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I. INTRODUCTION 

In this paper we establish a common fixed point theorem for self mappings, not necessarily commuting of a closed and convex 

subset of a Banach space, generalizing a well known result of Gregus. 

Let X be a Banach space and T be a mapping of X into itself satisfying the inequality ∣∣ Tx – Ty ∣∣ ≤ ∣∣ x – y ∣∣ for all x, 

y in X. T is said to be non-expensive and it is well known that the class of contraction mapping and it is properly contained in 

the class of all continuous mapping. Browder [6,7], Goebel [15] and Kirk [20, 21] have independently proved a fixed point 

theorem for non-expansive mappings defined on  a closed, bounded and convex subset of a uniformly convex Banach space 

and in spaces with richer structure. A number of generalizations of non-expensive mapping have been discussed by many 

authors. The works of  Dotson; Emmanuele; Goebel and Zlotkiewicz [14]; Goebel [15]; Zabreiko and Krasnoselskii [45]; Kirk 

[20, 21]; Massa and Roux are of special significance. A comprehensive survey concerning fixed point theorems for non-

expansive and related mappings can be found in Kirk [20, 21]. 

On the other hand, there are mappings which satisfy conditions similar to non-expansive and which possess a unique 

fixed point. But such mapping cannot be viewed as generalizations of non-expansive mappings. Two such examples occur 

recently in Gregus and Rhoades. Motivated by a contractive condition of Hardy and Rogers in this paper we extend the result 

of Gregus to the case of two mappings. Let C be a closed convex subset of X. By summary, assuming 𝑏 = 𝑐 in the contractive 

condition of Gregus, this author proved the following result. 

 

Theorem 1: Let T be a mapping of C into itself satisfying the inequality 

(1)  ∣∣ Tx – Ty ∣∣ ≤a.  ∣∣ x – y ∣∣ +b . {∣∣ Tx – x ∣∣ +  ∣∣ Ty – y ∣∣ } 

For all x, y in C, where 0<a<1, b>0 and a+2b = 1. Then T has a unique fixed point. 

We now prove the following theorem. 
 

Theorem 2: Let S and T be mappings of C into itself satisfying the inequality 

 (2)  ∣∣ Sx – Ty ∣∣ ≤ a.  ∣∣ x – y ∣∣ +b. {∣∣ Sx – x ∣∣ +  ∣∣ Ty – y ∣∣ } +c.  

             {∣∣ Sx – y ∣∣ +  ∣∣ Ty – x ∣∣ } 

For all x, y in C, where 0 < a < 1, b > 0 and a+2b+2c = 1 and (1 - b). c < ab. If  

(3)  ∣∣ Tx – x ∣∣ ≤ ∣∣ Sx – x ∣∣ 

For all x in C, then S and T have a unique common fixed point w in C. Further, w is the unique fixed point of S and T. 
 

Proof: Let x be an arbitrary point in C. From (2), we deduce that 

  ∣∣ STx – Tx ∣∣ ≤ a.  ∣∣ Tx – x ∣∣ +b. {∣∣ STx – Tx ∣∣ + ∣∣ Tx – x ∣∣ } +c.  

           {∣∣ STx – Tx ∣∣ + ∣∣ Tx – x ∣∣ },  

which implies that 

 (4)  ∣∣ STx – Tx ∣∣ ≤  
𝑎+𝑏+𝑐

1−𝑏−𝑐
 . ∣∣ Tx – x ∣∣ =∣∣ Tx – x ∣∣. 
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 Similarly, we have 

 (5)   ∣∣ TSx – Sx ∣∣ ≤ ∣∣ Sx – x ∣∣. 

 Since (4) holds for all x in C, we deduce that 

  ∣∣ STSx – STx ∣∣ ≤ ∣∣ TSx – Sx ∣∣, 

 Which implies, by (3) and (5), that 

 (6)   ∣∣ TTSx – TSx ∣∣ ≤  ∣∣ STSx – TSx ∣∣ ≤ ∣∣ Sx – x ∣∣. 

 We now define the point z by 

               z = 
1

2
 TSx + 

1

2
 TTSx. 

Then, it follows, from (6), that 

(7)  2∣∣ TSx – z ∣∣ = 2  ∣∣ TTSx – z ∣∣ = ∣∣ TTSx – TSx ∣∣ ≤ ∣∣ Sx – x ∣∣. 
 

