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Abstract :  With the development of cloud computing technologies and mobile internet data is getting generated tremendously 

hence creating big data. There is a great challenge to analyze and extract important data from it and also getting benefit out of it. 

Therefore big data processing is facing incredible challenges. In order to provide solution to this issue, this paper focuses on 

storage of big data and system performance optimization. This paper integrates three big data tools i.e Hive, Impala and 

SparkSQL which supports SQL-like queries in big data environment.  These platforms are used to fast respond to user’s query 

when the optimized system will automatically select the particular platform to best perform a query. In addition to this approach 

this paper provides in-memory cache and in-disk cache for the fast data retrieval for the repeated SQL commands.  The proposed 

approach improves performance and efficiency of the data retrieval significantly. 

 

IndexTerms - Big data tools, in-memory cache, in-disk cache, big data processing, optimized platform selection. 

I. INTRODUCTION 

As indicated by the most recent research results of American journal of CIO, as 70% of activity is finished by batch 

processing in the business process managed by IT, it makes "Unfit to control activity load processing resources[1]" become one 

of the  greatest difficulties for enormous big data application[2]. The objective of this study is to realize a multiple big data 

processing platform with high performance, high availability and high scalability that will be compatible with any existing business 

intelligence and analysis tools. Enterprises do not need to import this platform, but it will eliminate a lot of traditional software. This 

platform will support SQL-like query statements in order to process big data, so existing tools relying on relational databases as a data 

source can be made compatible with a minimum of modification, or even no modifications to the new platform at all, and provide 

companies with relatively easy access to the advantages of the new platform, such as high performance and high availability. The speed 

at which big data is read is significantly increased by amortizing the I/O delay time through a reliable distributed file system. This study 

will build a Multiple Big Data Processing Platform using (1) Apache Hive, (2) Cloudera Impala and (3) BDAS Spark SQL, as shown in 

Fig. 1; these three systems support SQL-like command-based data warehouse and underlying systems (1) Apache Hadoop, (2) the 

MapReduce platform and (3) BDAS Spark. 
 

 
Figure 1.  multiple big data processing Platforms 

 

 

II. RELATED WORK 

So as to give open source solution for the issue of big data, this paper focuses around the solution of data and performance 

optimization. In the first, it plans to understand  MapReduce/HDFS as indicated to the background problems, at that point, this 

research will build following tools(1) Hive[3],(2) Impala[4], (3) Spark SQL [5], (4) Hue [6] and (5) Memcached  [7] because of 

interest for highlights of a wide range of big data and analysis. This section introduces about key computing technologies. 

A. Introduction to Mapreduce/HDFS 

The most straightforward Hadoop structure [8] can be separated into the upper MapReduce [9]and the lower HDFS[10], as is 

appeared in Fig. 2. The server can be separated into Master node and Worker node dependent on the utilization, the Master node 

is responsible to give task to appropriate worker node and worker node is responsible to perform given task.The server in Master 

hub performs two arrangements of programs, one is JobTracker in charge of giving task of MapReduce calculation layer and the 

other is NameNode program which is in charge of the administration of HDFS data layer. The server in Worker node has likewise 

two arrangements of projects, one is TaskTracker program which acknowledges the direction of  JobTracker and plays out the 
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undertakings of calculation layer and the other is DataNode program which is relating to NameNode and which is in charge of 

performing data reading and writing and performing duplicate technique of NameNode. 

 

 
 

Figure 2. hadoop structure diagram 

 

 

B. Distributed Data Storage platform-Hive 

Hive is a tool of the Apache Hadoop. At the point when the construction of Hive framework is completed, it will begin a 

HiveServer to get and process the customer's Hive-QL commands. The user can associate Hive at the Hadoop stage through a 

direction line interface (CLI) or Java database availability (JDBC) driver and afterward it send Hive-QL directions to Hive. After 

Hive gets a Hive-QL direction, the Hive-QL order will be incorporated to a Java program, and Hadoop MapReduce executes the 

activity asked for from a query. When a Hive-QL query conjures the table creation, the framework will assemble another Hive's 

own table (an exchange table) for Hive at the Hadoop stage and makes its metadata in the meantime. Metadata will be put away in 

the relational database MySQL called Metastore, and from that point Hive-QL inquiry can get the data in Metastore to search for 

where information are found and what number of information to retrive. Notice that Hive's metastore data is normally utilized for 

Impala and SparkSQL with the goal that Impala/SparkSQL sharing a similar Hive's metastore data is separately ready to play out 

the quick information retrival from HDFS where the plain huge amount of information has been put away in HDFS. 

