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Abstract:--Orthogonal Frequency Division Multiplexing (OFDM) is considered to be a promising technique robust to multi-path 

fading and time varying channel behaviors of the wireless channels. However, the Peak-to-Average Power Ratio (PAPR) problem 

is a major drawback of this OFDM multicarrier transmission system which leads to power inefficiency in RF section of the 

transmitter. This paper present different PAPR reduction techniques developed based on selective mapping (SLM) algorithm 

without the side information (SI) being transmitted and conclude an overall comparison of these techniques. The SLM methods 

considered are Blind-SLM (b-SLM), Phase offset SLM (pSLM), extended SLM (eSLM), and low complexity eSLM (LC-eSLM). 

We assumed 2 transmitting antennas and corresponding SFBC coding. The CCDF (Complementary Cumulative Distribution 

Function) performance of PAPR for different schemes with N=512 subcarriers per OFDM symbol is plotted and a comparison of 

the number of complex multiplications and complex additions involved in these SLM methods is done. 

Index terms: PAPR, OFDM, SLM, CCDF, SFBC. 

1. Introduction: 

Multi-Input-Multi-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems have drawn significant 

attention due to its high data rate capacity and reliable performance. However, MIMO-OFDM systems suffer from high peak-to-

average power ratio (PAPR). The high PAPR demands design of the complex wide range linear performance power amplifier 

which drives the antenna. So reduction of PAPR becomes an important factor. There are many PAPR reduction techniques such 

as clipping, selected mapping (SLM), partial transmit sequence (PTS), constellation shaping and tone reservation etc [10].  

Among these methods, the SLM scheme is an attractive and efficient technique, since it can achieve good PAPR reduction 

without signal distortion. However, in the conventional SLM (C-SLM) schemes, extra bits should be reserved for the explicit 

transmission of the phase rotation sequences as side information (SI), resulting in the decrease of the data rate. Moreover, if the SI 

is interfered in a frequency selective fading channel, it leads to the huge degradation of the bit error rate (BER) performance. 

Some of SLM schemes which involves explicit SI transmission are ordinary SLM (oSLM), Simplified SLM (sSLM) [8], and 

directed SLM (dSLM) [9]. The SLM schemes which do not require explicit transmission of SI are bSLM[2], pSLM[4] eSLM[1] 

and LC eSLM[1]. In the section 2 the bSLM, pSLM eSLM and LC eSLM realistion algorithms are presented. Section 3 contains 

simulation results and comparision of these techniques. Finally the performance analysis is concluded in section 4. 

2. The procedure involved in the corresponding SLM techniques 

2.1 bSLM: In bSLM technique a blind estimation of the index is done on simplified SLM. Steps involved in this technique are 

similar to that of sSLM but we don’t transmit SI instead we estimate SI. 

At the transmitter side, assume N subcarriers and Consider the data symbols (QAM/PSK) group them in to sets each containing N 

elements. We call it data symbol set or symbol vector. Apply SFBC [5], multiply each produced data symbol in a symbol set with 

the phase sequence bd =𝑒𝑖𝜃 function (0≤d≤D) and produce D symbol sets corresponding to the single symbol set. Apply N point 

IFFT to each of the D symbols sets. Calculate PAPR to each of the D symbols set. The symbol that has lowest PAPR is 

considered for transmitting. At receiver side, remove CP, apply FFT, Obtain equations for received signals. Estimate the phase 

sequence applied. Undo the phase rotation and determine the sent OFDM data symbols.  

Case Study: No. of antennas considered for transmitting: 2, No. of subcarriers in an OFDM symbol considered: Nc , Antenna 

diversity technique: SFBC. Transmitted vector at pth antenna -Xp = [Xp(0),Xp(1), . . . , Xp(Nc − 1)] Received vector- Y = [Y (0), Y 

(1), . . . , Y (Nc−1)] 

Channel assumptions:  It is assumed that channel coefficients are known to receiver and remain unchanged for two adjacent 

subcarriers i.e (Hp(2ν) = Hp(2ν + 1), p = 1, 2, 0 ≤ ν ≤ Nc/2 − 1).Noise is assumed to be additive zero-mean white Gaussian noise. 

Estimating the phase rotations has three methods 1. General method 2. Low complexity method and 3. Blind method. We 

discussed the blind method. 
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Fig. 1 Block diagram of the SFBC-OFDM transmitter with two transmitter antennas and the SLM method for PAPR reduction. 

The data symbols after SFBC  for 2 transmit antennas is as below. Each row corresponds to an antenna. 

