
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904M44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 285

ENHANCED BIG DATA PLATFORMS FOR

FAST QUERY RESPONSE WITH HIVE,

IMPALA AND SPARKSQL

1Revati Khushal Rane, 2Prof. Samadhan Sonavane
1Student, 2Assistant Professor

1Computer Science and Engineering,
1School of Engineering and Technology, Sandip University, Nashik, India

Abstract : With the development of cloud computing technologies and mobile internet data is getting generated tremendously

hence creating big data. There is a great challenge to analyze and extract important data from it and also getting benefit out of it.

Therefore big data processing is facing incredible challenges. In order to provide solution to this issue, this paper focuses on

storage of big data and system performance optimization. This paper integrates three big data tools i.e Hive, Impala and

SparkSQL which supports SQL-like queries in big data environment. These platforms are used to fast respond to user’s query

when the optimized system will automatically select the particular platform to best perform a query. In addition to this approach

this paper provides in-memory cache and in-disk cache for the fast data retrieval for the repeated SQL commands. The proposed

approach improves performance and efficiency of the data retrieval significantly.

IndexTerms - Big data tools, in-memory cache, in-disk cache, big data processing, optimized platform selection.

I. INTRODUCTION

As indicated by the most recent research results of American journal of CIO, as 70% of activity is finished by batch

processing in the business process managed by IT, it makes "Unfit to control activity load processing resources[1]" become one

of the greatest difficulties for enormous big data application[2]. The objective of this study is to realize a multiple big data

processing platform with high performance, high availability and high scalability that will be compatible with any existing business

intelligence and analysis tools. Enterprises do not need to import this platform, but it will eliminate a lot of traditional software. This

platform will support SQL-like query statements in order to process big data, so existing tools relying on relational databases as a data

source can be made compatible with a minimum of modification, or even no modifications to the new platform at all, and provide

companies with relatively easy access to the advantages of the new platform, such as high performance and high availability. The speed

at which big data is read is significantly increased by amortizing the I/O delay time through a reliable distributed file system. This study

will build a Multiple Big Data Processing Platform using (1) Apache Hive, (2) Cloudera Impala and (3) BDAS Spark SQL, as shown in

Fig. 1; these three systems support SQL-like command-based data warehouse and underlying systems (1) Apache Hadoop, (2) the

MapReduce platform and (3) BDAS Spark.

Figure 1. multiple big data processing Platforms

II. RELATED WORK

So as to give open source solution for the issue of big data, this paper focuses around the solution of data and performance

optimization. In the first, it plans to understand MapReduce/HDFS as indicated to the background problems, at that point, this

research will build following tools(1) Hive[3],(2) Impala[4], (3) Spark SQL [5], (4) Hue [6] and (5) Memcached [7] because of

interest for highlights of a wide range of big data and analysis. This section introduces about key computing technologies.

A. Introduction to Mapreduce/HDFS

The most straightforward Hadoop structure [8] can be separated into the upper MapReduce [9]and the lower HDFS[10], as is

appeared in Fig. 2. The server can be separated into Master node and Worker node dependent on the utilization, the Master node

is responsible to give task to appropriate worker node and worker node is responsible to perform given task.The server in Master

hub performs two arrangements of programs, one is JobTracker in charge of giving task of MapReduce calculation layer and the

other is NameNode program which is in charge of the administration of HDFS data layer. The server in Worker node has likewise

two arrangements of projects, one is TaskTracker program which acknowledges the direction of JobTracker and plays out the

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904M44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 286

undertakings of calculation layer and the other is DataNode program which is relating to NameNode and which is in charge of

performing data reading and writing and performing duplicate technique of NameNode.

