1.f it can be deduced

Theorem 3.2 : < G,+> forms an abelian group.

Proof:

Closure property :

If A, B € G,then A+ B € G. (from above result 3.1 b)

Associativity :

IfA,B,CeG,thenA+ (B+C)=(A+B)+ C e G (Since matrix addition is associative.)
Existence of Identity:

There exists 0 matrix in Gsothat A +0=0+ A = , where 0 acts as the identity element.
Existence of additive inverse:

For every A € G, there exists —A € G so that A + (—A) = 0 where 0 € G (from result 3.1 ).
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Commutativity:
If A, Be G,then A+ B =B + A € G (Since matrix addition is commutative.)

This completes the proof.

Proposition 3.3 : G, forms a subgroup of the abelian group G.

Proof:

Itis clear that G, < G.

ForA,BEG, ;A=[a]and B=[b],thenclearly A—B=[a—b] € G,

Thus G, forms a subgroup of the abelian group G.

Proposition 3.4 : G, forms a subgroup of the abelian group G.
Proof:

Itis clear that G, c G

Take A, B € G,, then a[A] = 0 = «a|B]

Now a[A — B] = a[A] — a[B] =0

Therefore A— B € Gy .

Thus G, forms a subgroup of the abelian group G.

Proposition 3.5: Forall A, BEG, A, U ER;
a) M(A+B)=1A+ B
by A+u).A=1A+u A
c) (A uw.A=A (u. A
d 1.A=A
Proof:
Since A, B € G; A =[a;;] and B = [b;}]
a) A+B  =[a;]+[by]
(A +B)=4([ay] +[b;])
=Ala;] + A [by]
=AA+1B
b) A+u). A =@+ p). [ay]
= 2. [a;]+ plag]
=1.A+ A

) Aw. A =@ w.la;]
=[A . (a;)]

= A [ ay]
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=A (u. A)
d) 1.A = 1. [a;]
=[L.ay]
= [aij]
=A
Theorem 3.6 : <G, +, . > forms a vector space over the field of real numbers.
II:;rig(gr.\ immediate consequence of Theorem 3.2 and Proposition 3.5
Theorem 3.7: < G, +, . > forms a vector space over the field of real numbers.
Proof:
Since G, < G; and G is a vector space over the field of real numbers R with respect to the addition of
matrices as addition of vectors and multiplication of a matrix by a scalar as scalar multiplication, it is
enough to show that G, is a subspace of G.
This can be verified by the fact; for every A, u e R, and A, B € G, ; AA+ uB € G,
Since A,B€ G, ,A=[a]and B = [b]
AA + uB =[a] + u [b]
= [4A] + [uB]
= [AA+ uB] € G,

Theorem 3.8 : < G,, +, . > forms a vector space over the field of real numbers.

Proof:

Proceeding as in Proposition 3.7 it is enough to show that for every A, u e R, and A, B € G, ; AA+ uB €
Go

Since A, B€ G, ;alA]=0and ¢[B] =0

Now a[1A + uB]
=Aa[A] +palA] (Fromresult3.1e)

=1.0+.0=0
Thus AA+ uB € G,

Proposition 3.9 :  The mapping f : G - R defined by f (A) = a[A] for all A € G is a group
homomorphism.

Proof :

Let A, B € G, then

f(A+B)=a[A+B]

=a[A]+ta[ B] (Byresult 3.1 b and Proposition 3.3)

JETIR1904L59 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 399


http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

Proposition 3.7 :  The mapping f : G, — R defined by f (A) = «a[A] for all A € G, is a group
homomorphism.
Proof:

It can be easily verified since G, ¢ G

Proposition 3.8 : The mapping f : G, — R defined by f (A) = a[A] for all A € G, is a group
homomorphism.
Proof:

It can be easily verified since G, € G

Proposition 3.9 : The mapping f : G, — R defined by f (A) = a[A] for all A € G, is a group
isomorphism.

Proof:

Let A, B € G,, A =[a;;], B =[b;] then a[A] = 4a and a[B] = 4b

(i) To show that f is one to one
f(A)=1(B)

= «a[A] = «a[B]

= 4a=4b

=a=b

(i) To show that f is onto

For every a € R, there exists A = E] € G, such that a[A] = a
Since f is 1—1 and onto and from Proposition 3, it can be deduced.

Proposition 3.10 :  The mapping f : G - R defined by f (A) = «[A] for all A € G is a linear
transformation.