[
𝑋1(2𝑣) 𝑋1(2𝑣 + 1)
𝑋2(2𝑣) 𝑋2(2𝑣 + 1)

] = [
𝑋1(2𝑣) 𝑋1

 (2𝑣 + 1)

𝑋2
∗(2𝑣 + 1) −𝑋2

∗(2𝑣)
] 

 

Where ‘v’ represents the index within the symbol set ν = 0, 1,…, Nc/2 − 1 

‘D’ different representations of the signals x1 and x2 are generated as follows: 

𝐱1
𝑑 = 𝐈𝐅𝐅𝐓𝐍{𝐗𝟏⨂𝐛

𝐝} 

                                                 𝐱1
𝑑 = 𝐈𝐅𝐅𝐓𝐍{𝐗𝟏⨂𝐛

𝐝}              Where   0 ≤ d ≤ D – 1 

The multiplication in {} denotes element wise multiplication.  

Here we considered only 2 values for  are 0 and 2. So the pairs [bd(2ν), bd(2ν + 1)], 0 ≤ ν <Nc/2, 0 ≤ d < D− 1, can take the 

values [+1,−1] [−1, +1], [−1,−1], and [+1, +1] with equal probabilities. The SFBC coded block is given as below 

 𝐂𝑑 = [
𝑏𝑑(2𝑣)𝑋1(2𝑣) 𝑏𝑑(2𝑣 + 1)𝑋1

 (2𝑣 + 1)

𝑏𝑑(2𝑣)𝑋2
∗(2𝑣 + 1) −𝑏𝑑(2𝑣 + 1)𝑋2

∗
(2𝑣)

] 

 

It is noteworthy that matrix Cd is also orthogonal, as SFBC symbols i.e 

 𝐂𝑑( 𝐂𝑑)𝐻 = (|𝑋(2𝑉)|2 + |𝑋(2𝑉 + 1)|2)𝐈2 
 

At the receiver antenna we have 

𝑌(2𝑣) = 𝐻1(2𝑣)𝑏
�̂�(2𝑣)𝑋(2𝑣) + 𝐻2(2𝑣)𝑏

�̂�(2𝑣)𝑋∗(2𝑣 + 1) +  𝑉(2𝑣) 

𝑌(2𝑣 + 1) = 𝐻1(2𝑣)𝑏
�̂�(2𝑣 + 1)𝑋(2𝑣 + 1) + 𝐻2(2𝑣)𝑏

�̂�(2𝑣 + 1)𝑋∗(2𝑣) +  𝑉(2𝑣 + 1) 
 

Blind detection of  �̂�: 

The steps of the proposed algorithm for the blind detection of d̂ and the OFDM frame X can be summarized as 

 Calculate Ż+(2ν) and Ż+(2ν + 1)obtained by putting 𝑓(ν)=+1,  in (a) and, Ż−(2ν) and  Ż−(2ν + 1) obtained by putting 𝑓(ν)= 

-1 in (a), for ν = 0, 1, . . . , Nc/2 − 1. 

 Evaluate 𝑓̇(ν), ν = 0, 1, . . . ,Nc/2 − 1, using (b), and construct the vector 𝐟 ̇.  

 Determine using �̂� using (c) 

 Determine the transmitted symbols {�̂�(𝑘)k=0
k=Nc−1} using (f). 

𝜍(2𝑣) =
𝐻1(2𝑣)𝑌

∗(2𝑣) − 𝐻2
∗(2𝑣)𝑓(𝑣)𝑌(2𝑣 + 1)

|𝐻1(2𝑣)|
2 + |𝐻2(2𝑣)|

2
 

𝜍(2𝑣 + 1) =
𝐻2
∗(2𝑣)𝑌  (2𝑣) − 𝐻2

∗(2𝑣)𝑓(𝑣)𝑌(2𝑣 + 1)

|𝐻1(2𝑣)|
2 + |𝐻2(2𝑣)|

2
 

 

�̇�(2𝑣) = 𝑄(𝜍(2𝑣))    and     �̇�(2𝑣 + 1) = 𝑄(𝜍(2𝑣 + 1))                 (a) 

Where Q(.) is the mapping to the nearest constellation point 
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𝑓̇(𝑣) = sign (|�̇�
−
(2𝑣) − 𝜍−(2𝑣)|2 + |�̇�

−
(2𝑣 + 1) − 𝜍−(2𝑣 + 1)|2 − |�̇�

+
(2𝑣) − 𝜍+(2𝑣)|

2
− |�̇�

+
(2𝑣 + 1) − 𝜍+(2𝑣 + 1)|

2
)    (b) 