Since C is convex, z belongs to C and using (2), (5), (6) and (7), we have that 
 

(8)  2∣∣Sz–z∣∣ = ∣∣2Sz–(TSx+TTSx)∣∣ = ∣∣ Sz – TSx ∣∣ + ∣∣ Sz – TTSx ∣∣  

   ≤ ∣∣ Sz – TSx ∣∣ + ∣∣ Sz – TTSx ∣∣ 

   ≤ a .  ∣∣ z – Sx ∣∣ +b . { ∣∣ Sz – z ∣∣ +∣∣ Sx – x ∣∣ } 

   + c .  { ∣∣ Sz – z ∣∣ + ∣∣ Sx – z ∣∣ +∣∣ TSx – z ∣∣ } 

    + a .  ∣∣ z – TSx ∣∣ +b . { ∣∣ Sz – z ∣∣ +∣∣ Sx – x ∣∣ } 

   + c .  { ∣∣ Sz – z ∣∣ + ∣∣ TSx – z ∣∣ +∣∣ TTSx – z ∣∣ } 

    ≤ a .  {∣∣ Sx–z ∣∣+ 
1

2
  . ∣∣Sx–x∣∣} +2b . {∣∣Sz–z∣∣ + ∣∣ Sx– x ∣∣} 

    + c .  { 2∣∣ Sz – z ∣∣ + ∣∣ Sx – z ∣∣ + 
3

2
 . ∣∣ Sx – x ∣∣}. 

 On the other hand, using (2), (5) and (6), we obtain that  

(9)  2∣∣Sx–z∣∣ = ∣∣2S – (TSx+TTSx) ∣∣ = ∣∣Sx – TSx ∣∣ + ∣∣ Sx – TTSx ∣∣  

   ≤ ∣∣ Sx – TSx ∣∣ + ∣∣ Sx – TTSx ∣∣ 

   ≤ ∣∣Sx – x ∣∣ +a . ∣∣ x – TSx ∣∣ + b . {∣∣ Sx – x ∣∣ +∣∣ Sx – x ∣∣} 

   + c .  {∣∣Sx–x∣∣ + ∣∣TTSx–TSx∣∣ +∣∣ TSx – Sx ∣∣+∣∣ Sx – x ∣∣ } 

    ≤ ∣∣ Sx – x ∣∣ +a . { ∣∣ Sx – x ∣∣ +∣∣ TSx – Sx ∣∣ } 

   + (2b + 4c) . ∣∣ Sx – x ∣∣ 

   ≤ (1 + 2a + 2b + 4c) . ∣∣ Sx – x ∣∣ 

   = (3 – 2b) . ∣∣ Sx – x ∣∣. 
 

It is easily seen that (8) and (9) imply that 

    2∣∣ Sz – z ∣∣ ≤ a . (2 - b) . ∣∣ Sx – x ∣∣ +2b . {∣∣ Sx – x ∣∣ + ∣∣ Sz – z ∣∣}  

            + c . {2∣∣ Sz – z ∣∣ + (3 - b) . ∣∣ Sx – x ∣∣}. 

Consequently we have that 

(10)  ∣∣ Sz – z ∣∣ ≤ λ . ∣∣ Sx – x ∣∣, 
 

Where 

                       λ = 
1

2
  (

2𝑎−𝑎𝑏+2𝑏+3𝑐−𝑏𝑐

1−𝑏−𝑐
) 

 

from the assumptions on the constants a,b and c, it follows that 0 < λ < 1. We claim that h = inf {∣∣ Sx – x ∣∣ : x ∈ C} = 0, 

otherwise, for 0< ε < (1 - λ) . h/λ, there exists a point �̅� in C such that ∣∣ S�̅� – �̅� ∣∣≤h + ε  and hence (10) implies that h≤ ∣∣ Sz – 

z ∣∣ ≤ λ . ∣∣ S�̅� – �̅� ∣∣ ≤  λ . (h+ ε) <  h, a contradiction. 

Thus h = 0 and the sets 

    Hn = {x ∈ C : {∣∣ Sx – x ∣∣ ≤ 
1

𝑛
 } 

are non-empty for any n = 1, 2, …; of course, we have 

(11)   H1 ⊇ H2 ⊇ …… ⊇ Hn ⊇ …… 
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Let �̅�n be the closure of Hn. We now show that 

(12)   diam H̅n ≤ (3 -a)/2bn 

For any n=1, 2,……. Indeed, we obtain on using (2) for all x, y in Hn,  

∣∣ x – y ∣∣ ≤ ∣∣ Sx – x ∣∣ + ∣∣ Sx – y ∣∣ 

     ≤ ∣∣ Sx – x ∣∣ + ∣∣ Ty – y ∣∣ + ∣∣ Sx – Ty ∣∣ 

     ≤  
2

𝑛
 + a . ∣∣ x – y ∣∣ +b .  {∣∣ Sx – x ∣∣ + ∣∣ Ty – y ∣∣} 

     + c .  {∣∣ Sx – x ∣∣ + ∣∣ x – y ∣∣ +  ∣∣ Ty – y ∣∣ + ∣∣ x – y ∣∣} 

     ≤  
2

𝑛
 + (a + 2c) . ∣∣ x – y ∣∣ +  (2b + 2c)/n 

        =  (3 - a)/ n + (1 – 2b). ∣∣ x – y ∣∣   

Since (3) implies that ∣∣ Ty – y ∣∣ ≤ ∣∣ Sy – y ∣∣ ≤ 
1

𝑛
 . The above inequality implies (12) since diam Hn = diam H̅n and 

clearly it follows from (11) that 

                 H̅1 ⊇ H̅2 ⊇ …… ⊇ H̅n ⊇ …… 

 Thus {H̅n} is a decreasing sequence of non-empty subsets of C  such that the sequence {diam H̅n} converges to zero as n → ∞  

by (12). Since X is complete, so is C and by Cantor’s intersection theorem, there exists a point w in C such that 

      w ∈ ⋂𝑛=1
∞  H̅n. 

