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ABSTRACT : 

In this paper a generic definition for SR - Magic Squares is given. and group structure of SR - magic squares 

is discussed and SR –magic square are proved to be an abelian group. A function on SR - magic squares is 

also defined and it is proved to be a group homomorphism and isomorphism. The paper also deals with 

linear transformation, the formation of a vector space for the set of all SR - magic squares and the kernel of 

the mapping. And also the SR - magic squares are proved to have a ring structure and some particular SR - 

magic squares form commutative ring with unity. The paper also sheds light on the field structure of SR - 

magic squares. 
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1. INTRODUCTION : 

While magic squares are recreational on one hand they can be treated somewhat more seriously in higher 

mathematics on the other hand. A normal magic square is a square array of consecutive numbers from 1 … 

𝑛2 where the rows, columns, diagonals and co-diagonals add up to the same number. The constant sum is 

called magic constant or magic number. Along with the conditions of normal magic squares, SR - magic 

square of order 4 have some more property. There are many recreational aspects of SR - magic squares. But, 

apart from the usual recreational aspects, it is found that these SR - magic squares possess advanced 

mathematical properties. 

 

2.  NOTATIONS AND MATHEMATICAL PRELIMINARIES 

2.1   Magic Square 

A magic square of order n is an nth order matrix [𝑎𝑖,𝑗] such that 

∑ 𝑎𝑖,𝑗
𝑛
𝑗=1              =  𝛼     for i=1, 2, 3, 4, ………n   --------------- (1) 

∑ 𝑎𝑗,𝑖
𝑛
𝑗=1               =  𝛼   for i=1, 2, 3, 4, ………n   --------------- (2) 

∑ (𝑎𝑖,𝑖
𝑛
𝑖=1 )    =  𝛼                       --------------- (3) 

∑ (𝑎𝑖,𝑛+1−𝑖
𝑛
𝑖=1 )   =  𝛼                         --------------- (4) 
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Equation (1) represents the row sum, equation (2) represents the column sum, equation (3) represents the 

diagonal and equation (4) represents the co-diagonal sum and symbol  𝜶 represents the magic constant.  

 

2.2   Magic Constant 

The constant 𝛼 in the above definition is known as the magic constant or magic number. The magic constant 

of the magic square A is denoted as 𝛼 [𝐴] 

 

2.3   SR MAGIC SQUARE (SRMS)  GENERIC DEFINITION : 

A SR - magic square over a field R is a matrix 𝐴 = [𝑎𝑖,𝑗] of order 4 × 4 with entries in R such that, the 

following conditions holds. 

Sum of ( 𝑎11 +  𝑎12  +  𝑎13  +  𝑎14 ) =  𝛼[𝐴]  --------------------------------- (1) 

Sum of ( 𝑎21 +  𝑎22  +  𝑎23  +  𝑎24 ) =  𝛼[𝐴]  --------------------------------- (2) 

Sum of ( 𝑎31 +  𝑎32  +  𝑎33  +  𝑎34 ) =  𝛼[𝐴]  --------------------------------- (3) 

Sum of ( 𝑎41 +  𝑎42  +  𝑎43  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (4) 

Sum of ( 𝑎11 +  𝑎21  +  𝑎31  +  𝑎41 ) =  𝛼[𝐴]  --------------------------------- (5) 

Sum of ( 𝑎12 +  𝑎22  +  𝑎32  +  𝑎42 ) =  𝛼[𝐴]  --------------------------------- (6) 

Sum of ( 𝑎13 +  𝑎23  +  𝑎33  +  𝑎43 ) =  𝛼[𝐴]  --------------------------------- (7) 

Sum of ( 𝑎14 +  𝑎24  +  𝑎34  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (8) 

Sum of ( 𝑎11 +  𝑎22  +  𝑎33  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (9) 

Sum of ( 𝑎14 +  𝑎23  +  𝑎32  +  𝑎41 ) =  𝛼[𝐴]  --------------------------------- (10) 

Sum of ( 𝑎11 +  𝑎21  +  𝑎33  +  𝑎43 ) =  𝛼[𝐴]  --------------------------------- (11) 

Sum of ( 𝑎12 +  𝑎22  +  𝑎34  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (12) 