 

where ζ(2ν) and ζ(2ν + 1) are defined in (a). After the detection of 𝑓̇(ν) for ν = 0, 1, . . . ,Nc/2 − 1, the vector 𝐟 ̇= [ḟ(0), ḟ(1), . . . , 

ḟ(
𝑁𝑐

2
− 1)]T is constructed. The vectors fd, d = 0, 1, . . . , D − 1 have been calculated from (e) and stored at the receiver as  

fd  
=[fd (0), fd (0),…fd(

𝑁𝑐

2
-1)]T           (d) 

fd(v)=bd(2v)bd(2v+1)                       (e) 

Then this vector is mapped to closest sequence among fd , 0≤d≤D-1 i.e. 

�̂� = arg.  min
0≤𝑑≤𝐷−1

𝑑𝑖𝑠𝑡(𝐟,̇ 𝐟𝐝)                        (c) 

 

Where dist(A,B) denotes the Hamming distance between the vectors A and B.  

 the received symbols are estimated using (f) 

(�̂�(2𝑣), �̂�(2𝑣 + 1)) =

{
  
 

  
 (�̇�

+
(2𝑣), �̇�

+
(2𝑣 + 1))           𝑖𝑓 𝑏�̂�(2𝑣) = +1, 𝑓�̂�(𝑣) = +1

(−�̇�
+
(2𝑣), −�̇�

+
(2𝑣 + 1))           𝑖𝑓 𝑏�̂�(2𝑣) = −1, 𝑓�̂�(𝑣) = +1

(�̇�
−
(2𝑣),−�̇�

−
(2𝑣 + 1))          𝑖𝑓 𝑏�̂�(2𝑣) = +1, 𝑓�̂�(𝑣) = −1

(−�̇�
−
(2𝑣), −�̇�

−
(2𝑣 + 1))          𝑖𝑓 𝑏�̂�(2𝑣) = −1, 𝑓�̂�(𝑣) = −1

 

                  (f) 

2.2  pSLM: 

In pSLM technique the estimation of the index is done using Minimum Eucledian Distance decoder. 

 
Fig. 2. The transmitter Block diagram of the P-SLM scheme. 

At the transmitter side, Assume available subcarriers to be N. Consider the data symbols, group them in to sets each containing N 

elements. We call it as data symbol set. Multiply each data symbol with the phase rotation sequences function Xu(k)=Pu(k)X(k) 

where Pu =𝑒𝑖𝜃 and produce U sets for each data set.  

Leave the data symbol set or vector reserved for 1st antenna as it is, but for 2nd antenna data symbol sets  multiply each set data 

subcarrier symbol by  phase offset function {𝑒
𝑖2𝜋𝑢

𝑈 , 𝑢 = 0,1, … , 𝑈 − 1}. Apply SFBC, then IFFT, select OFDM data symbol with 

minimum PAPR for transmission. At the receiver side the index ‘u’ applied will be detected using MED (Minimum Euclidean 

Distance) method. If we don’t multiply with phase offset function then it becomes conventional SLM (cSLM) [4] 

Case Study: No. of antennas considered for transmitting: 2. No. of subcarriers in an OFDM symbol considered: N. Antenna 

diversity technique: SFBC. Considered data symbols for pth transmitting antenna -Xp = [Xp(0),Xp(1), . . . , Xp(Nc − 1)]. Data 

symbols antenna after multiplying with phase rotation sequences: 𝑿𝑝
𝑢=[𝑋𝑝

𝑢(0), 𝑋𝑝
𝑢(1), 𝑋𝑝

𝑢(2),…. 𝑋𝑝
𝑢(Nc-1)]. 𝑿1

𝑢 is left as it is but  

𝑿2
𝑢 is multiplied with phase offset function {𝑒

𝑖2𝜋𝑢

𝑈 , 𝑢 = 0,1, … , 𝑈 − 1}. 

𝐶 = (
𝑋𝑢(2𝑙) −𝑋𝑢∗(2𝑙 + 1)

𝑒
𝑖2𝜋𝑢
𝑈 𝑋𝑢(2𝑙 + 1) 𝑒

𝑖2𝜋𝑢
𝑈 𝑋𝑢∗(2𝑙)

) 

Space frequency matrix of the data symbols 
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Apply IFFT to each of the U symbol sets. Calculate PAPR to each of the U OFDM symbol sets. The OFDM symbol set that has 

lowest PAPR is considered for transmitting. Let the time domain symbol vector selected for transmitting denoted by 𝒙𝑝
𝑢 it’s 

corresponding frequency domain representation is  �̂�𝑝
𝑢. Let (.)(2l) = (.)e(l) and (.)(2l+1) = (.)o(l).   

