
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904L90 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 564

A SURVEY ON MANAGING BIG RDF GRAPH

BY USING MULTIPLE INDEXING

APPROACHES IN BIG DATA

1Foram M. Gohel,2Ashutosh A. Abhangi
1ME Scholar,2Assistant Professor

1 2Computer Engineering Department,
1 2Noble Group of Institution, Junagadh, Gujarat.

Abstract : Management of large scale RDF graph is very challenging task. It is not easy to access and manage large-

scale, million-node (big) RDF graphs. A possible solution to this problem is require Map-Reduced based algorithms

and techniques, in using semantic web. So RDF data management done more efficiently. From the relational database

perspective, efficiency and scalability of RDF data model are derived from triplet model easily. /so, in this survey we

describe the different types of approaches by using vertical-partitioning with triple nature of RDF. By using these

different approaches we analyze that using vertical-partitioning in RDF triple nature, we can reduce time as well as

storage also.

IndexTerms - RDF graphs, Map-Reduce, Semantic web, Vertical-Partitioning, Hexastore, etc.….

I. INTRODUCTION

1.1 Big data:

 Big data is a covering all term for the non-traditional strategies and technologies needed to collect, organize and

process from large datasets. While the problem of working with data that extends the computing power or storage of a

single computer is not new, the ubiquity, scale, and value of this type of computing has greatly become larger in

modernistic years. The Word Big Data Defines as Extremely huge data sets, which may be analyzed computationally

to reveal patterns, trends, and associations, especially relation to human behavior and interactions. The term big data

applies to information that cannot be processed or analyzed using traditional processes or tools[1]. Increasingly,

organizations today we are facing more and more big data challenges. Big data challenges are indexing, shorting,

search, manage, data creation, sharing, transfer updating and information privacy.

 A huge repository of terabytes of data is generated each day from modern informationsystems and digital

technologies such as Internet of Things and cloud computing[2]. Analysis of these massive data requires a lot of

efforts at multiple levels to extract knowledge fordecision making. Therefore, big data analysis is a current area of

research and development. Hence, for managing these terabytes of data the concept of RDF is arrived.

1.2 RDF Graph:

 The Resource Description Framework (RDF)[5] is a general framework for how to describe any Internet

resource such as a Web site and its content. An RDF description (such descriptions are often referred to as metadata,

or ”data about data”) can include the authors of there source, date of creation or updating, the organization of the

pages on a site (the sitemap),information that describes content in terms of audience or content rating[8], key words

for search engine data collection, subject categories, and so forth. The Resource Description Framework will make it

possible for everyone to share Website and other descriptions more easily and for software developers to build

products that can use the metadata to provide better search engines and directories, to act as intelligent agents, and to

give Web users more control of what they’re viewing.

 The above example is called RDF graph or sometimes called an RDF triple. Of the two, triple is the most helpful

term as it describes the breaking of the statement into its three constituent parts: the subject, predicate, and object of

the statement.[4]

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904L90 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 565

Fig 1: RDF Graph Model[9]

1.3 Map-Reduce Algorithm:

 Map-Reduce are a parallel programming model in displayed by Google. The thought is unique from utilitarian

programming dialect in big data. Map-Reduce parts the issue them handling into two phases (outline and lessen

arrange). The guide organize expends are (critical, esteem) of sets and gatherings of yield in (key, esteem) matches

too. The organize forms the yield of guide arrange with keys and yields the last outcome. Map-Reduce structure are

simply requires to the software engineer giving guide and reduce (join) strategy. However, just if the undertaking can

be preoccupied as tasks over (key, esteem) Map-Reduce is reasonable.[12]

The Map-Reduce algorithm the important tasks, namely Map and Reduce.

1. The Map task takes a set of data and converts it into another set of data, where individual elements are broken

down into tuples key-value pairs.[24]

2. The Reduce task takes the output from the Map as an input and combines those data tuples key-value pairs

into a smaller set of tuples.

