EDGE DOMINATION IN SUBDIVISION OF BLOCK GRAPHS OF GRAPHS

Abdul Majeed
Associate Professor \& Head, Department of Basic Sciences \& Humanities, Muffakham Jah College of Engineering \& Technology, Hyderabad, INDIA

Abstract

A set of edges $F \subseteq E[S(B(G))]$ is called an edge dominating set of subdivision of block graph of G, if every edge in $E-F$ is adjacent to at least one edge in F. The edge domination number of a graph $S(B(G))$ is denoted by $\gamma^{\prime}[S(B(G))]$, is the minimum cardinality of an edge dominating set of $S(B(G))$. In this paper, we obtain many bonds on $\gamma^{\prime}[S(B(G))]$, in terms of vertices, edges, blocks and different parameters of G and not the members of $S(B(G))$. Further we determine its relationship with other domination parameters. Subject Classification Number: AMS-05C69,05C70 Key words: Block graph,Subdivision graph, Edge domination number.

I. INTRODUCTION

All graphs considered here are simple, finite, nontrivial, separable, undirected and connected. As usual, p, q and n denote the number of vertices, edges and blocks of a graph G respectively. For graph theoretic terminology we refer F.Harary [3]. Hedetniemi and Laskar in [5] studied connected domination and further connected domination number of a graph is studied by Sampatkumar and Walikar in [9]. As usual, the maximum degree of a vertex in G is denoted by $\Delta(G)$. A vertex v is called a cut vertex if removing it from G increases the number of components of G. For any real number $x,\lceil x\rceil$ denotes the smallest integer not less than x and $\lfloor x\rfloor$ denotes the greatest integer not greater than x. A graph G is called trivial if it has no edges. If G has at least one edge then G is called a nontrivial graph. A nontrivial connected graph G with at least one cut vertex is called a separable graph, otherwise a non-separable graph.

A vertex cover in a graph G is a set of vertices that covers all edges of G. The vertex covering number $\alpha_{0}(G)$ is a minimum cardinality of a vertex cover in G. An edge cover of a graph G without isolated vertices is a set of edges of G that covers all vertices of G. The edge covering number $\alpha_{1}(G)$ of a graph G is the minimum cardinality of an edge cover of G. A set of vertices in a graph G is called an independent set if no two vertices in the set are adjacent. The vertex independence number $\beta_{0}(G)$ of a graph G is the maximum cardinality of an independent set of vertices in G. The edge independence number $\beta_{1}(G)$ of a graph G is the maximum cardinality of an independent set of edges.

A nontrivial connected graph with no cut vertex is called a block. A subdivision of an edge $u v$ is obtained by removing an edge $u v$, adding a new vertex w and adding edges $u w$ and $w v$. For any (p, q) graph G, a subdivision graph $S(G)$ is obtained from G by subdividing each edge of G. Here, a subdivision graph $\mathrm{S}(\mathrm{B}(\mathrm{G})$) is obtained from $\mathrm{B}(\mathrm{G})$ by subdividing each edge of $\mathrm{B}(\mathrm{G})$.

A set $D \subseteq V(G)$ of a graph $G=(V, E)$ is a dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set in G. A dominating set D is a total dominating set if the induced subgraph $\langle D\rangle$ has no isolated vertices. The total domination number $\gamma_{t}(G)$ of a graph G is the minimum cardinality of a total dominating set in G. This concept was introduced by Cockayne, Dawes and Hedetniemi in [2].

A set F of edges in a graph $G(V, E)$ is called an edge dominating set of G if every edge in $E-F$ is adjacent to at least one edge in F. The edge domination number $\gamma^{\prime}(G)$ of a graph G is the minimum cardinality of an edge dominating set of G. The edge domination number of a graph $S(B(G))$ is denoted by $\gamma^{\prime}[S(B(G))]$, is the minimum cardinality of an edge dominating set of $S(B(G))$. Edge domination number was studied by S.L. Mitchell and Hedetniemi in [7].

A dominating set D is called connected dominating set of G if the induced subgraph $\langle D\rangle$ is connected. The connected domination number $\gamma_{c}(G)$ of a graph G is the minimum cardinality of a connected dominating set in G. For any connected graph G with $\Delta(G)<p-1, \gamma(G) \leq \gamma_{t}(G) \leq \gamma_{c}(G)$.

In this paper, many bonds on $\gamma^{\prime}[S(B(G))]$, were obtained in terms of vertices, edges, blocks and other parameters of G. Also, we obtain some results on $\gamma^{\prime}[S(B(G))]$, with other domination parameters of G.