Proof :

Let A, B € G, then

f (AA+uB) = a[1A + uB]

= A a[A] + p a[A] (By Result 1.4 and Theorem 3.6)

=Af(A) +pf(B)

Proposition 3.11 : The mapping f : G, = R defined by f (A) = a[A] for all A € G, is a linear
transformation.

Proof :

Let A, B € G,, then A =[a], B =[b] such that a[A] = 4a and a[B] = 4b
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From Result 1.4 and Theorem 3.7
f (AA + uB) = a[AA + uB]
=AalA] +palA]
=Af(A) +uf(B)

Hence G, is a linear transformation.

Proposition 3.12 :  The mapping f : G, = R defined by f (A) = a[A] for all A € G, is a linear
transformation.

Proof :

Let A, B € G, then a[A] =0 and a[B] =0

f (AA + uB) = a[AA + uB]

=Aa[A] + p alA] (By Result 1.4 and Theorem 3.8)

=Af(A) +uf(B)

Hence G, is a linear transformation.

Theorem 3.16 : The mapping f : G, — R defined by f (A) = «a[A] for all A € G, is a ring
homomorphism.

Proof :

Let A, B € G,, A =[a;;], B =[b;] then a[A] = 4a and a[B] = 4b
f(A+B)=a(A+B)

=a(A)+ a(B)

=f(A)+f(B)

Now AB = [4ab] with a[AB] = 16ab

f (AB) = a [AB]

a [AB] = 16ab

=4a.4b

=ala] . a [b]

=fA).f(B)

Theorem 3.17 : The mapping f : G, — R defined by f (A) = a[A] for all A € G, is a ring isomorphism.

Proof:
From Proposition 3.6 and Proposition 3.5 it can be deduced

Theorem 3.17 : < Gg, +, . > formsaring.

Proof:
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Since
a) G, is an abelian group under matrix addition.
b) Matrix multiplication is associative and distributive over addition.
C) G, is closed under matrix multiplication.

< Gg, +, .>formsaring.

Theorem 3.18 : Let A=[a], B=[b] € G,, then A.B=B.A

Proof:
Since 4, € G,
a a a b b b
A=[a]=[a a al andB=[b]=[b b b]
a a a b b b
a a b b b 4ab 4ab 4ab
ThenA.B= a a lb b b| =|4ab 4ab 4ab
a a b b b 4ab 4ab 4ab
= [4ab]
= [4ba]
[4ba 4ba 4ba
=|4ba 4ba 4ba
4ba 4ba 4ba

(b b bla a a
=|(b b b][a a a

b b blta a a
=B.A

Hence AB=B.A

Theorem 3.18 : < G, +, . > is a commutative ring with unity I, = E]
Proof :

Toprove I, = E] is the unity, it is enough to prove that A. I, =1,.A = A

1 1 1
EREEE)
a a a |‘1L ‘; ‘1¥|
ForA € G,, A =[a] :la a alandl _HZIZ " Zl,clearlylaeGa.
a a a ll 1 1J
4 4 4
111
a a ap|t 4 4 a a a
1 1 1
A.Ia:[a a al— - —:[a a al:A
4 4 4
a a allt 1 1 a a a
4 4 4
also
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a a a
a a al:A
a a a

P—
Q
o~
I
Y
T TIRINTN
o~
[r—
Q Q Q
Q Q Q
Q Q Q
—
I
[r—

hence A.I,=1,.A = Aand by theorem 3.17 and 3.18, < G,, +, . > is a commutative ring with unity I, =
1
q

Theorem 3.19: If A € G,, then A has a multiplicative inverse in G,. (Here A #0)
Proof:
Let A € G,, then A= [a]. Now we have to find out an element B € G, such that A.B =I,, the identity

element of G,.
2
16a

Take B = [ﬁ] then clearly B € G, and A.B = [a]. [L = [

16a

| e1=BA=[3=1.

Hence A has a multiplicative inverse in G.

Theorem 3.20: < Gy, +, . > forms a field.

Proof:

Since < Gy, +, . > forms a commutative ring with unity (Theorem 3.18) and it has a multiplicative inverse
(Theorem 3.19), it will form a field.

4. CONCLUSION::

The study of SR - magic squares is an emerging innovative area in which mathematical analysis can be
done. Here some advanced properties regarding SR - magic squares namely Group structure, Abelian,
Vector spaces, Group homomorphism, Group isomorphism, VVector space isomorphism, Linear
transformation, Kernel of transformation are described. This will help in applying SR - magic squares in
different areas. Physical application of magic squares is still a new topic that needs to be explored more.
Further studies are being carried out by the authors on the scope for further research and the application of
SR - Magic Squares.
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