After SFBC, let    �̂�1,𝑒
𝑢 = 𝑿𝑒

𝑢, �̂�1,𝑜
𝑢 = −�̂�𝑜

𝑢∗, 𝑿2,𝑒
𝑢 = 𝑒

𝑖2𝜋𝑢

𝑈 𝑿𝑜
𝑢,  �̂�2,𝑜

𝑢 = 𝑒
𝑖2𝜋𝑢

𝑈 𝑿𝑒
𝑢∗                     (p1) 

Channel assumptions: It is assumed that channel coefficients are known to receiver and remain unchanged for two adjacent 

subcarriers. Noise is assumed to be additive zero-mean white Gaussian noise. 

At receiver side: 

Remove CP, apply FFT, obtain equations for received signals. Received vector- Y = [Y (0), Y (1), . . . , Y (N − 1)] 

Y(k)=H1(k)�̂�1
𝑢(𝑘)+ H2(k)�̂�1

𝑢(𝑘)+W(k)   (p2)    

 where W(k) represents the AWGN noise 

Equation of received even data symbols using (p1) and (p2) is given as  

Ye(l)=H1,e(l)�̂�𝑒
𝑢(𝑙)+ 𝑒

𝑖2𝜋�̂�

𝑈 H2,e(k)�̂�𝑜
𝑢(𝑙)+We(l)      

                                                                                                                                                (p4) 

Yo(l)=-H1,o(l)�̂�𝑜
𝑢∗(𝑙)+ 𝑒

𝑖2𝜋�̂�

𝑈 H2,o(k)�̂�𝑒
𝑢∗(𝑙)+Wo(l)       

 

The Minimum Eucledean Distance ditector (MED) will estimate the sent symbols as below 

𝑋𝑒
𝑢
(𝑙) = 𝐻1,𝑒

∗ (l)Ye(l)+ 𝑒
𝑖2𝜋𝑢

𝑈 H2,o(l)𝑌𝑜
∗(𝑙) 

𝑋𝑜
𝑢
(𝑙) = 𝑒−

𝑖2𝜋𝑢

𝑈 𝐻2,𝑒
∗ (l)Ye(l) ─ H1,o(l)𝑌𝑜

∗(𝑙)                             (p5) 

We can assume H1,e(l) H1,o(l)  and H2,e(l) H2,o(l) as the channel coeffiecients are constant for two consecutive data symbols.. 

Estimate the phase offset �̂� applied  using the equation below. We have to try different phase offsets to obtain the appropriate �̂�, 

since �̂� is unknown at the receiver 

�̂� = arg min
0≤u≤U−1

{∑ (|
�̂�𝑒
𝑢(𝑙)

|𝐻1,𝑒(𝑙)|
2
+|𝐻2,𝑒(𝑙)|

2 − 𝑋𝑒
𝑢(𝑙)|

2

+ |
�̂�𝑜
𝑢(𝑙)

|𝐻1,𝑒(𝑙)|
2
+|𝐻2,𝑒(𝑙)|

2 − 𝑋𝑜
𝑢(𝑙)|

2

)
𝑁

2
−1

𝑙=0 }              (p6) 

 

After obtaining the index of the phase offset, we could easily obtain the phase rotation sequence 𝑃𝑢. Therefore, the P-SLM 

scheme does not need to transmit the SI. Undo the phase rotation and determine the sent OFDM data symbols. For detail 

derivation refer the paper [4] 

2.3 eSLM: 

 
 

Fig.3 Block diagram of the SFBC MIMO-OFDM system employing the eSLM scheme. 

 

Steps involved in producing eSLM: 

At the transmitter side:  Assume available subcarriers to be N. Consider the data symbols group them in to sets each containing N 

elements. We call it data symbol set.Apply Alamouti SFBC [5]. 