II. RESULTS

Initially we establish the relation between $\gamma^{\prime}[S(B(G))]$ and number of blocks of G .
Theorem 1: For any separable graph $G, \gamma^{\prime}[S(B(G))] \leq n(G)$ where $n(G)$ is the number of blocks of G. Equality holds for a star graph $K_{1,4}$.
Proof: We prove the result by induction on number of blocks n of G. If $n(G)=2$ then $\gamma^{\prime}[S(B(G))]=1<n(G)$. Assume the result is true for all separable graphs G with $n-1$ blocks. That is $\gamma^{\prime}[S(B(G))] \leq n(G)-1$. Let G_{1} be a connected graph with n blocks. With this $n^{\text {th }}$ block of G, only one edge will be added in $S\left(B\left(G_{1}\right)\right)$. Then by the definition of edge dominating set, $\gamma^{\prime}\left[S\left(B\left(G_{1}\right)\right)\right] \leq(n-1)+1=n$. Hence, by induction $\gamma^{\prime}[S(B(G))] \leq n(G)$.

For an equality, if G is isomorphic to $K_{1,4}$, then $\gamma^{\prime}[S(B(G))]=4=n(G)$.
The following theorem is the relation between $\gamma^{\prime}[S(B(G))]$ and edges of G.
Theorem 2: For any separable graph $G, \gamma^{\prime}[S(B(G))] \leq q(G)$. Equality holds if $G \cong K_{1,4}$.
Proof: Let G be a graph with n blocks. For any separable graph $G, n(G) \leq p(G)-1$ and $p(G)-1 \leq q(G) \Longrightarrow n(G) \leq q(G)$.
From Theorem 1, $\gamma^{\prime}[S(B(G))] \leq n(G) \leq q(G)$. Hence, $\gamma^{\prime}[S(B(G))] \leq q(G)$.
For an equality if G is isomorphic to $K_{1,4}$, then $\gamma^{\prime}[S(B(G))]=4=q(G)$.
Now, we establish the relation between $\gamma^{\prime}[S(B(G))], \gamma^{\prime}(G)$ and edges of G .
Theorem 3: For any separable graph $G, \gamma^{\prime}(G)+\gamma^{\prime}[S(B(G))]<2 q(G)$.
Proof: This result follows from Theorem 2 and the fact that for any separable graph $G, \gamma^{\prime}(G)<q(G)$.

The following theorem gives the upper bound for $\gamma^{\prime}[S(B(G))]$.
Theorem 4: For any separable graph $G, \gamma^{\prime}[S(B(G))]<p(G)$.
Proof: Suppose $\left.V=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\} \subseteq V[B(G))\right]$ be the set of vertices in $B(G)$ corresponding to the blocks $\left\{B_{1}, B_{2}, \ldots, B_{i}\right\}$ in G. Then $D \subseteq E[S(B(G))]$ forms an edge dominating set of $S(B(G))$ with $\gamma^{\prime}[S(B(G))]=|D|$. Since for any separable graph G, $\gamma^{\prime}[S(B(G))]=|D|<p(G)$. It follows that, $\gamma^{\prime}[S(B(G))]<p(G)$.

Now we obtain the following characterization.
Theorem 5: For any nontrivial tree T with at least two edges, $\gamma^{\prime}[(S(B(T))]<m(T)+s(T)$ where $m(T)$ is the number of end edges in T and $s(T)$ is the number of cut vertices in T.
Proof: Let s and s^{\prime} be the number of cut vertices in T and $S(B(T))$ respectively. Consider m and m^{\prime} be the number of end edges in T and $S(B(T))$ respectively. Suppose $D \subseteq E[S(B(T))]$ is an edge dominating set of $S(B(T))$ with $\gamma^{\prime}[S(B(T))]=|D|$. Clearly, $\gamma^{\prime}[S(B(T))]=|D|<m(T)+s(T)$. Therefore $\gamma^{\prime}[S(B(T))]<m(T)+s(T)$.

