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Abstract 

In Time Series analysis, the order of various Time series models plays an important role in studying 

model selection criterion. Hannan and Quinn(1979) have been studied the order determination of an 

autoregressive moving average through classical approach. In this paper, an attempt is made to study the 

order determination of autoregressive moving average time series model by employing  Bayesian 

methodology.  
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1. Introduction 

The most popular approach to identify the orders of ARMA (p,q)  models is developed by Box and 

Jenkins (1970).  There are situations where the time series may be represented as a mix of both AR and MA 

models referred as ARMA (p,q)  The Bayesian identification of time series is being developed and the 

Bayesian  literature devoted  to the analysis of ARMA models is sparse. Diaz and Farah (1981) developed a 

direct Bayesian method to identify the autoregressive moving average models.  

  Bayesian inference holds a distinct advantage over so-called classical statistics in non-

standard problems where concepts such as sufficiency or completeness do not apply. That advantage is that 

the program is unchanged: the prior together with the likelihood produce the posterior. A disadvantage is 

that conjugate families are not available and so the Bayes Theorem must be used numerically, for which 

approximation and numerical integration techniques are required. 

 Autoregressive moving average (ARMA) Time series models are quite nonstandard, even if the 

usual assumption of normality is retained. The number of parameters, reflected in the order of the model 

(p,q),  is undetermined. Given (p,q), the parameter space must then be constrained for identifiability reasons. 
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Classical analysis of ARMA modelsmust rely on asymptotic behavior: consistency, asymptotic normality, 

and efficiency. 

 Bayesian statistics are little affected by sample size. Moreover, the asymptotic in a Bayesian analysis 

are substantially the same as the classical. But in small sample problems, the choices of prior distribution 

and loss function do influence the consequential decision. In cases such as these, the effort in expressing 

these two are well rewarded. 

Bayesian analyses of non-standard problems are commonly believed to suffer from the profound 

defect of computational intractability. This chapter finds that belief directly, proving that a Bayesian 

analysis of ARMA models can be done. The proof is a computational method that has been successfully 

implemented and that can be extended in its sophistication. Thus most of the effort lies in solving the 

challenging computational problems that arise. 

 In section 4, the parameter structure is laid out and the form of the prior distribution is designed. 

Secondly, the dual tasks of computing and expressing numerically the posterior distribution are discussed in 

section 5. The inference novel to this Bayesian analysis is a method of selecting the order of the model (p,q). 

This methodology is demonstrated using as examples two well known series in section 6. Classical methods 

of estimation and model selection are discussed in section 3. Explanation of the probability structure of the 

ARMA model follows in section 2. 

2. Autoregressive Moving average model  

The autoregressive moving average (ARMA)process{𝑥𝑡} of order (p,q) is defined by the stochastic 

difference equation 

(Xt − μ) − α1(Xt−1 − μ) − ⋯ − αp(Xt−p − μ) =  et − β1et−1 − ⋯ − βqet−q. . .(1) 

where et,𝑡 = ⋯ , −3, −2, −1,0,1,2,3, … are i.i.d. Normal (0, 𝜎𝑒
2) random variables. A finite segment 𝑥 =

(𝑥1, 𝑥2, … 𝑥𝑛)𝑇 is observed, which has a multivariate normal distribution with mean vector μ1N, and 

covariance matrix σe
2  AN (here 1K, is k by 1 with all entries equal to one), denoted by 

X~N(μ1N, σe
2AN)                             . . . (2) 
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The matrix AN, is defined by 

(AN)ij = cov(xi, xj) = ρ(i − j) = ρ(|i − j|)... (3) 

where the covariance function ρ depends upon 𝛼1,𝛼2, … 𝛼𝑝, 1 , 2 ... q  and characterizes the time series 

process {xt}. The n periods of the process to be forecast, XF =  1, 2,......
T

N N N nX X X   , when conditioned 

upon the observed x, then has an n-dimensional multivariate normal distribution with mean vector 

μ1n + A21AN
−1(X − μ1N) ≡ μa + b...(4) 

and covariance matrix σe
2AnN

∗ where 

AN+n
∗ = [

ANA12

A21An
]

n

N

, 

and 

AnN
∗ = An − A21AN

−1A12 

Two conditions must be enforced on the autoregressive moving average parameters,

 1 2 1 2, ,.... ,    , ..., , ,
T

p q       of this model. The stationarity condition states that the roots of the 

polynomial equation 0i

iw  must lie outside the unit circle in the complex plane  0 1   Otherwise, 

the process is explosive and an indefinite past for it cannot exist. Secondly, the identifiability condition 

states that the roots of the equation 0i

iw   lie on or outside the unit circle. These identifiability 

conditions here enforce a unique parameterization of the model in terms of 2, e  , and the ARMA 

parameters  . 