Sum of ( 𝑎13 +  𝑎23  +  𝑎31  +  𝑎41 ) =  𝛼[𝐴]  --------------------------------- (13) 

Sum of ( 𝑎14 +  𝑎24  +  𝑎32  +  𝑎42 ) =  𝛼[𝐴]  --------------------------------- (14) 

Sum of ( 𝑎13 +  𝑎14  +  𝑎31  +  𝑎32 ) =  𝛼[𝐴]  --------------------------------- (15) 

Sum of ( 𝑎23 +  𝑎24  +  𝑎41  +  𝑎42 ) =  𝛼[𝐴]  --------------------------------- (16) 

Sum of ( 𝑎11 +  𝑎12  +  𝑎33  +  𝑎34 ) =  𝛼[𝐴]  --------------------------------- (17) 

Sum of ( 𝑎21 +  𝑎22  +  𝑎43  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (18) 

Sum of ( 𝑎11 +  𝑎14  +  𝑎21  +  𝑎24 ) =  𝛼[𝐴]  --------------------------------- (19) 

Sum of ( 𝑎21 +  𝑎24  +  𝑎31  +  𝑎34 ) =  𝛼[𝐴]  --------------------------------- (20) 

Sum of ( 𝑎31 +  𝑎34  +  𝑎41  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (21) 

Sum of ( 𝑎11 +  𝑎12  +  𝑎41  +  𝑎42 ) =  𝛼[𝐴]  --------------------------------- (22) 

Sum of ( 𝑎12 +  𝑎13  +  𝑎42  +  𝑎43 ) =  𝛼[𝐴]  --------------------------------- (23) 

Sum of ( 𝑎13 +  𝑎14  +  𝑎43  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (24) 

Sum of ( 𝑎11 +  𝑎12  +  𝑎21  +  𝑎22 ) =  𝛼[𝐴]  --------------------------------- (25) 
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Sum of ( 𝑎12 +  𝑎13  +  𝑎22  +  𝑎23 ) =  𝛼[𝐴]  --------------------------------- (26) 

Sum of ( 𝑎13 +  𝑎14  +  𝑎23  +  𝑎24 ) =  𝛼[𝐴]  --------------------------------- (27) 

Sum of ( 𝑎21 +  𝑎22  +  𝑎31  +  𝑎32 ) =  𝛼[𝐴]  --------------------------------- (28) 

Sum of ( 𝑎22 +  𝑎23  +  𝑎32  +  𝑎33 ) =  𝛼[𝐴]  --------------------------------- (29) 

Sum of ( 𝑎23 +  𝑎24  +  𝑎33  +  𝑎34 ) =  𝛼[𝐴]  --------------------------------- (30) 

Sum of ( 𝑎31 +  𝑎32  +  𝑎41  +  𝑎42 ) =  𝛼[𝐴]  --------------------------------- (31) 

Sum of ( 𝑎32 +  𝑎33  +  𝑎42  +  𝑎43 ) =  𝛼[𝐴]  --------------------------------- (32) 

Sum of ( 𝑎33 +  𝑎34  +  𝑎43  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (33) 

Sum of ( 𝑎11 +  𝑎13  +  𝑎31  +  𝑎33 ) =  𝛼[𝐴]  --------------------------------- (34) 

Sum of ( 𝑎12 +  𝑎14  +  𝑎32  +  𝑎34 ) =  𝛼[𝐴]  --------------------------------- (35) 

Sum of ( 𝑎21 +  𝑎23  +  𝑎41  +  𝑎43 ) =  𝛼[𝐴]  --------------------------------- (36) 

Sum of ( 𝑎22 +  𝑎24  +  𝑎42  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (37) 

Sum of ( 𝑎11 +  𝑎14  +  𝑎41  +  𝑎44 ) =  𝛼[𝐴]  --------------------------------- (38) 

Sum of ( 𝑎13 +  𝑎24  +  𝑎31  +  𝑎42 ) =  𝛼[𝐴]  --------------------------------- (39) 

Sum of ( 𝑎12 +  𝑎21  +  𝑎34  +  𝑎43 ) =  𝛼[𝐴]  --------------------------------- (40) 

Equation (1), (2), (3), (4) represents the row sum, equation (5), (6), (7), (8) represents the column sum, 

equation (9) represents the diagonal sum and equation (10) represents the co-diagonal sum. 

