
© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904Q23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 128

CONTAINERIZING AN APPLICATION AND

DEPLOYING TO AMAZON ELASTIC

CONTAINER SERVICE (AMAZON ECS)

1 Shiramshetty Karuna, 2Vuyyuru Punna Rao
1 M.Tech Student, 2M.Tech (IIT kgp)

1Dept. of Computer Science,
1 Vasavi College of Engineering, Hyderabad, Telangana

Abstract: The tools and AWS services used are as follows Docker, Amazon Elastic Container Registry (ECR) and Amazon Elastic

Container Service (Amazon ECS). Docker and AWS services made the application easier to build and deploy. In this application we

are adding a file called “Docker File” which used to build and to make the application containerize such that we can run the container

in any environment without compatibility issues. Once the image is built push image to ECR which is repository to store Docker images.

To run the containerized application in multiple instances we need orchestration tool which AWS is providing a service called ECS.

ECS is used for orchestrating along which it even manages required services like ALB (Application Load Balancer) and ASG

(Autoscaling). Maintaining all the services manually takes time. To reduce the latency of time we are introducing CloudFormation

Template which helps in creation of infrastructure which in turn called IAC (Infrastructure as code).

IndexTerms - Docker, CloudFormation Template, Stack, Amazon ECR, Amazon ECS.

 I. INTRODUCTION

Lightweight Docker containers are becoming an emerging tool for building and deploying micro service-based applications. Docker

uses a container virtualization technology. So, it’s like a very lightweight virtual machine but it is different from virtual machine. Virtual

machine uses guest OS whereas Docker container uses host OS. Docker Container does not emulate on hardware whereas virtual

machine depends on hardware. Container is a standardized packaging for software and dependencies, isolate apps from each other and

share the same OS kernel. It works with all major Linux and Windows Server. Key. Docker delivers agility, resiliency, portability

security and cost savings for all applications. It is one platform and one journey for all applications. In addition to building containers,

we provide what we call a developer workflow, which is about helping people to build containers and applications inside containers

and then share those among their teammates and push the image to ECR and deploy the application in the ECS.

Amazon Elastic Container Registry (ECR)

Amazon Elastic Container Registry (ECR) is the registry which contains repositories. It is used to store the docker images. This repo

is created using create repository button or using CloudFormation template in AWS. This Repositories are having a unique name for

the images which we have created. It has its own access controller and has ability to interact outside of the Docker CLI. Communication

between Docker CLI and AWS is done by using the AWS CLI (command line interface) and SDKs. ECR has highly available image

instances. For more granular control repositories are provided by using IAM policies. Images can be shared across AWS accounts.

When images are inactive it automatically encrypted and stored in S3 bucket. Images in ECR repo are transmitted over HTTPS.

Amazon EC2 Container Service (ECS)

Amazon ECS is to run, stop, and manage Docker containers, quickly and easily on a cluster. It is a container-managed service,

highly auto scaling and you can host clusters on server less infrastructure. You can also use Amazon EC2 to host your task to gain more

control, and manage by using Amazon EC2 launch types, such as the Fargate launch type and the EC2 launch type.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904Q23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 129

Figure 1.1. Process of containerizing the application and deploying to AWS ECS

 II.PROPOSED WORK

 Creating a Docker image and pushing it to EC2 Container Registry then Amazon Elastic Container Service (ECS) used to

deploy and run the application in AWS.

 Steps:

 1.Building Docker Images with Docker Files.

 2.Creating EC2 Container Registry (ECR) using CloudFormation template

 3.Configuring the AWS Command Line Interface to connect to Docker.

 4.Authenticate Docker to an Amazon ECR registry with get-login.

 5.Pushing a Docker Image to the EC2 Container Registry using push commands.

 6.Creating VPC, Security Group, Auto scaling,

 IAM, Task and Services in ECS using Cloud Formation template.

 7.Running the Application by giving IP address and Port Number.