Figure 2. hadoop structure diagram

B. Distributed Data Storage platform-Hive

Hive is a tool of the Apache Hadoop. At the point when the construction of Hive framework is completed, it will begin a

HiveServer to get and process the customer's Hive-QL commands. The user can associate Hive at the Hadoop stage through a

direction line interface (CLI) or Java database availability (JDBC) driver and afterward it send Hive-QL directions to Hive. After

Hive gets a Hive-QL direction, the Hive-QL order will be incorporated to a Java program, and Hadoop MapReduce executes the

activity asked for from a query. When a Hive-QL query conjures the table creation, the framework will assemble another Hive's

own table (an exchange table) for Hive at the Hadoop stage and makes its metadata in the meantime. Metadata will be put away in

the relational database MySQL called Metastore, and from that point Hive-QL inquiry can get the data in Metastore to search for

where information are found and what number of information to retrive. Notice that Hive's metastore data is normally utilized for

Impala and SparkSQL with the goal that Impala/SparkSQL sharing a similar Hive's metastore data is separately ready to play out

the quick information retrival from HDFS where the plain huge amount of information has been put away in HDFS.

C. SQL Query Engine- Impala

Impala, developed by Cloudera is used to speed up for this kind of SQL-Like query statement it uses its own process called

MPP (massively parallel processing) query engine. Impala uses LLVM (low level virtual machine, written in C++) [22] to

compile these statements. Using an LLVM can significantly reduce the compiling cost. Impala is capable of handling Hive-like

SQL commands, and fortunately is able to access Hive’s metastore information as well. The main functioning of Spark is the

similar as Hadoop MapReduce, but it uses in-memory cluster computing. The storage system is also compatible with HDFS.

D. SparkSQL

SparkSQL is a Hive-like system which is like based on Spark MapReduce. It is fully compatible with Hive as well as being

capable of accessing Hive’s metastore data like metadata stored in the MySQL database.

E. Hue

Hue is a web-based GUI for Hadoop and Impala. Hue in Hadoop or Impala is just like phpMyAdmin in MySQL. This study

employed Hue as a user-machine interface because users can easily perform operations and observations in addressing the

problem of the Hadoop ecosystem’s difficulty of operation.

F. Memcached

Memcached [11] is a key-value distributed memory caching system. The key length is limited to 250 characters and a single

datum cannot exceed 1MB. Currently, it is frequently used in websites and database search cache. In Figure 6, the technique has

provided Spymemcached metastore information to locate the data in the memory cache or in the disk cache so that

Spymemcached is able to upgrade data between the memory cache and the disk cache asynchronously. This paper intends to

implement rapid data retrieval the in-memory cache and the in-disk cache if there is no necessary to start Hive, Impala, or

SparkQSL for dealing with an SQL query.

III. RELATED METHOD

The combination of three big data processing tools—Hive, Impala, and SparkSQL—can be boosted through the following two

ways: (1) the rapid data retrieval from in-memory caching or in-disk caching using Memcached if data have been cached earlier;

otherwise (2) platform selection for choosing the appropriate tool to speed up the query/response operation at HDFS. It should

provide a metric to indicate the system efficiency and thus a performance index has been found in this paper to show the

performance evaluation among different approaches.

A. Multi-System Compatibility Solution

Hive requires very few memory resources, but it will write temporary files to HDFS frequently, resulting in long computation

times and poor performance. In contrast, parkSQL needs more memory because most of the operations are done in memory and

uses less write files to hard disk. SparkSQL, however, may risk a routine crash as the memory is not sufficient. On the other hand

Impala supports most standard SQL statements superior for more advanced

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904M44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 287

B. Platform Selection

The integration of big data tools aims to accomplish the best performance and efficiency of data retrieval. In order to fulfil this

goal, the so-called platform selection executes the appropriate tool to finish a job as soon as possible. In this manner, the

approaching query direction will be dispatched to the suitable tool to accelerate data retrieval. Hive is a tool which is supported

for SQL command that is executed by MapReduce at Hadoop device. It must write to disk too often, bringing about low execution

of the query task. To address this issue, Impala utilizes C++ language to re-compose its high-performance Message Passing

Interface (MPI) search engine, significantly reducing hard disk writing and fundamentally enhancing execution. Spark utilizes in-

memory MapReduce technology, guaranteeing that SparkSQL has a quick processing speed. In spite of the fact that these three

tools are practically comparative, their condition prerequisites and performances differ. Whenever the remaining memory limit is