 A slightly different probability model is sometimes posed where starting values 𝑥0, … 𝑥1−𝑝are 

introduced as parameters or where starting conditions ap+1−q = ⋯ = ap = 0 are enforced. Conceptually, 

this would allow for models with explosive autoregressive moving average behavior, but it also can lead to 

the identifiability problems discussed by Pagano (1973). The big advantage is a simpler probability structure 

which permits evaluation of the likelihood in O (N) operations. This is the motivation for the ‘conditional 

http://www.jetir.org/


© 2019 JETIR  April 2019, Volume 6, Issue 4                                          www.jetir.org  (ISSN-2349-5162) 

 

JETIR1904N81 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 597 

 

least squares’ estimation discussed by Ansley and Newbold (1980). A drawback is dealing with the starting 

values as nuisance parameters. The computational advantage was eliminated by Ansley (1979) who showed 

that the exact likelihood of the model in eq. (1) can be evaluated in O (N) also. 

 Lastly, ARMA models exhibit what might be called near-nonidentifiability. The parameterization 

just described is truly unique if the requisite conditions are enforced. But for finite samples, quite different 

parameter values can produce very similar distributions. In terms of moments, the variance and first three 

autocovariances of an AR(1) process with 𝛼= 0.4 and σ2= l are 1.12, 0.32, 0.13, and 0.05; for MA(1) with 

β= -0.5, these values are 1.07, 0.2, 0 and 0 Only with many observations can these be distinguished. From 

the likelihood viewpoint, the difference in expected log likelihood for these two parameter values is -0.176 

when the AR model is true and N =50, while the variance of the log-likelihood is 25 when evaluated at the 

true. Near-non-identifiability becomes more of a problem with the more flexible mixed and higher order 

models. 

3. Model selection and estimation 

The problem of determining (p,q) has led to three different approaches. A fourth, a Bayesian 

procedure due to Akaike, will be discussed later. The first approach is to extend the standard regression t-

test or F-test to the autoregressive moving average model. For pure AR models, rewrite (1) as  

1 1 2 2 ...t t t t p p tx x x x e         . . . (5) 

and regress tx , on the lagged values ( 1tx  2tx  t px  ) to obtain estimates of  . The standard t-test of 1 = 0 

or F-test of 1 ... 0k k t      can then be used to determine the true value of p. This procedure is 

discussed in detail by Anderson (1970). 

A second procedure is Akaike’s (1974)  MAICE criterion: find (p,q) to minimize 

AIC = - 2 log (maximum likelihood) + 2(𝑝 + 𝑞). 

 This procedure can be viewed as an adjustment for the number of parameters in a likelihood ratio 

test, or as an analogue to the F-test described above, with AIC (‘adjusted information criterion’) 
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corresponding to an adjusted sum of squares. This procedure has been modified for consistency [see Hannan 

and Quinn (1979)]. 

 A third approach relies on a family of goodness-of-fit procedures. Assuming the correct (p,q) and 

values of  , the asymptotic distribution of the residual correlations have a zero mean. For model selection, 

the informal approach of Box and Jenkins (1976) advocates selecting a tentative model (p,q), estimating its 

parameters, and ‘diagnostic checking: performing a test for goodness-of-lit. Upon rejection, the process is 

repeated with a different model. One might formalize this to selecting the model (p,q) as the one that 

performs best on a goodness-of-fit test, while adjusting for the number of parameters, as with AIC. For 

a given (p,q) several proposals have been made for estimating ARMA parameters. Estimators based on 

moments, such as solving the Yule-Walker equations [see Fuller (1978)] and/or regression have an obvious 

appeal because of the directness of the computation. Ansley and Newbold entertain three implicit estimators 

in their Monte-Carlo study: maximum likelihood, ‘exact least squares’, and ‘conditional least squares’. 