 

2.3.1   Example 

15 10 3 6 

1 8 13 12 

14 11 2 7 

 4 5 16 9 

 

SR – Magic square of order 4, with magic constant 𝛼 = 34   

  

2.4   Magic Constant (SRMS) 

Given   A = [𝑎𝑖,𝑗] be a SR - magic square of order 4. Then its magic constant or magic number is  

defined as   𝛼[𝐴] = 
1

4
 ∑ ∑ 𝑎𝑖,𝑗

4
𝑗=1 

4
𝑖=1  

2.5   Group 

A group (G, *) is a non empty set G closed under a binary operation * such that the 

following axioms are satisfied. 

(i) * is associative in G. i.e, a * (b * c) = (a * b) * c, ∀  a, b, c ∈  𝐺 

(ii) ∃ 𝑒 ∈ G, such that e * a = a * e, ∀  a ∈  G, where e is the identity element for *. 

(iii) Corresponding to each a ∈ G; ∃ b ∈ G such that a * b = b * a = e, where b is the inverse of a. 
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2.6   Abelian Group 

A group G is abelian if its binary operation * is commutative.  

 

2.7   Vector Space 

A non-empty set 𝑉 together with two operations + and . called addition and scalar multiplication 

respectively, is called a vector space or linear space over a field  𝐹 if the following conditions are satisfied. 

(i) < 𝑉, + >  is an abelian group. 

(ii) ∀ 𝜆 ∈ 𝐹 and a ∈ 𝑉, 𝜆. 𝑎 ∈ 𝑉. 

(iii) ∀ 𝜆 ∈ 𝐹 and a, b ∈ 𝑉, 𝜆( 𝑎 + 𝑏 ) = 𝜆. 𝑎 + 𝜆. 𝑏 

(iv) ∀ 𝜆, 𝜇 ∈ 𝐹 and a ∈ 𝑉, (𝜆 +  𝜇 ). 𝑎 = 𝜆. 𝑎 + 𝜇. 𝑏 

 (v) ∀ 𝜆, 𝜇 ∈ 𝐹 and a ∈ 𝑉, (𝜆 𝜇 ). 𝑎 = 𝜆. (𝜇 𝑎) 

(vi) 1 . a = a, ∀ a ∈  𝑉 and 1 is the unity element of the field 𝐹. 

 

2.8   Group homomorphism  

A mapping  𝑓 from a group < 𝐺, * > into a group < 𝐺′,∗′ > is a homomorphism of  G into 𝐺′ if  

𝑓 ( A * B ) = 𝑓 (A) ∗′ 𝑓 (B) for all A, B ∈ 𝐺. 

 

2.9   A one to one and onto mapping 

A function  : X ⟶ Y is one to one if 𝑓 (𝑥1) = 𝑓 (𝑥2 ) only when 𝑥1 = 𝑥2.  

The function 𝑓 is onto of Y if the range of 𝑓 is Y 

 

2.10   Group isomorphism 

A one to one onto homomorphism 𝑓 from a group < 𝐺, * > into a group < 𝐺′,∗′ >  is defined as isomorphism. 

 

2.11   Linear Transformation 

Let 𝑈 and 𝑉 be two vector spaces over the same field 𝐹. Then a mapping 𝑓: 𝑈 → 𝑉 is called linear 

transformation of 𝑈 into 𝑉 if (𝜆a+ 𝜇b) = (𝑎) + (𝑏) ∀  λ, μ ∈  𝐹 and a, b ∈  U. 

 

2.12   Kernel of a Homomorphism 

If φ is a homomorphism of a group 𝐺 into 𝐺′, then the kernel of φ is denoted as 𝑘er φ and is defined as 𝑘er 

φ = { g ∈  G; φ (𝑔) = 𝑒′ } , where 𝑒′ is the identity of 𝐺′. 