We thus have a result, due to Ore [8].
Theorem A [8]: If G is a (p, q) graph with no isolated vertices, then $\gamma(G) \leq \frac{p}{2}$.
In the following Theorem we obtain the relation between $\gamma^{\prime}[S(B(G))], \gamma(G)$ and $p(G)$.
Theorem 6: For any separable graph $G, \gamma^{\prime}[S(B(G))]+\gamma(G)<\frac{3 p}{2}$.
Proof: From Theorem 4 and Theorem A, $\gamma^{\prime}[S(B(G))]+\gamma(G)<p(G)+\frac{p(G)}{2}=\frac{3 p}{2}$.
Hence, $\gamma^{\prime}[S(B(G))]+\gamma(G)<\frac{3 p}{2}$.
We have a following result due to Harary [3].
Theorem B [3, P.95]: For any nontrivial (p, q) connected graph G,
$\alpha_{0}(G)+\beta_{0}(G)=p=\alpha_{1}(G)+\beta_{1}(G)$.
The following theorem relates between $\gamma^{\prime}[S(B(G))], \alpha_{0}(G), \beta_{0}(G), \alpha_{1}(G)$ and $\beta_{1}(G)$.
Theorem 7: If G is a (p, q) graph, then
$\gamma^{\prime}[S(B(G))]<\alpha_{0}(G)+\beta_{0}(G)=\alpha_{1}(G)+\beta_{1}(G)$.
Proof: From Theorem 4 and Theorem B, we get
$\gamma^{\prime}[S(B(G))]<\alpha_{0}(G)+\beta_{0}(G)=\alpha_{1}(G)+\beta_{1}(G)$.

The following Theorem is due to V.R.Kulli [6].
Theorem C [6, P.19]: For any graph $G, \gamma(G) \leq \beta_{0}(G)$.
In the following Theorem, we develop the relation between $\gamma^{\prime}[S(B(G))], \gamma(G), \beta_{0}(G)$ and $n(G)$.
Theorem 8: For any connected (p, q) graph $G, \gamma^{\prime}[S(B(G))]+\gamma(G) \leq n(G)+\beta_{0}(G)$.
Proof: From Theorem 1 and Theorem C, we get

$$
\gamma^{\prime}[S(B(G))]+\gamma(G) \leq n(G)+\beta_{0}(G) .
$$

T.W.Haynes et al. [4] establish the following result.

Theorem D [4, P.165]: For any connected graph $G, \gamma_{c}(G) \leq 2 \beta_{1}(G)$.
In the following Theorem, we develop the relation between $\gamma^{\prime}[S(B(G))], \gamma_{c}(G), \beta_{1}(G)$ and $q(G)$.
Theorem 9: For any connected (p, q) graph $G, \gamma^{\prime}[S(B(G))]+\gamma_{c}(G) \leq q(G)+2 \beta_{1}(G)$.
Proof: The result follows From Theorem 2 and Theorem D.
The following upper bound was given by V.R.Kulli[6].
Theorem E[6, P.44]: If G is connected (p, q) graph and $\Delta(G)<p-1$, then $\gamma_{t}(G) \leq p-\Delta(G)$.

We obtain the following result.
Theorem 10: If G is a connected (p, q) graph and $\Delta(G)<p-1$,

$$
\gamma^{\prime}[S(B(G))]+\gamma_{t}(G)<2 p-\Delta(G)
$$

Proof: From Theorem 4 and Theorem E, we get

$$
\gamma^{\prime}[S(B(G))]+\gamma_{t}(G)<2 p-\Delta(G)
$$

The following Theorem is due to S.Arumugam et al. [1].
Theorem F[1]: For any (p, q) graph $G, \gamma^{\prime}(G) \leq\left\lfloor\frac{p}{2}\right\rfloor$. The equality is obtained for $G=K_{p}$. Now we establish the following upper bound.
Theorem 11: For any (p, q) graph $G, \gamma^{\prime}[S(B(G))]+\gamma^{\prime}(G) \leq q(G)+\left\lfloor\frac{p}{2}\right\rfloor$.
Proof: From Theorem 2 and Theorem F, the result follows.

REFERENCES

[1] Arumugam S and City S. Velammal, Edge domination in graphs, Taiwanese J. of Mathematics, 2(2) (1998), 173 - 179.
[2] Cockayne C.J, Dawes R.M. and Hedetniemi S.T., Total domination in graphs, Networks, 10 (1980) 211-219.
[3] Harary F, Graph Theory, Adison Wesley, Reading Mass(1972).
[4] Haynes T.W. et al., Fundamentals of Domination in Graphs, Marcel Dekker, Inc, USA (1998).
[5] Hedetniemi S.T. and Laskar R.C, Conneced domination in graphs, in B.Bollobas, editor, Graph Theory and Combinatorics, Academic Press, London (1984) 209-218.
[6] Kulli V.R., Theory of Domination in Graphs, Vishwa Intern. Publ. INDIA (2010).
[7] Mitchell S.L and Hedetniemi S.T, Edge domination in trees. Congr. Numer. 19 (1977) 489-509.
[8] Ore O, Theory of graphs, Amer. Math. Soc., Colloq. Publ., 38 Providence, (1962).
[9] Sampathkumar E and Walikar H.B, The Connected domination number of a graph, J.Math.Phys. Sci., 13 (1979) 607-613.