Exact least squares ignores the effect of the ARMA parameters on the likelihood through the determinant of 

AN. Conditional least squares uses the model with starting values ap+1-q= . . . = ap = 0 which requires much 

less computational effort. Although no procedure receives wide acceptance, Ansley and Newbold (1980) 

strongly recommend maximum likelihood as a result of their small sample (N = 50)simulation study. 

 Finally, the work of Akaike (1979) in extending (in pure AR models) his MAICE procedure in a 

Bayesian fashion must not be overlooked. He first relates the modification of the term 2p in AIC to 𝛼𝑝 to 

placing a geometric type prior on the order of the model. He then introduces a loss function based on 

prediction error to be minimized to find the best order of theautoregression. Although Akaike uses the term 

‘full Bayesian’, it differs substantially from the Bayesian attitude of this chapter. What is used as a 

likelihood is not averaged over the subsidiary parameters, nor approximated by the maximum, but an 

approximation based on solving the Yule-Walker equations using sample autocorrelations. 

4. The structure of the prior 

 Three things are required to perform a Bayesian analysis. The first requirement is to correct the 

structure for the parameterization of the problem. In time series, such a structure can be found in the ARMA 
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model. Implicit in this parameter structure is the form of the joint prior distribution on all of the model 

parameters: p, q , α, β, μ, σe
2Secondly, a vehicle is required toexpress information in the posterior distribution 

as completely as possible, emphasized by Box and Tiao (1973, p.14). Finally, a method is needed to 

compute the necessary posterior densities and moments. The goal here is as much detail as is 

computationally feasible, whether in moments or in marginal densities of parameters or forecasts. Most of 

the computational effort is in numerical integration, and the intention here is to allow the greatest flexibility 

in specifying the prior, so that minor changes do not require extensive recomputation.  

 As previously mentioned, the ARMA model provides a structure for expression of the joint prior 

distribution on the parameters. This is done conditionally, beginning with the coarsest level of 

parameterization, the order of the model, (p,q). The prior distribution on M=m is given as probabilities, 

Pr( M = m) = Pr (x arises from an ARMA (pm,qm) process = pm,on the discrete set of pairs of non-negative 

integers. Here m may be considered as in Monahan(1982) such that , 

    1  + 1 / 2,m m m m mm q p q p q     asin the following table: 

 

 

 

 

 

Conditional on M = m, the order of the model, a prior distribution on the ARMA parameters,

 1 2 1 2, ,.... ,    , ..., , ,
T

pm qm       is specified;π(Θ|M = m) being a density on Rpm+qmwith support 

on𝑐𝑝×𝑐𝑞.  

where 

KC  {y: alltherootsof 1 − ∑ yiw
i = 0

exceedoneinabsolutevalue
} 

m (p, q) m (p,q) 

1 

2 

3 

(1,0) 

(0,1) 

(1,1) 

4 

5 

6 

(2,0) 

(0,2) 

(2,2) 
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y’ exceed one in absolute value ’ 

 This restriction expresses no prior information but only enforces a unique parameterization by 

insuring that α and βsatisfy the stationarity and identifiability conditions. The remaining parameters are 

now μ, the mean of the process, and σe
2, the disturbance variance. A convenient reparameterization is r =

1/σe
2with r called the disturbance precision. While there is no conjugate prior for  , using the standard 

normal-gamma conjugate family for μ and r is quite useful,and 

    1
,~,,


 rNMr  . . . (6) 

   ,~, gammaMr . . .(7) 

Notice that the parameters of this joint prior may depend on Θ and M without causing further 

complications, thus prior information on, say, the series variance can be reflected in the prior on r.  

With the prior now specified, recall the probability distribution for the data given in section 6.2,  

   NArNrMx 1,1~,,,  
...(8)

 

Two useful marginal posterior distributions, both multivariate t, arevaluable. 

   111
2, ]11)[/(,~,  T

NNNNN AtMx 
...(9)

 

and 

    












1****
2, )/2(,~,, T

NnbaNnF aaANtMxx 
...(10)

 

where 

 * 1 *1 1 /T

NA     

* * 11/ 1 1T

NA       

* 1 1( 1) ( 11 ) ( 1),T T

Nz A z           
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and the vectors a and b are defined in (6.4). 