2 GB or less on every server, Impala and SparkSQL had a great deal of page swapping, causing to a great degree low execution or

crash. At the point when the information scale was bigger, it caused the JVM I/O exception and made the program crash. When

the rest of the memory limit was adequate, SparkSQL was quicker than Hive and Impala. Impala's utilization of memory

resources was between those of SparkSQL and Hive. This measure of remaining memory was adequate for Impala's maximum

performance. In the experiment as found in Section 2.4, every server was dispensed 20 GB of memory allocated to each

computing node and set the rest of the amount of memory to 3 GB as critical point 1 (signified as L1) and 15 GB as critical point

2 (meant as L2). The program will automatically choose Hive when the rest of the measure of memory was under L1, Impala

between L1 to L2, SparkSQL when bigger than L3 as appeared in fig 3.

Figure 3. platform selection and caching mechanism

C. Caching Mechanism

A caching mechanism was more essential in some of the environment that has many duplicate SQL commands. Each search

query will require time and resources. These can be diminished while the cache hits. In this manner, this study planned a rapid in-

memory cache and a substantial limit in-disk cache and the flowchart is appeared in Figure 12. This examination utilized

Memcached to build up the proposed in-memory cache to yield profoundly effective data retrieval however it experienced the

capacity limitations. Conversely, the thought was to utilize a HDFS distributed file system for the in-disk cache since it saved the

search result as a content document and transferred it to the specified folder in HDFS. According to the least recently used (LRU)

cache replacement policy, outdated dara in the memory cache was erased to maintain the limit size of memory for a cache. The

advantage was that you can diminish the amount of memory utilized, keep just certain "hot stuff" stored in a cache, put different

less-prevalent, rarely accessed information in the database, and did not compose a duplicate to store until the point when the

following same demand to the database happened. Some new data could be included the database, however but data did not

instantly become stored in a cache. The component of the in-memory cache together with the in-disk cache was made out of six

algorithms to manage (1) deleting outdated information in the memory cache,(2) deleting outdated document in the disk cache

(3)compute and add up-to-date data to memory cache(4)compute and add up to date data to disk cache(5) visit current information

(hit or miss) in the memory cache (6) visit current information (hit or miss) in the disk cache.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904M44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 288

Figure 4. flowchart of caching mechanism

Since each block of in-memory cache has timeliness, Memcached checking the data will automatically replace the cache by a

LRU cache replacement approach when the framework is full or the cache has been put away for more than one month. With the

usage of the LRU strategy for the in-disk cache, the history list has executed this approach in this program. This list records the

location and the last access time to this cache. At the point when a cache hits, the program refreshes the list once. Checking this

this, the program can discover some stored information that had not been gotten to for quite a while furthermore, will erase that

quickly. The client, through the interface of this program, can enter the purge x command to erase cached data which had not been

accessed in specific x days.

The search query results are at the same time put away in-memory and in-disk, however the in-memory reserve has the most high

priority access need. At the point when the in-memory cache hits, the outcome won't be recovered by the in-disk cache and big

data tools which have been used in this study. At the point when the in-memory cache misses, the outcome will be recovered

through the in-disk cache and will be consequently composed again into the in-memory cache. Whenever both in-memory and in-

disk cache have missed, the outcome will be recovered by big data tools and written to the in-memory and in-disk caches.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Different versions of experimental environment are shown in Table I. Three test environment are used each environment is

allocated different memory size as shown in Table II. Each platform is analyzed by executing different sizes of test data. The

size of test information is recorded in TABLE III. Different Test SQL query are recorded in TABLE IV. The test method used

are shown in TABLE V. In test environment I the of execution time among different methods are appeared in Figs. 5, 6 and 7.