 1. Building Docker Images with Docker Files

Figure 2.1. Docker File

Above figure is a Docker file which is used to build the application. FROM keyword tells docker from which base image you want

to build. RUN command is used to run instructions against the image. Install the nginx server on our alpine image. NGINX is a high-

performance HTTP server. Use build command “docker image build -t img”.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904Q23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 130

2. Creating EC2 Container Registry (ECR) using CloudFormation Template

 Parameters:

 repositoryName: Type: String

 Resources: MyRepository:

 Type: AWS::ECR::Repository Properties:

 ReposistoryName: ! Ref repositoryName

3. Configuring the AWS Command Line Interface to connect to Docker

aws configure

 Access Key ID: AKIAJ65VCWCYDLGXBLXQ
 AWS Secret Key: lZBovSASxD5U+MNOKBQc7 Default region name [None]: us-west-2

 Default output format [None]: json Use aws configure in AWS-CLI.

4. Authenticate Docker to an Amazon ECR registry with get-login

 The AWS CLI provides a get-login command to simplify the authentication process.

 aws ecr get-login --region region --no-include-email.

5. Pushing a Docker Image to the EC2 Container Registry using push commands

Figure 2.2. Docker File

6. Creating VPC, Cluster, Security Group, Auto scaling, IAM, Task and Services in ECS using Cloud Formation template

Parameters: VpcId:

Type: AWS::EC2::VPC::Id

Description: The ID of the VPC.

SubnetIds:

Type: List<AWS::EC2::Subnet::Id> Description: The subnets to use for the cluster.

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904Q23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 131

ConstraintDescription: Private subnets

ClusterSize: Type: Number

Description: The number of container instances to launch Default: 2

InstanceType:

Type: String

Description: The instance type to use for ECS container Default: t2.micro

KeyName:

Type: AWS::EC2::KeyPair::KeyName Description: The name of the EC2 key pair.

LoadBalancerSecurityGroupId: Type: AWS::EC2::SecurityGroup::Id

Description: The ID of the Application Load Balancer.

ServiceName:

Type: String

Description: Please provide the ECS service name

Mappings: AmiRegionMap: ap-northeast-1:

AmiId: ami-057665f5d66958d61 ap-south-1:

AmiId: ami-0d435b0cbb312b4ab us-east-1:

AmiId: ami-0a6a36557ea3b9859 us-west-2:

AmiId: ami-0efe3002ead7dd327

Conditions:

 HasKeyName: !Not [!Equals [!Ref KeyName, '']] Resources:

Cluster:

 Type: AWS::ECS::Cluster

 Properties:

 ClusterName: !Ref 'AWS::StackName'

InstanceSecurityGroup:

 Type: AWS::EC2::SecurityGroup

 Properties:

 VpcId: !Ref VpcId

 GroupDescription: Security group for ECS container SecurityGroupIngress:

 - IpProtocol: tcp

 FromPort: 0

 ToPort: 65535

 SourceSecurityGroupId: !Ref LoadBalancerSecurityGroupId

LaunchConfiguration:

 Type: AWS::AutoScaling::LaunchConfiguration

 Properties:

 IamInstanceProfile:! Ref InstanceProfile ImageId: !FindInMap [AmiRegionMap, !Ref 'AWS::Region', AmiId]

InstanceMonitoring: true InstanceType: !Ref InstanceType

KeyName: !If [HasKeyName, !Ref KeyName, !Ref 'AWS::NoValue']

SecurityGroups:

- !Ref InstanceSecurityGroup

AutoScalingGroup:

Type: AWS::AutoScaling::AutoScalingGroup

Properties:

 VPCZoneIdentifier: !Ref SubnetIds

 LaunchConfigurationName: !Ref LaunchConfiguration

 DesiredCapacity: !Ref ClusterSize

 MinSize: !Ref ClusterSize

 MaxSize: !Ref ClusterSize

InstanceRole:

 Type: AWS::IAM::Role

 Properties:

 Path: /

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904Q23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 132

 AssumeRolePolicyDocument:

 Version: '2012-10-17'

 Statement:

 - Effect: Allow

 Action:

 - sts:AssumeRole

 Principal:

 Service:

 - ec2.amazonaws.com

 Policies:

 - PolicyName: ecs-instance-role-policy

 PolicyDocument:

 Statement:

 - Effect: Allow

 Action:

 - ecr:BatchCheckLayerAvailability

 - ecr:BatchGetImage

 - ecr:GetAuthorizationToken

 - ecr:GetDownloadUrlForLayer

 - ecs:DeregisterContainerInstance

 - ecs:DiscoverPollEndpoint

 - ecs:Poll

 - ecs:RegisterContainerInstance

 - ecs:StartTelemetrySession

 - ecs:Submit*

 - ecs:UpdateContainerInstancesState

 - logs:CreateLogStream

 - logs:PutLogEvents

 Resource: '*'

 InstanceProfile:

Type: AWS::IAM::InstanceProfile

 Properties:

 Path: /

 Roles:

 - !Ref InstanceRole

TaskDefinition:

Type: AWS::ECS::TaskDefinition

 Properties:

 Family: app-manager-ui

 NetworkMode: bridge

 ContainerDefinitions:

 - Name: !Ref ServiceName Cpu: '500'

 Essential: 'true'

 Image: 233335575654.dkr.ecr.us-east Memory: '500'

 PortMappings:

 - ContainerPort: 80

 HostPort: 8080

Service:

Type: AWS::ECS::Service

Properties:

 Cluster: !Ref Cluster

 LaunchType: EC2

 DesiredCount: 1

 ServiceName: !Ref ServiceName

 TaskDefinition: !Ref TaskDefinition

http://www.jetir.org/

© 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162)

JETIR1904Q23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 133

7. Running the Application by giving IP address and Port number

 Using EC2 instance public IP address and Port number run the application.

 III. SYSTEM ARCHITECTURE

Create an docker image and send it to Amazon ECR. Create an ECS cluster to launch the EC2 instances using template. Create a

Task Definition and add the containers by using CloudFormation template. Task definition stage describe how the containers will be

launched with the image. Mark all the required parameters for cloud computing by setting parameters like ports to be exposed, Docker

image, CPU, memory requirement etc. in CloudFormation template. Run the defined task in the ECS. Configure the Service to serve

with elastic load balancing and auto scaling group can use to host the application as a cluster of containers.

 IV. CONCLUSIONS

Finally, we conclude that in this paper we focused on building an application with Docker Technology by creating a docker image for the

application and pushing image into Amazon Elastic Container Registry that is a repository which is highly available. Amazon Elastic

Container Service is the AWS Docker container service that handles the orchestration and provisioning of Docker containers and allows

to easily run and scale containerized applications on AWS.

REFERENCES

[1] IEEE DevOps EEE P2675 DevOps Standard for Building Reliable and Secure Systems Including Application Build Package and

Deployment.

[2] M. Shahin, M.A. Babar, L. Zhu, "Continuous Integration Delivery and Deployment: A Systematic Review on Approaches Tools

Challenges and Practices", IEEE Access, vol. 5, pp. 3909-3943, 2017.

[3] Yasar Hasan, Kiriakos Kontostathis, "Where to Integrate Security Practices on DevOps Platform", International Journal of Secure

Software Engineering (IJSSE), vol. 7.4, pp. 39-50, 2016.

[4] H. Chen, L. J. Zhang, B. Hu, S. Z. Long, L. H. Luo, "On Developing and Deploying Large-File Upload Services of Personal Cloud

Storage", 2015 IEEE International Conference on Services Computing, pp. 371-378, 2015.

[5] Carl Boettiger, "An introduction to Docker for reproducible research", SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71-79, January 2015.

[6] H. Kang, M. Le, S. Tao, "Container and microservice driven design for cloud infrastructure DevOps", The IEEE International

Conference on Cloud Engineering (IC2E), pp. 202-211, 2016.

[7] Rajdeep Dua, A Reddy Raja, Dharmesh Kakadia, "Virtualization vs Containerization to support PaaS", 2014 IEEE International

Conference on Cloud Engineering.

[8] Mikyung Kang, Dong-In Kang, John Paul Walters, Stephen P. Crago, "A Comparison of System Performance on a Private OpenStack

Cloud and Amazon EC2", Cloud Computing (CLOUD) 2017 IEEE 10th International Conference on, pp. 310-317, 2017.

http://www.jetir.org/