The remainder of the Bayesian analysis now follows easily, beginning with the marginal of x, 

     | | | ,f x M M f x M d    ...(11)
 

where  | ,f x M  is the multivariate t density described in (6.9). This integration must be done numerically 

and will be described later. The posteriors now follow automatically: 

       | , | | , / |M x M f x M f x M    
...(12)

 

thus  |f x M is the normalizing constant in the posterior density of the ARMA  parameters. For the 

posterior probability of M =m,  |f x M m serves as a Bayes Factor, 

     
 

| |

( | )
j

p M x p M f x M

p M j f x M j



 
 ...(13)

 

And the posterior density of the forecasts can be expressed by 

 | ( | ) ( | , , ) ( | , ) ,F F

j

f x x p M j x f x x M j x M j d       
...(14)

 

where  | , ,Ff x x M is the multivariate t density in (6.10). The relevant posterior distributions were derived 

in Monahan (1980a). 

5. Computation and expression of the posterior 

 The thrust of this chapter is the demonstration of the feasibility of a Bayesian analysis of ARMA 

time series models. The Bayesian approach is nearly always straightforward: once the model is specified, 

giving the likelihood, the prior then determines the posterior. In situations where conjugate families are 

available, this procedure is relatively simple. However, in this non-standard problem, three difficult 

computational problems arise: computing  | ,Ff x M efficiently, numerical integration of (11) to obtain

 |f x M , and expressing as much of the posterior as computationally practical. The feasibility of a 

Bayesian procedure hinges on the solution of these problems. 
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 The first computational problem involves computing  | ,f x M  which serves as the likelihood. 

Ansley’s (1978, 1979) method for computing the exact likelihood in ARMA models cannot be directly 

applied since it does not admit a mean parameter and also because  | ,f x M is not the likelihood function 

for the standard ARMA model. However, the principle of Ansley’s method can be adapted to evaluate 

 | ,f x M quickly. 

Essentially, only bilinear forms need to be computed, since 

 
 /2

1 11
| , 1 ( 1) ( 11 ) ( 1)

2

N

T T

Nf x M x A x



  


 

  
      

 
 

The technique hinges on following factorizations: 

  1

, ,

1

  

   

T
T T m

m N N m N

A D
B A B LDL

D C

 
   

 

m = max(p, q)
N − m

 

Here B m ,N is a triangular matrix composed of Im in its upper left sub matrix and other rows of -

αp, … , −α1, 1with the ones aligned on the diagonal and with zeros elsewhere. The matrix D,is mostly zeros 

and the entire far right-hand side above has a bandwidth of 2m+1. Hence the Cholesky factorization without 

square roots, LDLT, results in a diagonal matrix D and a unit lower triangular matrix L with bandwidth m+ 

1. The bilinear forms are then computed from  

1 1 1 1

, ,

T T T T

N m N m Nx A y x B L D L B y       

   1 1 1 1 1

, ,

T

m N m NL B x D L B y      

 Computation of the forecast covariance matrix, though not a bilinear form, utilizes these same 

factorizations. Monahan (1980b) gives the many details and a listing of the code (about 500 lines). The 

important point of the solution of this problem is that the effort, in both time and space, for computing  

 | ,f x M  is roughly proportional to N. 
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 As previously stated, conjugate families are available for the parameters p,q and r. But none are 

available forΘ, hence its posterior,  | ,M x  , which requires normalization by  |f x M given by (6.1l), 

 | ( / ) ( | , ) ,f x M M f x M d     

Must be computed numerically. The effort required in this numerical integration depends substantially on 

two criteria: smoothness of the integrand and the number of dimensions. 

 Smoothness is not a major concern. A smooth prior would be expected and the likelihood,

 | ,f x M  should resemble a normal density even for small sample sizes and near-non-identifiability of 

the parametersΘ. Notice also that the likelihood vanishes on the boundary of the region of integration, 

p qC C  

 The dimensionality of the integration to obtain  |f x M brings out two problems. The first is the 

common ‘curse of dimensionality’, that the cost increases exponentially with the number of dimensions. For 

the accuracy required for this work, this means that integration in one and two dimensions can be done 

using a fixed quadrature rule. For three or more, the method of choice is Monte Carlo integration, whose 

error rate does not depend on dimensionality [see Davis and Rabinowitz (1975)]. 

