EDGE DOMINATION IN SUBDIVISION OF BLOCK GRAPHS OF GRAPHS

Abdul Majeed

Associate Professor & Head, Department of Basic Sciences & Humanities, Muffakham Jah College of Engineering & Technology, Hyderabad, INDIA

Abstract: A set of edges $F \subseteq E[S(B(G))]$ is called an edge dominating set of subdivision of block graph of G, if every edge in E - F is adjacent to at least one edge in F. The edge domination number of a graph S(B(G)) is denoted by $\gamma'[S(B(G))]$, is the minimum cardinality of an edge dominating set of S(B(G)). In this paper, we obtain many bonds on $\gamma'[S(B(G))]$, in terms of vertices, edges, blocks and different parameters of G and not the members of S(B(G)). Further we determine its relationship with other domination parameters.

Subject Classification Number: AMS-05C69,05C70

Key words: Block graph, Subdivision graph, Edge domination number.

I. INTRODUCTION

All graphs considered here are simple, finite, nontrivial, separable, undirected and connected. As usual, p, q and n denote the number of vertices, edges and blocks of a graph G respectively. For graph theoretic terminology we refer F.Harary [3]. Hedetniemi and Laskar in [5] studied connected domination and further connected domination number of a graph is studied by Sampatkumar and Walikar in [9]. As usual, the maximum degree of a vertex in G is denoted by $\Delta(G)$. A vertex v is called a cut vertex if removing it from G increases the number of components of G. For any real number x, [x] denotes the smallest integer not greater than x. A graph G is called trivial if it has no edges. If G has at least one edge then G is called a nontrivial graph. A nontrivial connected graph G with at least one cut vertex is called a separable graph, otherwise a non-separable graph.

A vertex cover in a graph *G* is a set of vertices that covers all edges of *G*. The vertex covering number $\alpha_0(G)$ is a minimum cardinality of a vertex cover in *G*. An edge cover of a graph *G* without isolated vertices is a set of edges of *G* that covers all vertices of *G*. The edge covering number $\alpha_1(G)$ of a graph *G* is the minimum cardinality of an edge cover of *G*. A set of vertices in a graph *G* is called an independent set if no two vertices in the set are adjacent. The vertex independence number $\beta_0(G)$ of a graph *G* is the maximum cardinality of an independent set of vertices in *G*. The edge independence number $\beta_1(G)$ of a graph *G* is the maximum cardinality of an independent set of edges.

A nontrivial connected graph with no cut vertex is called a block. A subdivision of an edge uv is obtained by removing an edge uv, adding a new vertex w and adding edges uw and wv. For any (p, q) graph G, a subdivision graph S(G) is obtained from G by subdividing each edge of G. Here, a subdivision graph S(B(G)) is obtained from B(G) by subdividing each edge of B(G).

A set $D \subseteq V(G)$ of a graph G = (V, E) is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set in G. A dominating set D is a total dominating set if the induced subgraph $\langle D \rangle$ has no isolated vertices. The total domination number $\gamma_t(G)$ of a graph G is the minimum cardinality of a total dominating set in G. This concept was introduced by Cockayne, Dawes and Hedetniemi in [2].

A set *F* of edges in a graph G(V, E) is called an edge dominating set of *G* if every edge in E - F is adjacent to at least one edge in *F*. The edge domination number $\gamma'(G)$ of a graph *G* is the minimum cardinality of an edge dominating set of *G*. The edge domination number of a graph S(B(G)) is denoted by $\gamma'[S(B(G))]$, is the minimum cardinality of an edge dominating set of S(B(G)). Edge domination number was studied by S.L. Mitchell and Hedetniemi in [7].

A dominating set *D* is called connected dominating set of *G* if the induced subgraph $\langle D \rangle$ is connected. The connected domination number $\gamma_c(G)$ of a graph *G* is the minimum cardinality of a connected dominating set in *G*. For any connected graph *G* with $\Delta(G) , <math>\gamma(G) \le \gamma_c(G)$.

In this paper, many bonds on $\gamma'[S(B(G))]$, were obtained in terms of vertices, edges, blocks and other parameters of G. Also, we obtain some results on $\gamma'[S(B(G))]$, with other domination parameters of G.