Fig 2: Map-Reduce Algorithm Phases[15]

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904L90 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 566

1.4 Column-Oriented Partitioning:

There are four general types (most common categories) of NoSQL databases. Each of these categories has its own

specific attributes and limitations. There is not a single solutions which is better than all the others, however there are

some databases that are better to solve specific problems[19]. To clarify the NoSQL databases, let’s discuss the most

common categories:

 Key-value stores

 Column-oriented

 Graph

 Document oriented

II. Related Work:

2.1 Vertical-Partitioning:

 In this scheme, a triples table is rewritten into n two-column tables, one table per property, where n is the number

of unique properties in the data. This vertical-partitioning model is oriented towards answering queries in which the

property resource is bound, or, otherwise, the search is limited to only a few properties. In fact, while Abadi et al.

argue convincingly against the property-table solutions of the property-based two-column-table approach they

introduce shares most of the disadvantages of those property-table solutions itself. In fact, the two-column tables used

by are themselves a special variation of property tables too. Specifically, these two-column tables are akin to the

multi-valued property tables introduced in; namely[26], the latter also store single properties with subject and object

columns. In this respect, the most significant novelty of has been to integrate such two-column property tables into a

column-oriented DBMS. Unfortunately, such an assumption is hard to be realized in a real-world setting. Thus, there

is a need for scalable semantic web data management that will not depend on assumptions about the number of

properties in the data or the (property-bound) nature of the executed queries.

2.2 Hexastore:

 We took the vertical partitioning idea further, to its full logical conclusion. The result does not discriminate

against any RDF elements; it treats subjects, properties and objects equally. Thus, each RDF element type deserves to

have special index structure built around it. Moreover, every possible order of the importance or precedence of that

three elements in an indexing scheme is materialized. The result amounts into a sextuple indexing scheme. We call a

store that maintains six such indices a Hexastore. Each indexing structure in a Hexastore centres around one RDF

element and it defines a prioritization between other two elements. Thus, the Hexastore equivalent of two-column

property table can be either indexed by subject and allow for a list of multiple object entries per subject, or vice versa.

 Hexastore does not take any prioritization of that three triple attributes for granted. RDF triples are not assumed

to exist in a property-based universe. Hence, a Hexastore[26] creates not only property-headed divisions, but also

subject-headed and object-headed ones.

 In the former case, a given subject header s is associated to the property vector p(s) and to the object vector o(s);

a list of associated objects op(s) is appended to each entry in the property vector. Same as lists of associated properties

po(s) are appended to entries in the object vectors. Again, a list of properties psy(ox) for object ox and subject sy in this

object-headed indexing is identical to the property list pox(sy) of the subject-headed indexing. Same as a list of subjects

spx(oy) for property px and object oy in the object-headed indexing is identical to the subject list soy(px) featured in the

property-headed indexing.

 Putting it all together, the information for each triple (s, p, and o) in the data is represented in six ways, one for

each possible prioritization of the three elements. We name these 3! = 6 prioritization ways by acronyms made up

from the initials of the three RDF elements in the order of each prioritization. For example, the indexing that groups

the data into subject-headed divisions with property vectors and lists of objects per vector is the spo indexing.

Likewise, the osp indexing groups data into object-headed divisions of subject vectors with property lists per subject.

In this framework, the column-oriented vertical partitioning scheme of, in which two-column property tables are

sorted by subject, which can be seen as a special, simplified variant of our pso indexing. The six indexing schemes are

then called spo, sop, pso, pos, osp, and ops.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904L90 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 567

 Fig 3 represents a general example of spo indexing in a Hexastore where subject key si is associated to a sorted

vector of ni property keys, {pi1, pi2. . . pini}. Each property key pi
j is, in its turn, linked to an associated sorted list of

ki j object keys. These objects lists are accordingly shared with the pso indices. The same spo pattern will be repeated

for every subjects in the Hexastore. Moreover, analogous patterns are materialized in other five indexing schemes.