 The second problem is to restrict the region of integration to p qC C . Note that C1 =(-1, + 1) and C2 

is the interior of the triangle with vertices (±2 ,- 1) and (1,0). For higher dimensions, Ck becomes unwieldy. 

How to integrate over Ck in high dimensions is explained in detail by the author (1980c). The crux of the 

technique is that every polynomial with real roots can be factored into linear terms and quadratics with 

positive discriminant. Thus every polynomial whose coefficients lie in Ck can be found from k/2 quadratics 

with coefficients from c2, when k is even. If k is odd, a linear term is added. Thus there is a mapping Gk 

from  2 2 1...C C C   to Ckthat is continuous and differentiable almost everywhere. Since the mapping Gk 

is variably many-to-one, its index NG must be computed, as well as the determinant of the Jacobian JG. If, 

for example, (p) = (3) and the function to be integrated is g(, ), the transformed integral can be written as  

http://www.jetir.org/


© 2019 JETIR  April 2019, Volume 6, Issue 4                                          www.jetir.org  (ISSN-2349-5162) 

 

JETIR1904N81 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 604 

 

 
 

 
 

   

    
3 42 1 2 2

3 4

3 4

4

, ( ), ( )
G G

G Gc c c c

J x J y
g d d g G x G y dxdy

N x N G y
   

 

     

 These operations are straightforward but tedious book-keeping, requiring additionally the coding of 

arbitrarily nested loops. 

  For practical considerations and for the implementation described here, the support of the prior 

distribution p(m)  is restricted to the six smallest models(1,0) (0,1) (1,1)(2,0) (0,2)(2,2)  The fifth ,the null 

model, requires no integration because no Θparameter are involved. The previous two require numerical 

integration in one dimension, for which the midpoint rule on C1= ( -1,+1) is used, require two. A product 

midpoint rule is selected for integration overC1 x C1, the square with vertices (±1, ±1). For the remaining, 

(2,0) and (0,2), a triangular midpoint rule over the triangle with vertices (± 2, -1) and (1,0) is used. The 

midpoint rule in its various forms is simple and it performs steadily in the face of uncertainty as to the shape 

of the integrand.  

 The final problem is to express the posterior in as much detail as computationally feasible without 

paying a prohibitive computational cost. The most detail that is available involves  | ,M X  and the 

parameters of the conditional (on Θ)   posteriors of μ, r, and the forecasts. The cost of storing this is 

enormous and its value suspect. Thus most of the information is expressed in posterior moments given only 

M. These will all be expectations with respect to  | ,M x  of functions of , such as  | ,E x  and cov

 | ,Fx X . In all 51 integrals (form =4,5,6, fewer for others) of the form 

 

 

are simultaneously computed in the current implementation, using n=5. These 51 are in addition to g(Θ)= 1 

which corresponds to  |f x M The marginal densities of the forecasts, however, are more important and 

their values are computed for a grid of 33 abscissas, adding 5x33 = 165 functions to the 52 previously 

reported. 

     | | ,g M f x M d   
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 The values of these many integrals are written on a file for later use, for each of the models m= 1, 2 , 

. . ., 6. The reason is that the prior probabilities p(m) are nowhere involved in the numerical integration. 

Changing this part of the prior does not require extensive recomputation. The remainder of the prior, of 

course, is fixed by the integration  | , , , ,M     . Thus each set of these items requires the many 

integrals be stored in a new file. Finally, while the processing programs that produce tables and figures do 

primarily simple chores, in order to compute percentile points of the forecast marginal distributions or to 

plot them in detail, smoothing is done using natural cubic splines. 

6. Examples of model selection 

 Some examples are given here to best express what kind of inference this Bayesian procedure 

allows. Two time series were selected from the wellknown text by Box and Jenkins (1976). They are therein 

slabelled Series A and Series D and are analyzed in detail in that book. Series A are 200 bihourly readings 

of a chemical process concentration. Series D are 200 readings of viscosity from a chemical process. The 

author, a fundamentalist Bayesian, will admit to some difficulty in selecting prior distributions on the 

parameters of these processes. 