[
𝑋1(2𝑖) 𝑋1(2𝑖 + 1)
𝑋2(2𝑖) 𝑋2(2𝑖 + 1)

] = [
𝑋1(2𝑖) 𝑋1

∗(2𝑖 + 1)

𝑋2(2𝑖) 𝑋2
∗(2𝑖 + 1)

] 

for 0 ≤ i ≤ N/2 − 1, where Xp(n) is the Alamouti encoded symbol modulated by n-th subcarrier in the p-th transmitting antenna. 
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Define ‘v’ extension matrices E(v) which contains amplitude extension and phase rotation units. It consists of N/2 basic extension 

units, 𝑈𝑖
(𝑣)

 for 0 ≤ i ≤ N/2 – 1 shown below   

E(v)=[𝑈0
(𝑣)

, 𝑈1
(𝑣)

, 𝑈2
(𝑣)

,…, 𝑈𝑁
2
−1

(𝑣)
], 0≤v≤V-1                                              (a) 

𝑈𝑖
(𝑣)
= [

𝑈𝑖,1
(𝑣)
𝑒𝑗𝜃𝑖,1

(𝑣)

𝑈𝑖,2
(𝑣)
𝑒𝑗𝜃𝑖,2

(𝑣)

𝑈𝑖,3
(𝑣)
𝑒𝑗𝜃𝑖,3

(𝑣)

𝑈𝑖,4
(𝑣)
𝑒𝑗𝜃𝑖,4

(𝑣)],          0≤i≤N/2-1                                           (b) 

Multiply each produced SFBC data block with the rows of extension matrices Ev function and produce ‘v’ sets of symbols to the 

single symbol set. In case studies for V=3 the blocks is represented in (h) (i) (j) 

 

𝐷𝑖
(𝑣)
= [

𝑈𝑖,1
(𝑣)
𝑒𝑗𝜃𝑖,1

(𝑣)

𝑋(2𝑖) 𝑈𝑖,2
(𝑣)𝑒𝑗𝜃𝑖,2

(𝑣)

𝑋∗(2𝑖 + 1)

𝑈𝑖,3
(𝑣)𝑒𝑗𝜃𝑖,3

(𝑣)

𝑋(2𝑖 + 1) −𝑈𝑖,4
(𝑣)
𝑒𝑗𝜃𝑖,4

(𝑣)

𝑋∗(2𝑖)
]                           (e) 

Two rows in the above are othogonal i.e (c) and (d) proves orthogognality in (e) 

𝑈𝑖,1
(𝑣)
𝑈𝑖,3
(𝑣)
= 𝑈𝑖,2

(𝑣)
𝑈𝑖,4
(𝑣)

                                                                               (c) 

〈𝜃𝑖,1
(𝑣)
− 𝜃𝑖,3

(𝑣)〉2𝜋 = 〈𝜃𝑖,2
(𝑣)
− 𝜃𝑖,4

(𝑣)〉2𝜋                                                          (d) 

Where 〈. 〉2 denotes modulo 2 operation. In the extension matrix for orthogonality we maintain that  

𝑈𝑖,1
(𝑣)
= 𝑈𝑖,4

(𝑣)
, 𝜃𝑖,1

(𝑣)
= −𝜃𝑖,4

(𝑣)
                                                                       (f) 

𝑈𝑖,3
(𝑣)
= 𝑈𝑖,2

(𝑣)
, 𝜃𝑖,3

(𝑣)
= −𝜃𝑖,2

(𝑣)
    ,0≤i≤N/2-1                                                (g) 

Apply IFFT to each of the V symbol sets and obtain V OFDM symbols for single symbol set. Calculate PAPR to the V OFDM  

symbol sets. The symbol set that has lowest PAPR is considered for transmitting. At receiver side, remove CP, apply FFT, obtain 

equations for received signals, detect the index, undo the amplitude extension and phase rotations and determine the sent OFDM 

data symbols. About extension matrices, the amplitude extension units are for detection of index and phase rotation units are to 

reduce the PAPR. The amplitude units are repeated periodically to improve the detection process. More specifically, the N/2 

extended sub-blocks are partitioned into G groups, where each group comprises M contiguous extended sub-blocks. In this work, 

it is assumed that N/2 = MG. Given any candidate signal X(v), pairs of amplitude factors are repeated with period M, i.e., (U(v)
 i,1 

,U(v) 
i,2 ) = (U(v) i+M,1,U(v) 

i+M,2). Information about extension matrices is known to transceiver beforehand. 