The trial results demonstrate that Hive can still work even if there is lack of memory however Impala and Spark SQL have

crashed in response to certain sizes of information estimate. The representations of execution time between strategies are

appeared in Figs. 8,9 and 10 in test condition II. The exploratory outcomes demonstrate that Impala's execution is increasingly

conspicuous with medium sums of memory. In test condition III, the representations of execution time between techniques are

appeared in Figs. 11, 12 and 16. The test results demonstrate that Spark SQL's execution is great with increasingly satisfactory

measures of memory.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904M44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 289

Figure 5. Execution time of SQL query 1 at test environment 1

Figure 6. Execution time of SQL query 2 at test environment 1

Figure 7. Execution time of SQL query 3 at test environment 1

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904M44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 290

Figure 8. Execution time of SQL query 1 at test environment 2

Figure 9. Execution time of SQL query 2 at test environment 2

Figure 10. Execution time of SQL query 3 at test environment 2

Figure 11. Execution time of SQL query 1 at test environment 3

Figure 12. Execution time of SQL query 2 at test environment 3

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904M44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 291

Figure 13. Execution time of SQL query 3 at test environment

V. CONCLUSION

This paper has accomplished by automatically detecting the status of a cluster through checking the remaining memory size at

computing nodes and then choosing the the appropriate and suitable tool to manage or execute the SQL command for a quick

query response. Additionally to more enhance the system as well as to improve the performance it incorporated cache system like

in-memory cache and in-disk cache for fast retrieval of query and to decrease the response time Additionally this type of fast

query response gives contribution to implement applications for example, OLAP, data mining, and real time statistics, by utilizing

complex SQL commands for real world use cases. In future work, we will be reformulating this study by targeting updation

queries intsead of just seach queries used in this study and more ever to enhance the system will note down the frequency and

give rank to the queries which will help us to predict which query will be placed in in-memory cache. Additionally we will

reformulate with newer versions of the components i.e Hive, Impala, and SparkSQL.

REFERENCES

[1] C. D. Wickens, “Processing Resources in Attention Dual Task Performance and Workload Assessment,” Office of Naval

Research Engineering Psychology Program, No. N-000-14-79- C-0658, July, 1981.

[2] H.-C. Chen, R. H. L. Chiang, and V. C. Storey, “Business Intelligence and Analytics: From Big Data to Big.

[3]Impact,” MIS Quarterly, Vol. 36, No. 4, pp. 1165-1188, December, 2012. A. Thuso, “Hive - a petabyte scale data warehouse

using Hadoop,” 2010 IEEE 26th International Conference on Data Engineering, pp. 996-1005, March 1-6, 2010.

[4] A. Kamburov,R. Cavill,T. M.D.Ebbels,R. Herwig1, and H. C. Keun, “Integrated pathway-level analysis of transcriptomics

and metabolomics data with IMPaLA,” Bioinformatics, Vol. 27, Iss. 20, pp. 2917-2918, September, 2011.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M.

Zaharia, “Spark SQL: Relational Data Processing in Spark,” SIGMOD '15 Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pp. 1383-1394, May 31- June 04, 2015.

[6] Hue - http://gethue.com/

[7]F. Li, S. Zhan, and L. Li, “Research on using memcached in call center,” 2011 International Conference on Computer Science

and Network Technology (ICCSNT), Vol. 3, pp. 1721-1723, Dec. 24-26, 2011.

[8] M. Adnan, M. Afzal, M. Aslam, R. Jan, and A. M. Martinez- Enriquez, “Minimizing big data problems using cloud computing

based on Hadoop architecture,” 2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies

(Photonics for Energy), pp. 99-103, Dec. 15-17,

2014.

[9] M. Maurya, and S. Mahajan, “Performance analysis of MapReduce programs on Hadoop cluster,” Proceeding of World

Congress on Information and Communication Technologies, pp. 505-510, 2012.

[10] A. K. Karun, and K. Chitharanjan, “A review on hadoop — HDFS infrastructure extensions,” Information &

Communication Technologies (ICT) 2013 IEEE Conference on, pp. 132-137, 2013.

[11] Fitzpatrick, B. Distributed Caching with Memcached. Linux J. 2004, 2004, 5.