II. RESULTS

Initially we establish the relation between $\gamma'[S(B(G))]$ and number of blocks of G.

Theorem 1: For any separable graph G, $\gamma'[S(B(G))] \le n(G)$ where n(G) is the number of blocks of G. Equality holds for a star graph $K_{1,4}$.

Proof: We prove the result by induction on number of blocks *n* of *G*. If n(G) = 2 then $\gamma'[S(B(G))] = 1 < n(G)$. Assume the result is true for all separable graphs *G* with n - 1 blocks. That is $\gamma'[S(B(G))] \le n(G) - 1$. Let *G*₁ be a connected graph with *n* blocks. With this *n*th block of *G*, only one edge will be added in $S(B(G_1))$. Then by the definition of edge dominating set, $\gamma'[S(B(G_1))] \le (n - 1) + 1 = n$. Hence, by induction $\gamma'[S(B(G))] \le n(G)$.

For an equality, if G is isomorphic to $K_{1,4}$, then $\gamma'[S(B(G))] = 4 = n(G)$.

The following theorem is the relation between $\gamma'[S(B(G))]$ and edges of G.

Theorem 2: For any separable graph G, $\gamma'[S(B(G))] \leq q(G)$. Equality holds if $G \cong K_{1,4}$.

Proof: Let *G* be a graph with *n* blocks. For any separable graph *G*, $n(G) \le p(G) - 1$ and $p(G) - 1 \le q(G) \Longrightarrow n(G) \le q(G)$. From Theorem 1, $\gamma'[S(B(G))] \le n(G) \le q(G)$. Hence, $\gamma'[S(B(G))] \le q(G)$.

For an equality if *G* is isomorphic to $K_{1,4}$, then $\gamma'[S(B(G))] = 4 = q(G)$.

Now, we establish the relation between $\gamma'[S(B(G))], \gamma'(G)$ and edges of G.

Theorem 3: For any separable graph G, $\gamma'(G) + \gamma'[S(B(G))] < 2q(G)$.

Proof: This result follows from Theorem 2 and the fact that for any separable graph G, $\gamma'(G) < q(G)$.