X1X2 B0 B1 B2 B3 B4 B5 B6 B7 

 

                                              Multiply with extension matrix 

 

v=0 𝑈0,1
(0)

 𝑈1,0
(0)

 𝑈2,0
(0)

 𝑈3,0
(0)

 𝑈4,1
(0)

 𝑈5,0
(0)

 𝑈6,0
(0)

 𝑈7,0
(0)

 

v=1 𝑈0,2
(1)

 𝑈1,0
(1)

 𝑈2,0
(1)

 𝑈3,0
(1)

 𝑈4,2
(1)

 𝑈5,0
(1)

 𝑈6,0
(1)

 𝑈7,0
(1)

 

v=2 𝑈0,0
(2)

 𝑈1,1
(2)

 𝑈2,0
(2)

 𝑈3,0
(2)

 𝑈4,0
(2)

 𝑈5,1
(2)

 𝑈6,0
(2)

 𝑈7,0
(2)

 

v=3 𝑈0,0
(3)

 𝑈1,2
(3)

 𝑈2,0
(3)

 𝑈3,0
(3)

 𝑈4,0
(3)

 𝑈5,2
(3)

 𝑈6,0
(3)

 𝑈7,0
(3)

 

v=4 𝑈0,0
(4)

 𝑈1,0
(4)

 𝑈2,1
(4)

 𝑈3,0
(4)

 𝑈4,0
(4)

 𝑈5,0
(4)

 𝑈6,1
(4)

 𝑈7,0
(4)

 

v=5 𝑈0,0
(5)

 𝑈1,0
(5)

 𝑈2,1
(5)

 𝑈3,0
(5)

 𝑈4,0
(5)

 𝑈5,0
(5)

 𝑈6,2
(5)

 𝑈7,0
(5)

 

v=6 𝑈0,0
(6)

 𝑈1,0
(6)

 𝑈2,0
(6)

 𝑈3,1
(6)

 𝑈4,0
(6)

 𝑈5,0
(6)

 𝑈6,0
(6)

 𝑈7,1
(6)

 

v=7 𝑈0,0
(7)

 𝑈1,0
(7)

 𝑈2,0
(7)

 𝑈3,2
(7)

 𝑈4,0
(7)

 𝑈5,0
(7)

 𝑈6,0
(7)

 𝑈7,2
(7)

 

 

 Group 0 (g=0) Group 1 (g=1) 

Fig. 4. Illustrative example showing design of extended sub-blocks for (N, K, M) = (16, 1, 4). 

Case Study: No. of antennas considered for transmitting: 2. No. of subcarriers in an OFDM symbol considered: N. Antenna 

diversity technique: SFBC for 2 antennas [5], Transmitted vector at Pth antenna -Xp = [Xp(0),Xp(1), . . . , Xp(Nc − 1)]. Received 

vector- the received vector Y = [Y (0), Y (1), . . . , Y (N − 1)]. It is assumed that channel coefficients are known to receiver and 

remain unchanged for two adjacent subcarriers. Noise is assumed to be additive zero-mean white Gaussian noise.  

 

𝐷𝑖,0
(𝑣)
= [

𝑒𝑗𝜃𝑖,1
(𝑣)

𝑋(2𝑖) 𝑒𝑗𝜃𝑖,2
(𝑣)

𝑋∗(2𝑖 + 1)

𝑒−𝑗𝜃𝑖,2
(𝑣)

𝑋(2𝑖 + 1) −𝑒−𝑗𝜃𝑖,1
(𝑣)

𝑋∗(2𝑖)
]                                     (h) 
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𝐷𝑖,1
(𝑣)
= [

𝑒𝑗𝜃𝑖,1
(𝑣)

𝑋(2𝑖) 𝑈𝑒𝑗𝜃𝑖,2
(𝑣)

𝑋∗(2𝑖 + 1)

𝑈𝑒−𝑗𝜃𝑖,2
(𝑣)

𝑋(2𝑖 + 1) −𝑒−𝑗𝜃𝑖,1
(𝑣)

𝑋∗(2𝑖)
]                                 (i) 

 

𝐷𝑖,2
(𝑣)
= [

𝑈𝑒𝑗𝜃𝑖,1
(𝑣)

𝑋(2𝑖) 𝑒𝑗𝜃𝑖,2
(𝑣)

𝑋∗(2𝑖 + 1)

𝑒−𝑗𝜃𝑖,2
(𝑣)

𝑋(2𝑖 + 1) −𝑈𝑒−𝑗𝜃𝑖,1
(𝑣)

𝑋∗(2𝑖)
]                                      (j) 

The symbol energy Es of the transmitter should be normalized to �̂�𝑠to  fulfill the average power constraint as given by 

�̂�𝑠 =
2𝑀

(𝑈2+1)𝐾+2(𝑀−𝐾)
.Es 

The received symbols is given as below [7] 

𝑌𝑖 ≜ [
𝑌(2𝑖)

𝑌(2𝑖 + 1)
] = [

(𝑈𝑖,1
(𝑣))

2
‖𝐻𝑖‖

2𝑋(2𝑖)

(𝑈𝑖,1
(𝑣))

2
‖𝐻𝑖‖

2𝑋(2𝑖 + 1)
] + [

𝑊(2𝑖)
𝑊(2𝑖 + 1)

]                 (k) 

 

Where W(i) denotes additive white Gaussian noise at the receiver. 