 

2.13   Rings 

A non-empty set 𝑅 together with two binary operations + and ∙ called addition and multiplication 

respectively is called a ring denoted as <𝑅, +, ∙> if the following axioms are satisfied.  
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i. <𝑅, +> is an abelian group.  

ii. Multiplication is associative., i.e., 𝑎 .(𝑏.𝑐)=(𝑎.𝑏).𝑐 ∀ 𝑎,𝑏,𝑐 ∈ 𝑅  

iii. Multiplication is distributive with respect to the addition, 

i.e., 𝑎.(𝑏+𝑐)=𝑎.𝑏 + 𝑎.𝑐 (Left distributive law) and (𝑏+𝑐).𝑎=𝑏.𝑎 + 𝑐.𝑎 (Right distributive law)  

 

2.14   Commutative Ring 

A ring in which the multiplication is commutative is called a commutative ring. A ring with a multiplicative 

identity element 1 is called a ring with unity.  

  

2.15   Field 

A ring 𝑅 with at least two elements is called a field if it  

i. is commutative  

ii. has unity  

iii. is such that each non zero element possesses multiplicative inverse. 

 

2.16   Other Notations  

1. G denotes the set of all SR-Magic Square of order 4 (SRMS). 

2. 𝐺𝑎 denotes the set of all SR - Magic Square of order 4 such that 𝑎𝑖 𝑗  = a, for    

    every i, j = 1, 2, 3, 4. ie. If A = [𝑎𝑖 𝑗] ∈ 𝐺𝑎 then each 𝑎𝑖 𝑗  = a,  for some a 𝜖 R. we denote A = [a]. 

3. 𝐺0 denotes the set of all SR - Magic Square of order 4 such that 𝑎𝑖 𝑗 = 0, for every i, j = 1, 2, 3, 4.  

4. If A = [𝑎𝑖 𝑗] ∈ G, then its magic constant of A,  𝛼[𝐴] = 
1

4
 ∑ ∑ 𝑎𝑖,𝑗

4
𝑗=1 

4
𝑖=1  

5. If A = [𝑎𝑖 𝑗] ∈ 𝐺𝑎 , then its magic constant of A,  𝛼[𝐴] = 4a 

6. If A = [𝑎𝑖 𝑗] ∈ 𝐺0 , then its magic constant of A,  𝛼[𝐴] = 0 

  

3.  PROPOSITIONS AND THEOREMS 

Proposition 3.1 : If A and B are two SR – Magic Square of Order 4 with 𝛼[𝐴] = a and 𝛼[𝐵] = b, then C = 

(𝜆 +  𝜇 ) (A + B ) is also a SR – Magic Square of Order 4 with magic constant  

(𝜆 +  𝜇 ) (𝛼[𝐴] + 𝛼[𝐵]), for every 𝜆, 𝜇 ∈ 𝑅. 

Proof: 

Let A = [𝑎𝑖𝑗] and B = [𝑏𝑖𝑗]  

then C = (𝜆 +  𝜇 ) (A + B ) = [(𝜆 +  𝜇 ) (A + B )]  

Sum of the 𝑖𝑡ℎ row elements of  

C = ∑ 𝑐𝑖𝑗
4
𝑗=1     =  (𝜆 +  𝜇 ) ( ∑ 𝑎𝑖𝑗

4
𝑗=1   + ∑ 𝑏𝑖𝑗

4
𝑗=1  )    

  = (𝜆 +  𝜇 ) (a + b) 
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  = (𝜆 +  𝜇 ) ( 𝛼[a] + 𝛼[b] ) 

A similar computation holds for column sum, diagonal and co-diagonal sum. 

  

From the above propositions the following results can be obtained by putting suitable values for 𝜆 and 𝜇. 

 

Results: For every 𝐴, 𝐵 ∈  𝐺 and 𝜆, 𝜇 ∈  𝑅, then 

3.1 a:   𝜆 (𝐴 + 𝐵) ∈ 𝐺, with magic constant α [𝜆(𝐴 +  𝐵) ] = λ (𝛼 [𝐴] + 𝛼[𝐵] ) 

Proof: Taking  𝜇 =0  In the above proposition 3. 1  

 

3.1 b:   (𝐴 +  𝐵) ∈ G,  with magic constant α [(𝐴 +  𝐵) ]  = 𝛼 [𝐴] +  𝛼[𝐵] 

Proof: By putting λ = 1 in result 3.1 a 

 

3.1 c:   𝜆𝐴  ∈ 𝐺, with magic constant α [ 𝜆𝐴  ] =  λ . 𝛼[𝐴] 

Proof: It can be easily verified by putting 𝐵=0 in result 3.1 a 

 

3.1 d: (𝜆+ 𝜇)(𝐴) ∈ 𝐺, with magic constant 𝛼[(λ +  𝜇)(𝐴) ] = (λ +  𝜇) α [𝐴] 

Proof: In the Proposition 3.1 put 𝐵 = 0, where ∈ G. 