Fig 3 : spo indexing in a Hexastore[17]

2.3 COVP1 & COVP2:

 The COVP method through our pso indexing. This indexing provides an enhancement compared to the purely

vertical-partitioning approach of; namely, the pso indexing groups together multiple objects{o1,o2,...,on}related to the

same subjects by a unique property p; on the other hand, in the vertical partitioning scheme, a separate〈s,oi〉entry is

made for each such object oi in the two-column property table for property p. Moreover, we heed the suggestion in [5]

that a second copy of each two-column property table can be created, sorted on the object column.

 In fact, this suggestion was not followed in [5];instead, only unclusterd B+ tree indices were built on the object

columns with the vertically-partitioned architecture implemented in Postgres. However, such tree indices were not

built when the same vertically-partitioned architecture was implemented in a column-oriented DBMS, which in fact

provides the top performance in [5]. Besides, the object column is not sorted in any of the approaches examined in

[5]. Still, the suggestion of having a second copy of each two-column property table, sorted on object, is tantamount

to having both a pso and a pos index in our scheme. Thus, for the sake of completeness, we also conduct experiments

on such a two-index property-oriented store. In order to distinguish between the two, we call the single-index (i.e.,

pso) property-oriented store COVP1, and the two-index (i.e., pso and pos) store COVP2. The latter illustrates both the

benefits of using a second index in comparison to the single-index COVP1[26], as well as its limitations in

comparison to the six-index Hexastore.

III. RESULTS AND DISCUSSION

Table 1: Experimental Results of Comparison of the techniques

 Here, We have some Experimental results for all three techniques for vertical partitioning method which is

Hexastore, COVP1 and COVP2. From these results We found the graph which is given bellow that tells that the

Hexastore technique is better in time searching and COVP1 technique is better for store the RDF graph in Big data

world.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904L90 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 568

Fig 4 : Comparison Graph Of three different techniques

IV. FUTURE DIRECTION:

1. Uncertain Big RDF Graph Management

 In real world scenario management of uncertain RDF graph is very challenging task. So as we survey in

this work that if we using map-reduced based algorithms with NoSQL column-oriented partitioning

distributed database then it’s easily manage the uncertain RDF graph and required less storage.[14]

2. Indexing Big RDF Graphs

 A possible solution to such problem is represented by indexing data structures Map-Reduce[14] model

based algorithm which improve a query processing on big RDF graphs and tried to exploit the computation

power and such complexity above. So using the indexing big RDF we can get better result.

V. CONCLUSION:

 After this survey we can conclude that in managing RDF graph the column-oriented vertical partitioning methods

and Hexastore method is very effective. For, better storage there is COVP1 (column-oriented vertical-partitioning)

method is best and for better time the Hexastore technique is best.

VI. REFERENCES:

[1] https://en.wikipedia.org/wiki/Big data

[2] https://www.extrahop.com/company/blog/2016/it-operations-analytics-itoa-big- data/3

[3] https://searchmicroservices.techtarget.com/definition/Resource-Description-Framework-RDF

[4] http://www.linkeddatatools.com/introducing-rdf

[5] Data Science and BIG Data are not the same ,

”https://tijiwrotesomething.blogspot.com/2015/08/data-science-and-big-data- are-not-same.html”

[6] D. P. Acharjya, Kauser Ahmed P. ”A Survey on Big Data Analytics: Challenges, Open Research Issues and

Tools.”,(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 7, No. 2, 2016.