 Most of the items in a Bayesian analysis are analogues to the Classical type: highest posterior 

density regions vs. confidence sets, standard deviations of the posterior vs. standard errors of parameter 

estimates. What is particularly novel here is how the model M is estimated. Since, as previously discussed, 

the prior probabilities p(M) do not affect the integration needed to compute  |f x M , we need only report 

as the B  |f x M ayes factor needed to compute the posterior probabilities on the order of the model, 

     ( )|x | / ( .)|
i

p M m p xm f M m P M j f M jx      

 The focus here is on how these Bayes factors which can then be used to make a decision regarding 

M are affected by, first, the sample size and, second, the other parameters in the prior. Making the Bayes 

decision regarding M, of course, is straightforward decision theory, given the loss function and the posterior 

probabilities on M given by the formula above.  
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 For the analysis to follow, six sets of prior parameters (μ, τ, α, β,)  were selected to exemplify 

varying degrees of prior information. The first five, described by ‘Diffuse’ to ‘Lucky’, exhibit increasing 

concentration of probability mass about what appears to be the true values of μand r. The last one, labelled 

‘Unfortunate’, was selected to exemplify strong prior beliefs unsupported by the data. Thus the effect of the 

prior can be monitored. Also of interest is the sample size at which the prior is overwhelmed and Savage’s 

(1962, pp. 20-25) notion of precise measurement applies. 

 In addition, throughout the following analysis, the prior on the MA parameters  | M m   was 

taken to be uniform over the relevant region cqm. However, any non-negative integrable function can be used 

in order to reflect prior beliefs that may be more easily expressed in, say, the (theoretical) auto and partial 

correlations. The only requirement is that normalization   | 1M d    be done in advance. 

  

Table 1prior parameters for series A (upper part)and for series D  

(lower part) 

No. Description  γ τ α β 

1 Diffuse 16 1/260 1/260 1/260 

2 Weak 16 1/19 1/9 1 

3 Moderate 15 1 1/6 1 

4 Close 16 5 1 9 

5 Lucky 20 35 1 10 

6 Unfortunate 23 1 20 20 

1 Diffuse 9 1/260 1/260 1/260 

2 Weak 9 1/19 1/9 1 

3 Moderate 12 1 1/6 1 
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4 Close 12 5 1 9 

5 Lucky 12 35 1 10 

6 Unfortunate 14 1 20 20 

 

all parameters on the ARMA parameters  | M  are uniform over p qC C  

Table2 Bayes factors for series A 

Model Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 AIC 

N=50 

(1,0) 0.0188 0.0634 0.0514 0.2809 0.2100 0.0330 51.339 

(0,1) 0.4720 0.5678 0.4026 0.3985 0.3900 0.5710 45.830* 

(1,1) 0.0457 0.0615 0.0748 0.1547 0.1587 0.0320 49.910 

(2,0) 0.2966 0.2406 0.3426 0.1568 0.1519 0.3210 45.086 

(0,2) 0.2966 0.1077 0.2419 0.1816 0.1860 0.2279 45.930*(tie) 

(2,2) 0.0802 0.0728 0.0006 0.1202 0.1219 0.0337 47.582 

N=100 

(1,0) 0.0668 0.1350 0.0984 0.2476 0.2224 0.0556 149.26 

(0,1) 0.1088 0.2402 0.2316 0.2648 0.2610 0.1845 145.30 

(1,1) 0.0760 0.0074 0.0959 0.1427 0.1357 0.0317 147.19 

(2,0) 0.1977 0.1815 0.1940 0.1525 0.1649 0.4840 144.20 

(0,2) 0.4027 0.3708 0.3152 0.2265 0.2413 0.3255 140.15* 

(2,2) 0.0688 0.0768 0.0767 0.0878 0.0874 0.0316 144.19 

N=200 

(1,0) 0.0004 0.0002 0.0014 0.0073 0.0014 0.0014 688.14 

(0,1) 0.0114 0.0147 0.0125 0.0589 0.0620 0.0135 604.65 

(1,1) 0.0623 0.0897 0.0246 0.0921 0.1742 0.2512 635.99 
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(2,0) 0.0914 0.1265 0.0588 0.2310 0.2418 0.5804 593.52 

(0,2) 0.9310 0.8007 0.8116 0.7577 0.7617 0.4478 589.25* 

(2,2) 0.9569 0.9842 0.9241 0.0014 0.0014 0.5392 613.35 

 Tables 2 and 3 indicate the effect on the Bayes factors for the two series, respectively, with varying 

sample sizes and six sets of prior parameters which are listed in table 1. In addition, the values of Akaike’s 

adjusted information criterion (AIC) are given.  