 

C. SQL Query Engine- Impala 

Impala, developed by Cloudera is used to speed up for this kind of SQL-Like query statement it uses its own process called 

MPP (massively parallel processing) query engine. Impala uses LLVM (low level virtual machine, written in C++) [22] to 

compile these statements. Using an LLVM can significantly reduce the compiling cost. Impala is capable of handling Hive-like 

SQL commands, and fortunately is able to access Hive’s metastore information as well. The main functioning of Spark is the 

similar as Hadoop MapReduce, but it uses in-memory cluster computing. The storage system is also compatible with HDFS.  

D. SparkSQL 

SparkSQL is a Hive-like system which is like based on Spark MapReduce. It is fully compatible with Hive as well as being 

capable of accessing Hive’s metastore data like metadata stored in the MySQL database. 

E. Hue 

Hue is a web-based GUI for Hadoop and Impala. Hue in Hadoop or Impala is just like phpMyAdmin in MySQL. This study 

employed Hue as a user-machine interface because users can easily perform operations and observations in addressing the 

problem of the Hadoop ecosystem’s difficulty of operation.  

F. Memcached 

Memcached [11] is a key-value distributed memory caching system. The key length is limited to 250 characters and a single 

datum cannot exceed 1MB. Currently, it is frequently used in websites and database search cache. In Figure 6, the technique has 

provided Spymemcached metastore information to locate the data in the memory cache or in the disk cache so that 

Spymemcached is able to upgrade data between the memory cache and the disk cache asynchronously. This paper intends to 

implement rapid data retrieval the in-memory cache and the in-disk cache if there is no necessary to start Hive, Impala, or 

SparkQSL for dealing with an SQL query. 

 

III. RELATED METHOD 

The combination of three big data processing tools—Hive, Impala, and SparkSQL—can be boosted through the following two 

ways: (1) the rapid data retrieval from in-memory caching or in-disk caching using Memcached if data have been cached earlier; 

otherwise (2) platform selection for choosing the appropriate tool to speed up the query/response operation at HDFS. It should 

provide a metric to indicate the system efficiency and thus a performance index has been found in this paper to show the 

performance evaluation among different approaches.  

A. Multi-System Compatibility Solution  

Hive requires very few memory resources, but it will write temporary files to HDFS frequently, resulting in long computation 

times and poor performance. In contrast, parkSQL needs more memory because most of the operations are done in memory and 

uses less write files to hard disk. SparkSQL, however, may risk a routine crash as the memory is not sufficient. On the other hand 

Impala supports most standard SQL statements superior for more advanced  
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B. Platform Selection  

The integration of big data tools aims to accomplish the best performance and efficiency of data retrieval. In order to fulfil this 

goal, the so-called platform selection executes the appropriate tool to finish a job as soon as possible. In this manner, the 

approaching query direction will be dispatched to the suitable tool to accelerate data retrieval. Hive is a tool which is supported 

for SQL command that is executed by MapReduce at Hadoop device. It must write to disk too often, bringing about low execution 

of the query task. To address this issue, Impala utilizes C++ language to re-compose its high-performance Message Passing 

Interface (MPI) search engine, significantly reducing hard disk writing and fundamentally enhancing execution. Spark utilizes in-

memory MapReduce technology, guaranteeing that SparkSQL has a quick processing speed. In spite of the fact that these three 

tools are practically comparative, their condition prerequisites and performances differ. Whenever the remaining memory limit is 

2 GB or less on every server, Impala and SparkSQL had a great deal of page swapping, causing to a great degree low execution or 

crash. At the point when the information scale was bigger, it caused the JVM I/O exception and made the program crash. When 

the rest of the memory limit was adequate, SparkSQL was quicker than Hive and Impala. Impala's utilization of memory 

resources was between those of SparkSQL and Hive. This measure of remaining memory was adequate for Impala's maximum 

performance. In the experiment as found in Section 2.4, every server was dispensed 20 GB of memory allocated to each 

computing node and set the rest of the amount of memory to 3 GB as critical point 1 (signified as L1) and 15 GB as critical point 

2 (meant as L2). The program will automatically choose Hive when the rest of the measure of memory was under L1, Impala 

between L1 to L2, SparkSQL when bigger than L3 as appeared in fig 3. 