 

3.1 e:   𝜆𝐴 +  𝜇𝐵 ∈ 𝐺, with magic constant 𝛼[(𝜆𝐴 +  𝜇𝐵) ] =  λ . α [𝐴] + μ . α[𝐵] 

Proof: It can be deduced from result 3.1 b and 3.1 c. 

 

3.1 f:    –𝐴 ∈ 𝐺,with magic constant 𝛼[(–𝐴 )] =  − 𝛼[𝐴] 

Proof:  By Putting λ = −1 in result 3.1 c, it can be obtained. 

 

3.1 g: (𝐴 −  𝐵) ∈ G,  with magic constant α [(𝐴 −  𝐵) ]  = 𝛼 [𝐴] −  𝛼[𝐵] 

Proof: From the above result 3.1.b and 3.1.f it can be deduced 

Theorem 3.2 :   < G,+> forms an abelian group. 

Proof: 

Closure property :  

If 𝐴, 𝐵 ∈ G , then 𝐴 + 𝐵 ∈ G. (from above result 3.1 b) 

Associativity : 

If 𝐴, 𝐵, 𝐶 ∈ G , then 𝐴 + (𝐵+ 𝐶) = (𝐴 + 𝐵 ) + 𝐶 ∈ G (Since matrix  addition is associative.) 

Existence of Identity: 

There exists 0 matrix in G so that 𝐴 + 0 = 0 + 𝐴 =  , where 0 acts as the identity element. 

Existence of additive inverse: 

For every 𝐴 ∈ G, there exists −𝐴 ∈ G so that 𝐴 + (−𝐴) = 0 where 0 ∈ G (from result 3.1 f ). 
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Commutativity: 

If 𝐴, 𝐵 ∈ G , then 𝐴 + 𝐵 = 𝐵 + 𝐴 ∈ G (Since matrix addition is commutative.) 

This completes the proof. 

 

Proposition 3.3 :   𝐺𝑎 forms a subgroup of the abelian group G. 

Proof: 

It is clear that 𝐺𝑎  ⊂ G. 

For 𝐴, 𝐵 ∈ 𝐺𝑎   ; 𝐴 = [𝑎] and 𝐵 = [𝑏], then clearly 𝐴 − 𝐵 = [𝑎 − 𝑏] ∈ 𝐺𝑎   

Thus 𝐺𝑎   forms a subgroup of the abelian group G. 

 

Proposition 3.4 :   𝐺0  forms a subgroup of the abelian group G. 

Proof: 

It is clear that 𝐺0 ⊂ G  

Take 𝐴, 𝐵 ∈ 𝐺0, then 𝛼[𝐴] = 0 =  𝛼[𝐵] 

Now 𝛼[𝐴 − 𝐵] = 𝛼[𝐴] −  𝛼[𝐵] = 0 

Therefore 𝐴 – 𝐵 ∈ 𝐺0 . 

Thus 𝐺0 forms a subgroup of the abelian group G. 

 

Proposition 3.5 :   For all 𝐴, 𝐵 ∈ G, 𝜆, 𝜇 ∈ 𝑅; 

a) 𝜆(A + B) = 𝜆A + 𝜆B 

b) (𝜆 + 𝜇). 𝐴 = 𝜆. 𝐴 + 𝜇. 𝐴 

c) (𝜆. 𝜇). 𝐴 = 𝜆. (𝜇. 𝐴) 

d) 1. 𝐴 = 𝐴 

Proof: 

Since A, B ∈ G; A = [𝑎𝑖𝑗] and B = [𝑏𝑖𝑗] 

a)  A + B      = [𝑎𝑖𝑗] + [𝑏𝑖𝑗] 

     (A + B) = 𝜆 ([𝑎𝑖𝑗] + [𝑏𝑖𝑗] ) 

                    = 𝜆 [𝑎𝑖𝑗] + 𝜆 [𝑏𝑖𝑗]  