 In the Bayesian framework, the problem of estimation takes the form of a decision problem of 

minimizing the expected posterior loss. In estimation the decision space is the same as the parameter space. 

For estimating M, let L(m,d) be a loss function on the integers 1,2,. .. ,m* representing the (finite) support’ 

of the prior on M, p(m). The Bayes estimates, then, of M is that d which minimizes 

 ( , ) | ( , ) ( | )
m

E L M d x L m d p m x  

To illustrate how this can be used to determine M, consider first  1 ,  ( ,  ) L m d l m d  where δ(., .) is the 

Kronecker delta. Then the expected loss is ‘For the examples given here, m* = 6. 

 

Table 3Bayes factors for series D 

Model Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 AIC 

N=50 

(1,0) 0.1324 0.4582 0.3845 0.0051 0.0006 0.4256 105.15 

(0,1) 0.6864 0.6519 0.6656 0.5247 0.5555 0.6322 69.36* 

(1,1) 0.0014 0.0015 0.0015 0.0383 0.0076 0.0014 85.18 

(2,0) 0.1536 0.1735 0.1688 0.1060 0.2209 0.2103 71.23 

(0,2) 0.1650 0.1835 0.1807 0.2131 0.2185 0.1862 71.25 

(2,2) 0.0041 0.0222 0.0249 0.0634 0.0386 0.0014 72.66 

N=100 
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(1,0) 0.0165 0.0023 0.0098 0.1654 0.6428 0.1754 601.13 

(0,1) 0.7589 0.7501 0.7655 0.7313 0.7404 0.8914 381.29* 

(1,1) 0.0002 0.0023 0.0023 0.0391 0.0084 0.0002 497.77 

(2,0) 0.1343 0.1312 0.1316 0.1457 0.1441 0.0355 386.47 

(0,2) 0.1367 0.1316 0.1335 0.1457 0.1454 0.0687 383.41 

(2,2) 0.1958 0.1682 0.1865 0.1357 0.1596 0.1258 445.46 

N=200 

(1,0) 0.6210 0.5326 0.4856 0.6231 0.7952 0.8165 1473.6 

(0,1) 0.8723 0.8684 0.8683 0.8456 0.8453 0.9904 1046.4* 

(1,1) 0.9147 0.8936 0.8714 0.8521 0.0159 0.0652 1238.7 

(2,0) 0.0756 0.0769 0.0775 0.0876 0.0879 0.0075 1048.3 

(0,2) 0.0820 0.0856 0.0841 0.0978 0.0977 0.0220 1048.3 

(2,2) 0.0145 0.0956 0.0960 0.1624 0.1359 0.0924 1141.7 

 “Asterisks designate model chosen using MAICE method. 

    1 |,  | .xE L M d l p d x  H ence the Bayes decision is that d which corresponds to the model with the 

highest posterior probability.  

 On the other hand, L1 is not the only possible loss function. In fact, the problem at hand should 

dictate the appropriate loss function. Another possibility is the loss function given in table 4, with three 

parameters: a, b, c. The value of a represents the cost of over parameterizing a simple model; b reflects a 

misclassification cost; and c represents the cost of fitting with too few parameters. Accordingly, these values 

can be adjusted to reflect the importance of short-term or long-term forecasting, or the prospects for control, 

etc. 

 To illustrate the effects on estimating M of differing sets of prior parameters, different costs as 

reflected in loss functions, and different sample sizes, the resulting Bayes decisions are given in table 5 

using Series A. These  Bayes decisions minimize expected posterior loss, for which three loss functions 

were used. The first, L1, was previously mentioned. The other two use the general form as given in table 4: 
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L2uses a = b = c = 1, L3uses a = 3, b =2, c= 1. The same six sets of prior distribution parameters γ, τ, α, β 

were used as before. Recall that the values in tables 2 and 3 are the (normalized). 