JETIR1904M35 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 218

© 2019 JETIR April 2019, Volume 6, Issue 4

The following theorem gives the upper bound for $\gamma'[S(B(G))]$. **Theorem 4:** For any separable graph $G, \gamma'[S(B(G))] < p(G)$. **Proof:** Suppose $V = \{v_1, v_2, \dots, v_i\} \subseteq V[B(G))$ be the set of vertices in B(G) corresponding to the blocks $\{B_1, B_2, \dots, B_i\}$ in G. Then $D \subseteq E[S(B(G))]$ forms an edge dominating set of S(B(G)) with $\gamma'[S(B(G))] = |D|$. Since for any separable graph G, $\gamma'[S(B(G))] = |D| < p(G)$. It follows that, $\gamma'[S(B(G))] < p(G)$. Now we obtain the following characterization. **Theorem 5:** For any nontrivial tree T with at least two edges, $\gamma'[(S(B(T))] < m(T) + s(T))$ where m(T) is the number of end edges in T and s(T) is the number of cut vertices in T. **Proof:** Let s and s' be the number of cut vertices in T and S(B(T)) respectively. Consider m and m' be the number of end edges in T and S(B(T)) respectively. Suppose $D \subseteq E[S(B(T))]$ is an edge dominating set of S(B(T)) with $\gamma'[S(B(T))] = |D|$. Clearly, $\gamma'[S(B(T))] = |D| < m(T) + s(T)$. Therefore $\gamma'[S(B(T))] < m(T) + s(T)$. We thus have a result, due to Ore [8]. **Theorem A** [8]: If G is a (p, q) graph with no isolated vertices, then $\gamma(G) \leq \frac{p}{q}$. In the following Theorem we obtain the relation between $\gamma'[S(B(G))], \gamma(G)$ and p(G). **Theorem 6:** For any separable graph G, $\gamma'[S(B(G))] + \gamma(G) < \frac{3p}{2}$. **Proof:** From Theorem 4 and Theorem A, $\gamma'[S(B(G))] + \gamma(G) < p(G) + \frac{p(G)}{2} = \frac{3p}{2}$. Hence, $\gamma'[S(B(G))] + \gamma(G) < \frac{sp}{2}$. We have a following result due to Harary [3]. **Theorem B** [3, P.95]: For any nontrivial (*p*, *q*) connected graph *G*, $\alpha_0(G) + \beta_0(G) = p = \alpha_1(G) + \beta_1(G).$ The following theorem relates between $\gamma'[S(B(G))]$, $\alpha_0(G)$, $\beta_0(G)$, $\alpha_1(G)$ and $\beta_1(G)$. **Theorem 7:** If G is a (p, q) graph, then $\gamma'[S(B(G))] < \alpha_0(G) + \beta_0(G) = \alpha_1(G) + \beta_1(G).$ Proof: From Theorem 4 and Theorem B, we get $\gamma'[S(B(G))] < \alpha_0(G) + \beta_0(G) = \alpha_1(G) + \beta_1(G).$ The following Theorem is due to V.R.Kulli [6]. **Theorem C** [6, P.19]: For any graph $G, \gamma(G) \leq \beta_0(G)$. In the following Theorem, we develop the relation between $\gamma'[S(B(G))], \gamma(G), \beta_0(G)$ and n(G). **Theorem 8**: For any connected (p, q) graph G, $\gamma'[S(B(G))] + \gamma(G) \le n(G) + \beta_0(G)$. **Proof:** From Theorem 1 and Theorem C, we get $\gamma'[S(B(G))] + \gamma(G) \le n(G) + \beta_0(G).$ T.W.Haynes et al. [4] establish the following result. **Theorem D** [4, P.165]: For any connected graph $G, \gamma_c(G) \leq 2\beta_1(G)$. In the following Theorem, we develop the relation between $\gamma'[S(B(G))]$, $\gamma_c(G)$, $\beta_1(G)$ and q(G). **Theorem 9:** For any connected (p, q) graph G, $\gamma'[S(B(G))] + \gamma_c(G) \le q(G) + 2\beta_1(G)$. Proof: The result follows From Theorem 2 and Theorem D. The following upper bound was given by V.R.Kulli[6]. **Theorem E[6, P.44]:** If G is connected (p,q) graph and $\Delta(G) , then$ $\gamma_t(G) \leq p - \Delta(G).$ We obtain the following result. **Theorem 10:** If G is a connected (p, q) graph and $\Delta(G) ,$ $\gamma'[S(B(G))] + \gamma_t(G) < 2p - \Delta(G)$ **Proof:** From Theorem 4 and Theorem E, we get $\gamma'[S(B(G))] + \gamma_t(G) < 2p - \Delta(G).$ The following Theorem is due to S.Arumugam et al. [1]. **Theorem F[1]:** For any (p, q) graph $G, \gamma'(G) \leq \left|\frac{p}{2}\right|$. The equality is obtained for $G = K_p$. Now we establish the following upper bound. **Theorem 11:** For any (p, q) graph $G, \gamma'[S(B(G))] + \gamma'(G) \le q(G) + \left|\frac{p}{2}\right|$. Proof: From Theorem 2 and Theorem F, the result follows. REFERENCES [1] Arumugam S and City S. Velammal, Edge domination in graphs, Taiwanese J. of Mathematics, 2(2) (1998), 173 – 179. [2] Cockayne C.J, Dawes R.M. and Hedetniemi S.T., Total domination in graphs, Networks, 10 (1980) 211-219. [3] Harary F, Graph Theory, Adison Wesley, Reading Mass(1972). [4] Haynes T.W. et al., Fundamentals of Domination in Graphs, Marcel Dekker, Inc, USA (1998). [5] Hedetniemi S.T. and Laskar R.C, Conneced domination in graphs, in B.Bollobas, editor, Graph Theory and Combinatorics, Academic Press, London (1984) 209-218. [6] Kulli V.R., Theory of Domination in Graphs, Vishwa Intern. Publ. INDIA (2010). [7] Mitchell S.L and Hedetniemi S.T, Edge domination in trees. Congr. Numer. 19 (1977) 489-509. [8] Ore O, Theory of graphs, Amer. Math. Soc., Collog. Publ., 38 Providence, (1962). [9] Sampathkumar E and Walikar H.B, The Connected domination number of a graph, J.Math.Phys. Sci., 13 (1979) 607-613.