[7] Min Chen, Shiwen Mao, Yunhao Liu. ”Big Data: A Survey.”, Springer Sci- ence+Business Media New York

2014.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904L90 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 569

 [8] https://www.tutorialspoint.com/map reduce/map reduce introduction.htm

[9] Sachin Arun Thanekar, K. Subrahmanyam, A. B. Bagwan ”Big Data and MapRe- duce Challenges,

Opportunities and Trends.”, International Journal of Electrical and Computer Engineering (IJECE) Vol. 6, No. 6,

December 2016, pp. 2911 2919 ISSN: 2088-8708, DOI: 10.11591/ijece.v6i6.10555

[10] Oguntimilehin A., Ademola E.O. ”A Review of Big Data Management, Benefits and Challenges.”, Vol. 5,

No. 6 June 2014,ISSN 2079-8407 Journal of Emerging Trends in Computing and Information Sciences

[11] Fernando L. F. Almeida. ”Benefits, Challenges and Tools of Big Data Management.”, JOURNAL OF

SYSTEMS INTEGRATION 2017.

[12] Hiba Alsghaier, Mohammed Akour, Issa Shehabat, Samah Aldiabat ”The Importance of Big Data Analytics

in Business: A Case Study .”, American Journal of Software Engineering and Applications 2017; 6(4): 111-115 .

[13] Roberto De Virgilio. ”Smart RDF Data storage in Graph Databases.”, 2017 17th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing.

[14] Alfredo Cuzzocrea, Rajkumar Buyya, Vincenzo Passanisi, Giovanni Pilato.

”MapReduce-based Algorithms for Managing Big RDF Graphs: State-of-the-Art Analysis, Paradigms, and Future

Directions.”, IEEE 2017

[15] Maxime Lefranois, Antoine Zimmermann, Noorani Bakerally. ”A SPARQL extension for generating RDF

from heterogeneous formats.”, Springer 2017

[16] Federal University of Santa Catarina (UFSC) , ”A middleware for storing massive RDF graphs into NoSQL”,

Researchgate-2017

[17] Brad Bebee, Daniel Choi, Ankit Gupta, Andi Gutmans, Ankesh Khandelwal, Yigit Kiran, Sainath Mallidi,

Bruce McGaughy, Mike Personick, Karthik Rajan, Simone Rondelli, Alexander Ryazanov, Michael Schmidt, Kunal

Sengupta, Bryan Thompson, Divij Vaidya, and Shawn Wang, ”Amazon Neptune: Graph Data Management in the

Cloud”

[18] Jiewen Huang, Daniel J. Abadi, Kun Ren, ”Scalable SPARQL Quering of Large RDF Graphs”, 2011-VLDB

Endowment

[19] Hyunsik Choi, Jihoon Son, YongHyun Cho Min Kyoung Sung, Yon Dohn Chung, ”SPIDER : A System for

Scalable, Parallel / Distributed Evaluation of large scale RDF Data” ,VLDB 09, August 24 28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 0000000000000/00/00.

[20] Mohammad Farhan Husain, Pankil Doshi, Latifur Khan, and Bhavani Thuraising- ham, ”Storage and

Retrieval of Large RDF Graph Using Hadoop and MapReduce”, Springer-Verlag Berlin Heidelberg 2009

[21] Cathrin Weiss, Panagiotis Karras, Abraham Bernstein, ”Hexastore: Sextuple Indexing for Semantic Web Data

Management ”, PVLDB ’08, August 23-28, 2008, Auckland,

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904L90 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 570

New Zealand Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

[22] ”https://onlinecourses.nptel.ac.in/ ”

[23] ”https://slideplayer.com/slide/7237541/ ”

[24] David Dietrich, Barry Heller, Beibei Yang ”Data Science Big Data Analytics”, 2015

[25] David C. Faye, Olivier Cur, Guillaume Blin ”A survey of RDF storage approaches”, ARIMA Journal, vol. 15

(2012)

[26] Cathrin Weiss, Panagiotis Karras, Abraham Bernstein ” Hexastore: Sextuple Indexing for Semantic Web Data

Management”, PVLDB '08, August 23-28, 2008, Auckland, New Zealand Copyright 2008 VLDB Endowment, ACM

978-1-60558-305-1/08/08

http://www.jetir.org/