Table 4.General loss function, L(m,d) 

d 

m 

1    (1,0) 2 (0,1) 3 (1,1) 4 (2,0) 5 (0,2) 6 (2,2) 

1 (1,0) 0 a a 2a 2a 2a 

2 (0,1) c 0 b a a 2b 

3 (1,1) c b 0 2b a a 

4 (2,0) 2c c c+b 0 b 2b 

5 (0,2) 2c c c b 0 b 

6 (2,2) 2c c+b c 2b b 0 

 

 Bayes factors. These values will also be posterior probabilities if the prior probabilities p(m) on the 

order of the model are selected to      
1

1 2 ... 6
6

Pr M Pr M Pr M        

A second choice of prior probabilities is the following: 

     

     

   1   0.3,  2 3 0.2,

4 5 6 0.1,

Pr M Pr M Pr M

Pr M Pr M Pr M

     

     
 

 which reflects a belief in low-order models. These two sets of priors are selected only to show how 

the methodology works and what can occur. 

Table 5.Bayes estimates of the order of the model; series A 

Loss function Prior parameter set 

Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 
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Prior on M :  
1

, 1,2,....6
6

p m m   

N=50 

1L  2 2 2 1 2 2 

2L  2 2 2 2 1 2 

3L  2 2 2 2 2 2 

N=100 

1L  4 4 4 3 3 4 

2L  4 4 4 3 3 4 

3L  2 2 2 2 2 1 

N=200 

1L  3 3 3 3 3 4 

2L  3 3 3 3 3 4 

3L  3 3 3 3 3 4 

N=50 

1L  2 2 2 1 2 2 

2L  2 2 2 2 1 2 

3L  2 2 2 2 2 2 

N=100 

1L  2 1 1 2 2 5 

2L  2 5 5 5 5 5 

3L  5 2 5 2 2 5 

N=200 

1L  3 3 3 3 3 4 
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2L  3 3 3 3 3 4 

3L  3 3 3 3 3 4 

 

 Table 5 shows how it worked and what happened with Series A. Briefly put, everything had some 

effect, although the best candidates were clearly m = 5, (1,1) and m = 2, (l,0). Notice that costs reflected in 

the loss function can affect model selection. The large sample size of N = 200 had the anticipated effect of 

dampening the effects of other factors and gave strong support to the state M =5. For Series D, a table 

similar to table 5 is unnecessary, since all of its entries would be 2. That is to say, the selection of m=2 

(first-order auto regression) as the best estimate of the order of the process recorded in Series D is 

insensitive to a variety of priors and loss functions, for as few as 40 observations. The principle of precise 

measurement appears to apply here.  

 These results must be compared to classical methods. Akaike’s MAICE method estimates Series A 

as (1,1) (m = 5) and Series D as (1,0) (m = 2). These are indicated by asterisks in tables 2 and 3. Box and 

Jenkins (1976, p. 239).  While the likelihood analysis agrees well with the Bayesian for the full series, 

some differences appear when subsets of the two series are analyzed. Also, notice that the likelihood ratios 

do not give a good approximation to the Bayes factors for the diffuse Prior 1 in tables 2 and 3.   

 Next, Box and Jenkins report for Series A estimates for α1 of 0.94, respectively, with standard errors 

of 0.04 and 0.08. Maximum likelihood estimates for Series A and the (4) model are α1̇ =0.906. Using Prior 

1, the mean of the posteriors forα1are 0.915, with standard deviation 0.049 and correlation of 0.825. 

7. Conclusion 

 The ARMA model is used only as aneconomic approximation to a general stationary process. In that 

light, there is no belief that the true model is actually a given (low order) ARMA process. However, the 

choice of an AR or MA model brings with it certain economic implications, in spite of the problem of near 

non-identifiability. Thus, a belief in a certain model of economic behavior can be expressed in prior 
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distributions on the parameters (p,q). The need for an economic approximation in sampling-theoretic 

approaches is absent in Bayesian analysis; it is even possible to have more parameters than observations. 

Thus, for the general stationary process, the natural parameterization is with the spectral density. 
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