[12] Chang, B.R.; Tsai, H.-F.; Chen, C.-Y.; Guo, C.-L. Empirical Analysis of High Efficient Remote Cloud Data Center Backup

Using HBase and Cassandra. Sci. Program. 2015, 294614, 1–10.

[13] Li, P. Centralized and Decentralized Lab Approaches Based on Different Virtualization Models. J. Comput.Sci. Coll. 2010,

26, 263–269.

[14] Almgren, K.; Kim, M.; Lee, J. Extracting Knowledge from the Geometric Shape of Social Network Data Using Topological

Data Analysis. Entropy 2017, 19, 360.

[15] Fan, S.; Lau, R.Y.; Zhao, J.L. Demystifying Big Data Analytics for Business Intelligence through the Lens of Marketing

Mix. Big Data Res. 2015, 2, 28–32.

[16] Borthakur, D. The Hadoop Distributed File System: Architecture and Design. Hadoop Proj. Website 2007, 11, 21.

[17] Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 2008, 51,107–113.

[18] Ghemawat, S.; Gobioff, H.; Leung, S.T. The Google File System. In Proceedings of the ACM SIGOPS Operating Systems

Review (SOSP ’03), Bolton Landing, NY, USA, 19–22 October 2003; Volume 37, pp. 29–43.

[19] DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.; Pilchin, A.; Vogels,W. Dynamo: Amazon’s Highly

Available Key-Value Store. ACM SIGOPS Oper. Syst. Rev. 2007, 41, 205–220.

[20] Casado, R.; Younas, M. Emerging Trends and Technologies in Big Data Processing. Concurr. Comput. Pract. Exp. 2015, 27,

2078–2091.

[21] Abadi, D.; Babu, S.; Özcan, F.; Pandis, I. SQL-on-Hadoop Systems: Tutorial. Proc. VLDB Endow. 2015, 8, 2050–2051.

[22] Bajaber, F.; Elshawi, R.; Batarfi, O.; Altalhi, A.; Barnawi, A.; Sakr, S. Big Data 2.0 Processing Systems: Taxonomy and

Open Challenges. J. Grid Comput. 2016, 14, 379–405.

http://www.jetir.org/
http://gethue.com/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904M44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 292

[23] Zlobin, D.A. In-Memory Data Grid. 2017. Available online:http://er.nau.edu.ua/bitstream/NAU/27936/1/Zlobin%20D.A.pdf

Chang, B.R.; Tsai, H.-F.; Tsai, Y.-C. High-Performed Virtualization Services for In-Cloud Enterprise Resource Planning System.

J. Inf. Hiding Multimed. Signal Process. 2014, 5, 614–624.

[24] Proxmox Virtual Environment. Available online: https://p.ve.proxmox.com/ Chang, B.R.; Tsai, H.-F.; Chen, C.-M.; Huang,

C.-F. Analysis of Virtualized Cloud Server Together with Shared Storage and Estimation of Consolidation Ratio and TCO/ROI.

Eng. Comput. 2014, 31, 1746–1760

[25] Thusoo, A.; Sarma, J.S.; Jain, N.; Shao, Z.; Chakka, P.; Zhang, N.; Antony, H.S.; Liu, R.; Murthy, R. Hive—A Petabyte

Scale Data Warehouse using Hadoop. In Proceedings of the IEEE 26th International Conference on Data Engineering, Long

Beach, CA, USA, 1–6 March 2010; pp. 996–1005.

[26]LLVM3.0ReleaseNotes.Availableonline:http://releases.llvm.org/3.0/docs/ReleaseNotes.html.

[27] Gibilisco, G.P.; Krstic, S. InstaCluster: Building a big data cluster in minutes. arXiv 2015, arXiv:1508.04973.

[28] Fitzpatrick, B. Distributed Caching with Memcached. Linux J. 2004, 2004, 5.

[29] Chang, B.R.; Tsai, H.-F.; Chen, C.-Y.; Guo, C.-L. Empirical Analysis of High Efficient Remote Cloud Data Center Backup

Using HBase and Cassandra. Sci. Program. 2015, 294614, 1–10.

http://www.jetir.org/