This means that ∣∣ Sw – w ∣∣ ≤ 
1

𝑛
 for any n = 1, 2, …… and so Sw = w. Using (3), we have Tw = w. Then w is a common fixed 

point of S and T. Let us suppose that w’ is another fixed point of S. On using (2) for x = w and y = w’, we have that  

   ∣∣ w’ – w ∣∣ = ∣∣ Sw’ – Tw ∣∣ 

          ≤ a . ∣∣ w’ – w ∣∣ +c .  {∣∣ w’ – w ∣∣ + ∣∣ w – w’ ∣∣} 

             = (a + 2c) . ∣∣ w’ – w ∣∣. 

This implies that w’ = w since a + 2c = 1 – 2b < 1. Therefore w is the unique fixed point of S and similarly it is shown that w is 

the unique fixed point of T. This completes the proof. 

 

Remark: By assuming S = T and c = o, theorem 2 becomes theorem 1. 

 By enunciating theorem 2 for some iterates of S and T, we obtain the following result. 

 

Theorem 3: Let S and T be mapping of C into itself satisfying the inequality 

  ∣∣ 𝑆𝑝𝑥
 – 𝑇𝑞𝑦

 ∣∣ ≤ a . ∣∣ x – y ∣∣  +b. {∣∣ 𝑆𝑝𝑥
 – x ∣∣ + ∣∣ 𝑇𝑞𝑦

 – y ∣∣} 

    + c. {∣∣ 𝑆𝑝𝑥
 – y ∣∣ + ∣∣ 𝑇𝑞𝑦

– x ∣∣} 

 For all x, y in C, where p and q are positive integers and a, b, c are as in theorem 2. If 

  ∣∣ 𝑇𝑞𝑦
 – x ∣∣ ≤ ∣∣ 𝑆𝑝𝑥

 – x ∣∣  

For all x in C, than S and T have a unique common fixed point w in C. Further, w is the unique fixed point of S and T. 
 

Proof:  By theorem 2, mapping Sp and Tq of C into itself have a unique common fixed point w in C. Since Sw = SSpw = 

SpSw, we deduce that Sw is also a fixed point of Sp, it follows that Sw =  w. Similarly, we can prove that Tw = w and 

therefore w is common fixed point S and T. If w’ is another fixed point of S, then we have that Spw’ = w’ but the uniqueness 

of w implies w = w’. Thus w is also the fixed point of S as well as for the mapping of T.   
 

The following example shows the stronger generality of theorem 3 over theorem 2. 
 

Example: Let X be the Banach space of reals with Euclidean norm and C = [0,2]. We define S and T by putting Sx = 0 if         

0 ≤ x < 1, Sx = 
3

5
 if 1≤ x ≤ 2, Tx = 0 if 0≤  x < 2 and T2 = 

9

5
 . Then the condition (2) of theorem 1 does not hold, otherwise, we 

should have for x =1 and y = 2. 

  
6

5
 = ∣∣ S1 – T2 ∣∣ ≤ a . ∣∣ 2 – 1 ∣∣  +b. {∣∣ 1 – 

3

5
 ∣∣ + ∣∣ 2 – 

9

5
 ∣∣} 

+ c. {∣∣ 
9

5
 – 1 ∣∣ + ∣∣ 2 – 

3

5
 ∣∣} 
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   = a + 
3𝑏

5
 + 

11𝑐

5
 

   = 1 – 2b – 2c +  
3𝑏

5
 + 

11𝑐

5
 

Which implies 
1

5
 + 

7𝑏

5
  ≤

𝑐

 5
, i.e, 1 + 7b ≤ c, a contradiction. However, the conditions of theorem 3 are trivially satisfied for 𝑝 =

𝑞 = 2 since 𝑆2𝑥 = 𝑇2𝑥 = 0 for all x in C.  
 

We explicitly observe that the results of this paper, for 𝑆 =  𝑇, are not comparable with the results, where, although the 

contradictive condition used in more general than (2), the additional assumptions on the coefficients and the uniform convexity 

of X neither imply nor are implied by the assumptions of theorem 2. 
 

Further generalizations of theorem 1, under different contractive conditions, can be found in [6]. 
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