 

 
 

Figure 3. platform selection and caching mechanism 

 

 

 

C. Caching Mechanism  

A caching mechanism was more essential in some of the environment that has many duplicate SQL commands. Each search 

query will require time and resources. These can be diminished while the cache hits. In this manner, this study planned a rapid in-

memory cache and a substantial limit in-disk cache and the flowchart is appeared in Figure 12. This examination utilized 

Memcached to build up the proposed in-memory cache to yield profoundly effective data retrieval however it experienced the 

capacity limitations. Conversely, the thought was to utilize a HDFS distributed file system for the in-disk cache since it saved the 

search result as a content document and transferred it to the specified folder in HDFS. According to the least recently used (LRU) 

cache replacement policy, outdated dara in the memory cache was erased to maintain the limit size of memory for a cache. The 

advantage was that you can diminish the amount of memory utilized, keep just certain "hot stuff" stored in a cache, put different 

less-prevalent, rarely accessed information in the database, and did not compose a duplicate to store until the point when the 

following same demand to the database happened. Some new data could be included the database, however but data did not 

instantly become stored in a cache. The component of the in-memory cache together with the in-disk cache was made out of six 

algorithms to manage (1) deleting  outdated information in the memory cache,(2) deleting outdated document in the disk cache 

(3)compute and add up-to-date data to memory cache(4)compute and add up to date data to disk cache(5) visit current information 

(hit or miss) in the memory cache (6) visit current information (hit or miss) in the disk cache.  
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Figure 4. flowchart of caching mechanism 

 

 

Since each block of in-memory cache has timeliness, Memcached checking the data will automatically replace the cache by a 

LRU cache replacement approach when the framework is full or the cache has been put away for more than one month. With the 

usage of the LRU strategy for the in-disk cache, the history list has executed this approach in this program. This list records the 

location and the last access time to this cache. At the point when a cache hits, the program refreshes the list once. Checking this 

this, the program can discover some stored information that had not been gotten to for quite a while furthermore, will erase that 

quickly. The client, through the interface of this program, can enter the purge x command to erase cached data which had not been 

accessed in specific x days.  

The search query results are at the same time put away in-memory and in-disk, however the in-memory reserve has the most high 

priority access need. At the point when the in-memory cache hits, the outcome won't be recovered by the in-disk cache and big 

data tools which have been used in this study. At the point when the in-memory cache misses, the outcome will be recovered 

through the in-disk cache and will be consequently composed again into the in-memory cache. Whenever both in-memory and in-

disk cache have missed, the outcome will be recovered by big data tools and written to the in-memory and in-disk caches. 

 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Different versions of experimental environment are shown in Table I. Three  test environment are used each environment is 

allocated different memory size as shown in Table II.  Each platform is analyzed by executing different sizes of test data. The 

size of test information is recorded in TABLE III. Different  Test SQL query are recorded in TABLE IV. The test method used 

are shown in  TABLE V. In test environment I the of execution time among different methods are appeared in Figs. 5, 6 and 7. 

The trial results demonstrate that Hive can still work even if there is lack of memory however Impala and Spark SQL have 

crashed in response to certain sizes of information estimate. The representations of execution time between strategies are 

appeared in Figs. 8,9 and 10 in test condition II. The exploratory outcomes demonstrate that  Impala's execution is increasingly 

conspicuous with medium sums of memory. In test condition III, the representations of execution time between techniques are 

appeared in Figs. 11, 12 and 16. The test results demonstrate that Spark SQL's execution is great with increasingly satisfactory 

measures of  memory. 
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Figure 5. Execution time of SQL query 1 at test environment 1 

 
Figure 6. Execution time of SQL query 2 at test environment 1 

 

 
Figure 7. Execution time of SQL query 3 at test environment 1 
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Figure 8. Execution time of SQL query 1 at test environment 2 

 

 
Figure 9. Execution time of SQL query 2 at test environment 2 

 
Figure 10. Execution time of SQL query 3 at test environment 2 

 
Figure 11. Execution time of SQL query 1 at test environment 3 

 
Figure 12. Execution time of SQL query 2 at test environment 3 
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Figure 13. Execution time of SQL query 3 at test environment 

 

 

 

V. CONCLUSION 

This paper has accomplished by automatically detecting the status of a cluster through checking the remaining memory size at 

computing nodes and then choosing the the appropriate and suitable tool to manage or execute the SQL command for a quick 

query response. Additionally to more enhance the system as well as to improve the performance it incorporated cache system like 

in-memory cache and in-disk cache for fast retrieval of query and to decrease the response time   Additionally this type of fast 

query response gives contribution to implement applications for example, OLAP, data mining, and real time statistics, by utilizing 

complex SQL commands for real world use cases. In future work, we will be reformulating this study by targeting updation 

queries intsead of just seach queries used in this study and more ever to enhance the system will  note down the frequency and 

give rank to the queries which will help us to predict which query will be placed in in-memory cache. Additionally we will 

reformulate with newer versions of the components i.e Hive, Impala, and SparkSQL. 
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