                    = 𝜆 A + 𝜆 B 

b)  (𝜆 + 𝜇). 𝐴  = (𝜆 + 𝜇). [𝑎𝑖𝑗] 

  = 𝜆 . [𝑎𝑖𝑗]+ 𝜇.[𝑎𝑖𝑗] 

  = 𝜆 . A+  . A 

c)  (𝜆. 𝜇). 𝐴 = (𝜆. 𝜇). [𝑎𝑖𝑗] 

  = [𝜆. 𝜇. (𝑎𝑖𝑗)] 

  = 𝜆. [𝜇. 𝑎𝑖𝑗] 
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  = 𝜆. (𝜇. 𝐴) 

d)  1. 𝐴  = 1. [𝑎𝑖𝑗] 

  = [1.𝑎𝑖𝑗] 

  = [𝑎𝑖𝑗] 

  = A 

Theorem 3.6 :   < 𝐺, +,  . > forms a vector space over the field of real numbers. 

Proof: 

It is an immediate consequence of Theorem 3.2 and Proposition 3.5 

 

Theorem 3.7 :   < 𝐺𝑎, +,  . > forms a vector space over the field of real numbers. 

Proof: 

Since 𝐺𝑎 ⊂ 𝐺; and 𝐺 is a vector space over the field of real numbers 𝑅 with respect to the addition of 

matrices as addition of vectors and multiplication of a matrix by a scalar as scalar multiplication, it is 

enough to show that 𝐺𝑎  is a subspace of G. 

This can be verified by the fact; for every 𝜆, 𝜇 𝜖 𝑅, and 𝐴, 𝐵 ∈ 𝐺𝑎  ; 𝜆A+ 𝜇𝐵 ∈ 𝐺𝑎 

Since 𝐴, 𝐵 ∈ 𝐺𝑎  , 𝐴 = [𝑎] and 𝐵 = [𝑏] 

𝜆A + 𝜇𝐵  = [𝑎] + 𝜇 [𝑏] 

  = [𝜆A] + [𝜇B] 

  = [𝜆A+ 𝜇B ] ∈ 𝐺𝑎 

 

Theorem 3.8 :   < 𝐺0, +,  . > forms a vector space over the field of real numbers. 

Proof: 

Proceeding as in Proposition 3.7 it is enough to show that for every 𝜆 , 𝜇 𝜖 𝑅, and 𝐴, 𝐵 ∈  𝐺0 ; 𝜆A+ 𝜇𝐵 ∈  

𝐺0 

Since 𝐴, 𝐵 ∈  𝐺0 ; 𝛼[𝐴] = 0 and 𝛼[𝐵] = 0 

Now 𝛼[𝜆A + 𝜇B] 

= 𝜆 𝛼[𝐴]  + 𝜇 𝛼[𝐴]  (From result 3.1 e ) 

= 𝜆 . 0 +  . 0 = 0 

Thus 𝜆A+ 𝜇𝐵 ∈  𝐺0 

 

Proposition 3.9 :   The mapping  𝑓 : G → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ G is a group 

homomorphism. 

Proof : 

Let A, B ∈ G, then 

f (A + B ) = 𝛼[A + B ] 

= 𝛼[A ]+ 𝛼[ B ]  (By result 3.1 b and Proposition 3.3) 
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Proposition 3.7 :   The mapping  𝑓 : 𝐺𝑎  → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ 𝐺𝑎  is a group 

homomorphism. 

Proof: 

It can be easily verified since 𝐺𝑎 ⊂  G        

                     

Proposition 3.8 :   The mapping  𝑓 : 𝐺0  → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ 𝐺0  is a group 

homomorphism. 

Proof: 

It can be easily verified since 𝐺0 ⊂  G                    

 

Proposition 3.9 :   The mapping  𝑓 : 𝐺𝑎  → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ 𝐺𝑎  is a group 

isomorphism. 