By approximating the amplitude of the data symbols as the square root of the symbol energy, the energy disparity detection of the 

index is given as below   

�̂� = arg min
𝑣=0,1,...,𝑉−1

{∑ ∑ |
|𝑌(2𝑖+𝑘)|

‖𝐻𝑖‖
2√𝐸�̂�

− (𝑈𝑖,𝑘+1
(𝑣)

)
2
|1

𝑘=0

2𝑁

2
−1

𝑖=0
}                    (l) 

As phase rotations and V extension matrices are one-to-one correspondence, after detecting the index, the phase rotations can be 

compensated. 

2.4 LC eSLM [4]: 

 
fig. 5 Architecture of candidate signal generating block (CSGB) in the LC-eSLM scheme. 

The LC-eSLM is the reduced version of eSLM in this method, after applying data modulation and SFBC encoding, we divide the 

N element data symbol in to 2M disjoint sub-vectors groups each containing N elements with N/2M nonzero elements. The 

entries of these nonzero elements is done by following the below equation. 

Let the data symbol set for pth antenna be Xp={xp0, xp1, xp2, xp3,… xpn-1} where n is index in Xp. 

Let the mth disjoint set be denoted by Xp,m. Now the entries in to this mth set will be as below. 

[𝑋𝑝,𝑚,𝑖] =

{
 
 

 
 [𝑋𝑝,𝑛=𝑖],        𝑓𝑜𝑟  𝑔. 2𝑀 +𝑚 = 𝑖.

                    ⩝ 𝑔 = 0,1, . . ,
𝑁

2𝑀
− 1

.
0,                           𝑒𝑙𝑠𝑒

                     

Now do SFBC coding on 2M data symbols. The SFBC encoded symbol vector can be represented as below 

𝑿𝑝
 = ∑ 𝑋𝑖,𝑚

2𝑀−1

𝑚=0

 

 

 Apply N point IDFT on the 2M sub-vector elements. Now pass the time domain signals corresponding to each transmit antenna 

through candidate signal generating block. (CSGB) The vth candidate signal of the pth antenna, x(v)
p , is obtained as  

𝑿𝑝
(𝑣)
= ∑ 𝐴𝑝,𝑚

(𝑣)
𝑒𝑖𝜙𝑝,𝑚

(𝑣)

𝑋𝑝,𝑚

2𝑀−1

𝑚=0

 

 Where ‘i’ is the index in mth 

subgroup and the condition is 

evaluated in each sub-vector. 
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Where A(v)
p,m and ϕ(v)

p,m are respectively the mth amplitude extension and phase rotation corresponding to the vth candidate signal at 

the pth antenna. The candidate signals produced in the LC-eSLM scheme are identical to those produced by the eSLM scheme 

given the settings. 

𝐴𝑝,2𝑖+𝑗
(𝑣) = 𝑈𝑖,2𝑝+𝑗−1

(𝑣) = 𝑈𝑖+𝑀,2𝑝+𝑗−1
(𝑣) = ⋯𝑈𝑖+1(𝐺−1)𝑀,2𝑝+𝑗−1

(𝑣)    𝑤ℎ𝑒𝑟𝑒 𝑝 = 1,2; 𝑗 = 0,1. 

𝜙𝑝,2𝑖+𝑗
(𝑣) = 𝜃𝑖,2𝑝+𝑗−1

(𝑣) = 𝜃𝑖+𝑀,2𝑝+𝑗−1
(𝑣) = ⋯ = 𝜃𝑖+(𝐺−1)𝑀,2𝑝+𝑗−1

(𝑣)
  𝑤ℎ𝑒𝑟𝑒 𝑝 = 1,2; 𝑗 = 0,1. 

The relation between the eSLM and lc-eSLM becomes clear with the following matrix comparing with (b) 

𝑈𝑖
(𝑣)
= [

𝐴1,2〈𝑖〉𝑀
(𝑣)

𝑒
𝑖𝜙𝑝,2〈𝑖〉𝑀
(𝑣)

𝐴1,2〈𝑖〉𝑀+1
(𝑣)

𝑒
𝑖𝜙𝑝,2〈𝑖〉𝑀+1
(𝑣)

𝐴2,2〈𝑖〉𝑀
(𝑣)

𝑒
𝑖𝜙𝑝,2〈𝑖〉𝑀

(𝑣)

𝐴2,2〈𝑖〉𝑀+1
(𝑣)

𝑒
𝑖𝜙2,2〈𝑖〉𝑀+1

(𝑣) ] 

In the LC-eSLM scheme, we maintain the amplitude extensions and phase rotations  same as that for the eSLM scheme, i.e., 

𝐴𝑝,2𝑖
(𝑣) = 𝐴𝑝,2𝑖+1

(𝑣)
, 𝜙1,2𝑖

(𝑣) = −𝜙2,2𝑖+𝑗
(𝑣)

 

𝐴2,2𝑖
(𝑣) = 𝐴𝑝,2𝑖+𝑗

(𝑣) , 𝜙2,2𝑖
(𝑣) = −𝜙1,2𝑖+1

(𝑣)
 

As the LCeSLM is special case of eSLM the same detection which is followed for eSLM can be considered forLCeSLM also 

3. Simulation results and conclusions: 

The PAPR value of the transmitted candidate signal of each antenna x(v)
 p is given as 

𝑃𝐴𝑃𝑅(𝑿𝑝
(𝑣)) =

max
0≤𝑘≤𝐿𝑁−1

|𝑿𝑝
(𝑣)
(𝑘)|

2

𝐸[|𝑿𝑝
(𝑣)
(𝑘)|

2
]

 ,   p=1,2 

 

The oversampling factor is L = 4 to approximate the true PAPR. The PAPR reduction performance is assessed by evaluating the 

complementary cumulative distribution function (CCDF) of the PAPR values, which is defined mathematically as 

CCDFPAPR(x)(γ ) = Prob[PAPR(x) > γ] 

Table 1. Comparison of  various  PAPR reduction schemes for SFBC MIMO-OFDM systems [1] 

SLM scheme Number of complex 

multiplications 

Number of complex 

additions 

Number of 

complex 

SI bits 

Orthogonolity 

 of SFBC 

oSLM VLNlog2(𝐿𝑁) 2VLNlog2(𝐿𝑁) log2(𝑉) No 

sSLM VLNlog2(𝐿𝑁) 2VLNlog2(𝐿𝑁) log2(𝑉) No 

bSLM VLNlog2(𝐿𝑁) 2VLNlog2(𝐿𝑁) 0 Yes 

pSLM VN+VLNlog2(𝐿𝑁) 2VLNlog2(𝐿𝑁) 0 Yes 

eSLM (VKN/M)+VLNlog2(𝐿𝑁) 2VLNlog2(𝐿𝑁) 0 Yes 

LC-eSLM LNlog2(
𝐿𝑁

2𝑀
)+2LN(2M+KY) 2LNlog2(

𝐿𝑁

2𝑀
)+(4M-2)VLN 0 Yes 

The above Table compares the six schemes considered in the Fig. 5 in terms of the required number of complex multiplications 

and additions, the number of SI bits, and the ability of the schemes to preserve the orthogonality of the SFBC coding structure. 

The bSLM and pSLM schemes and eSLM and LC-eSLM schemes preserve the orthogonality of the SFBC code, and therefore 

facilitate decoding at the receiver side using simple low-complexity linear operations. 
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Fig.5 CCDF performance of PAPR for different schemes with N = 512. 

The above Figure 5 compares the CCDFs of the eSLM and LC-eSLM schemes with pSLM and sSLM, given the use of V = 8 

candidate signals. For all schemes, the simulations are done for a MIMO-OFDM system with N = 512 subcarriers and 16-QAM 

modulation. The CCDF for a system with no PAPR reduction is also presented. In simulating the performance of the eSLM and 

LC-eSLM schemes, the phase rotations are chosen from the finite set {0, π/2, π, 3π/2}, and the (M,K) parameters are set as (4, 1). 

It is seen that the sSLM and pSLM schemes coincide i.e provide an equal PAPR reduction performance since they all apply equal 

phase rotations to the candidate signals at both antennas. The eSLM scheme achieves a better PAPR reduction performance than 

the sSLM, pSLM, and LC-eSLM (even bSLM[1]) schemes as a result of its greater degree of freedom in generating the candidate 

signals. However, the LC-eSLM scheme has a slightly poorer performance than the eSLM, sSLM and pSLM (also bSLM[1]) 

schemes due to its use of repetitive phase rotation sequences for each group.  
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