Proof: 

Let A, B ∈ 𝐺𝑎, A = [𝑎𝑖𝑗] , B = [𝑏𝑖𝑗] then 𝛼[𝐴] = 4𝑎 and  𝛼[𝐵] = 4𝑏 

(i) To show that 𝑓 is one to one 

        f (A) = f (B) 

⟹ 𝛼[𝐴] =  𝛼[𝐵] 

⟹ 4a = 4b 

⟹ a = b 

(ii) To show that 𝑓 is onto 

For every a ∈  𝑅, there exists A = [
𝑎

4
] ∈ 𝐺𝑎 such that 𝛼[𝐴] = a 

Since 𝑓 is 1−1 and onto and from Proposition 3, it can be deduced. 
  

 

Proposition 3.10 :   The mapping  𝑓 : G → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ G is a linear 

transformation. 

Proof :  

Let A, B ∈ G, then  

𝑓 (𝜆A + 𝜇B ) = 𝛼[𝜆A + 𝜇B] 

= 𝜆 𝛼[𝐴]  + 𝜇 𝛼[𝐴] (By Result 1.4 and Theorem 3.6) 

= 𝜆 𝑓(𝐴)  + 𝜇 𝑓(𝐵) 

 

Proposition 3.11 :   The mapping  𝑓 : 𝐺𝑎 → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ 𝐺𝑎 is a linear 

transformation. 

Proof :  

Let A, B ∈ 𝐺𝑎, then A = [a], B = [b] such that 𝛼[𝐴] = 4a and 𝛼[𝐵] = 4b 
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From Result 1.4 and Theorem 3.7 

𝑓 (𝜆A + 𝜇B ) = 𝛼[𝜆A + 𝜇B] 

= 𝜆 𝛼[𝐴]  + 𝜇 𝛼[𝐴]  

= 𝜆 𝑓(𝐴)  + 𝜇 𝑓(𝐵) 

Hence 𝐺𝑎 is a linear transformation. 

 

Proposition 3.12 :   The mapping  𝑓 : 𝐺0 → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ 𝐺0 is a linear 

transformation. 

Proof :  

Let A, B ∈ 𝐺0, then 𝛼[𝐴] = 0 and 𝛼[𝐵] = 0 

𝑓 (𝜆A + 𝜇B ) = 𝛼[𝜆A + 𝜇B] 

= 𝜆 𝛼[𝐴]  + 𝜇 𝛼[𝐴] (By Result 1.4 and Theorem 3.8) 

= 𝜆 𝑓(𝐴)  + 𝜇 𝑓(𝐵) 

Hence 𝐺0 is a linear transformation. 

 

Theorem 3.16 :   The mapping  𝑓 : 𝐺𝑎  → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ 𝐺𝑎  is a ring 

homomorphism. 

Proof : 

Let A, B ∈ 𝐺𝑎, A = [𝑎𝑖𝑗] , B = [𝑏𝑖𝑗] then 𝛼[𝐴] = 4𝑎 and  𝛼[𝐵] = 4𝑏 

𝑓 (A + B) = 𝛼 (A + B ) 

= 𝛼 (𝐴) +  𝛼 (𝐵 ) 

= 𝑓 (A) + 𝑓 (B) 

Now AB = [4ab] with 𝛼[𝐴𝐵] = 16ab 

f (AB) = 𝛼 [𝐴𝐵]  

𝛼 [𝐴𝐵] = 16ab 

= 4a.4b 

= 𝛼[a] . 𝛼 [b] 

= 𝑓 (A) . 𝑓 (B) 

 

Theorem 3.17 :   The mapping  𝑓 : 𝐺𝑎  → R  defined by  𝑓 (A) = 𝛼[𝐴] for all A ∈ 𝐺𝑎  is a ring isomorphism. 

Proof:  

From Proposition 3.6 and Proposition 3.5 it can be deduced 

 

Theorem 3.17 :   < 𝐺𝑎, +,  . > forms a ring. 

Proof: 
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Since  

a) 𝐺𝑎 is an abelian group under matrix addition. 

b) Matrix multiplication is associative and distributive over addition. 

c) 𝐺𝑎 is closed under matrix multiplication. 

< 𝐺𝑎, +,  . > forms a ring. 

 

Theorem 3.18 : Let 𝐴= [𝑎], 𝐵 = [𝑏] ∈ 𝐺𝑎, 𝑡hen  𝐴.𝐵 = 𝐵.𝐴  

Proof: 

Since 𝐴, ∈ 𝐺𝑎 

𝐴 = [a] = [
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

]  and 𝐵 = [b] = [
𝑏 𝑏 𝑏
𝑏 𝑏 𝑏
𝑏 𝑏 𝑏

] 

Then 𝐴. 𝐵 = [
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

] [
𝑏 𝑏 𝑏
𝑏 𝑏 𝑏
𝑏 𝑏 𝑏

]  = [
4𝑎𝑏 4𝑎𝑏 4𝑎𝑏
4𝑎𝑏 4𝑎𝑏 4𝑎𝑏
4𝑎𝑏 4𝑎𝑏 4𝑎𝑏

]  

     = [4ab] 

     = [4ba] 

     = [
4𝑏𝑎 4𝑏𝑎 4𝑏𝑎
4𝑏𝑎 4𝑏𝑎 4𝑏𝑎
4𝑏𝑎 4𝑏𝑎 4𝑏𝑎

] 

     = [
𝑏 𝑏 𝑏
𝑏 𝑏 𝑏
𝑏 𝑏 𝑏

] [
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

] 

     = 𝐵 . 𝐴 

Hence 𝐴.𝐵 = 𝐵.𝐴 

  

Theorem 3.18 :   < 𝐺𝑎, +,  . > is a commutative ring with unity 𝐼𝑎 = [
1

4
] 

Proof : 

To prove 𝐼𝑎 = [
1

4
] is the unity, it is enough to prove that 𝐴 . 𝐼𝑎 = 𝐼𝑎. 𝐴  =  𝐴 

For 𝐴 ∈ 𝐺𝑎, 𝐴 = [a]  = [
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

] and 𝐼𝑎 = [
1

4
] = 

[
 
 
 
 
1

4

1

4

1

4
1

4

1

4

1

4
1

4

1

4

1

4]
 
 
 
 

, clearly 𝐼𝑎 ∈ 𝐺𝑎. 

𝐴 . 𝐼𝑎 = [
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

]

[
 
 
 
 
1

4

1

4

1

4
1

4

1

4

1

4
1

4

1

4

1

4]
 
 
 
 

 = [
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

] = 𝐴 

also 
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𝐼𝑎. 𝐴  = 

[
 
 
 
 
1

4

1

4

1

4
1

4

1

4

1

4
1

4

1

4

1

4]
 
 
 
 

 [
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

] = [
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎
𝑎 𝑎 𝑎

] = 𝐴 

hence  𝐴 . 𝐼𝑎 = 𝐼𝑎. 𝐴  = 𝐴 and by theorem 3.17 and 3.18,  < 𝐺𝑎, +,  . > is a commutative ring with unity 𝐼𝑎 = 

[
1

4
] 

 

Theorem 3.19:   If 𝐴 ∈ 𝐺𝑎, then 𝐴 has a multiplicative inverse in 𝐺𝑎.  (Here 𝐴 ≠0) 

Proof: 

Let 𝐴 ∈ 𝐺𝑎, then 𝐴= [𝑎]. Now we have to find out an element 𝐵 ∈ 𝐺𝑎 such that 𝐴.𝐵 = 𝐼𝑎, the identity 

element of 𝐺𝑎. 

Take B = [
1

16𝑎
] then clearly 𝐵 ∈ 𝐺𝑎 and A.B = [a]. [

1

16𝑎
] = [

1

16𝑎
]. [a] = B.A = [

1

4
] = 𝐼𝑎. 

Hence 𝐴 has a multiplicative inverse in 𝐺𝑎 .   

 

Theorem 3.20:   < 𝐺0, +,  . > forms a field. 

Proof: 

Since < 𝐺0, +,  . > forms a commutative ring with unity (Theorem 3.18) and it has a multiplicative inverse 

(Theorem 3.19), it will form a field. 

 

4.   CONCLUSION : 

The study of SR - magic squares is an emerging innovative area in which mathematical analysis can be 

done. Here some advanced properties regarding SR - magic squares namely Group structure, Abelian, 

Vector spaces, Group homomorphism, Group isomorphism, Vector space isomorphism, Linear 

transformation, Kernel of transformation are described. This will help in applying SR - magic squares in 

different areas. Physical application of magic squares is still a new topic that needs to be explored more. 

Further studies are being carried out by the authors on the scope for further research and the application of 

SR - Magic Squares.  
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