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common fixed point theorem for self mappings, not necessarily commuting of a closed and convex subset of a Banach
space, generalizing a well known result of Gregus.

Keywords- Multi-Valued Function, Fixed Point Theorems, convex subset, Banach Spaces, Euclidean norm.

. INTRODUCTION

In this paper we establish a common fixed point theorem for self mappings, not necessarily commuting of a closed and convex
subset of a Banach space, generalizing a well known result of Gregus.

Let X be a Banach space and T be a mapping of X into itself satisfying the inequality || Tx — Ty [| < || x —y || for all X,
y in X. T is said to be non-expensive and it is well known that the class of contraction mapping and it is properly contained in
the class of all continuous mapping. Browder [6,7], Goebel [15] and Kirk [20, 21] have independently proved a fixed point
theorem for non-expansive mappings defined on a closed, bounded and convex subset of a uniformly convex Banach space
and in spaces with richer structure. A number of generalizations of non-expensive mapping have been discussed by many
authors. The works of Dotson; Emmanuele; Goebel and Zlotkiewicz [14]; Goebel [15]; Zabreiko and Krasnoselskii [45]; Kirk
[20, 21]; Massa and Roux are of special significance. A comprehensive survey concerning fixed point theorems for non-
expansive and related mappings can be found in Kirk [20, 21].

On the other hand, there are mappings which satisfy conditions similar to non-expansive and which possess a unique
fixed point. But such mapping cannot be viewed as generalizations of non-expansive mappings. Two such examples occur
recently in Gregus and Rhoades. Motivated by a contractive condition of Hardy and Rogers in this paper we extend the result
of Gregus to the case of two mappings. Let C be a closed convex subset of X. By summary, assuming b = c in the contractive
condition of Gregus, this author proved the following result.

Theorem 1: Let T be a mapping of C into itself satisfying the inequality
(1) NTX-Tyll<a. IX=YI+b. {lITx=x1I+ [ITy-ylIl}
For all X, y in C, where 0<a<1, b>0 and a+2b = 1. Then T has a unique fixed point.
We now prove the following theorem.

Theorem 2: Let S and T be mappings of C into itself satisfying the inequality
(2) 1SX—Tyll<a. [Ix=yll+b. {Il Sx—x 11+ [ Ty—-yIl } +c.

{ISx-yll+ [ITy—-xIl}
Forall x,yinC,where0<a<1,b>0anda+2b+2c=1and (1 - b). c <ab. If

3) NTX-=x1<IISx=x]lI

For all x in C, then S and T have a unique common fixed point w in C. Further, w is the unique fixed point of Sand T.

Proof: Let x be an arbitrary point in C. From (2), we deduce that
[l STXx-Tx || <a. || Tx—=x|] +b. {II STXx-=Tx || + || Tx —x || } +c.

{ISTX-Tx I+l Tx=x 1l },
which implies that
()] [| STX-Tx || <

a+b+c
1-b—c '

I TX=XII=ITx=XII.
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Similarly, we have
(5) I TSX —Sx I <1l SX— X |I.
Since (4) holds for all x in C, we deduce that
[| STSXx —STx || <[] TSx —Sx |,
Which implies, by (3) and (5), that
(6) [ TTSX —TSX I < || STSX—TSx || < || Sx —x |I.
We now define the point z by
z=2TSx+- TTSx

Then, it follows, from (6), that
) 20 TSX=z1=2 [ITTSX=z || = TTSXx -=TSX I <[ SXx =X I].
Since C is convex, z belongs to C and using (2), (5), (6) and (7), we have that

8) 2|1Sz—z|| = 112Sz—(TSx+TTSX)I| = || Sz—TSx || + || Sz—TTSx ||
<|1Sz—-TSx || +11Sz-TTSx |
<a. llz-SxIl+b.{lISz—z |l +lISx—-x 1}
+Cc. {IISz—zII+1ISXx~z|l+|I TSx~zIl }
+a. |l z=TSxIl+b.{lISz—z |l +I| Sx—x Il }
+c. {IISz—z ||+ TSx=z || +|| TTSx-z || }

<a. {ll Sx-z ||+% ISx=xI1} +2b . {lISz-z|| + || Sx—x |}

+c. {211Sz-z Il +11Sx—zI1+2 .|l Sx—x [}
On the other hand, using (2), (5) and (6), we obtain that
9) 2/1Sx=zll = [12S — (TSX+TTSX) Il = [ISXx = TSx || + || SX = TTSx ||
< SX—TSX |l + I Sx-TTSx ||
<IISx—=x1l+a. |l x=TSx |l +b.{ll Sx—x || +[| Sx—x ||}
+C. {lISx=xIl + [ITTSX-TSxI| +I| TSXx —Sx [I+]| Sx =X || }
< Sx—=xIl+a. {1l SXx—x I +[| TSx-Sx || }
+(2b+4c). [l Sx—x I
<(l1+2a+2b+4c). |l Sx—xII
=(3-2b). I Sx—xIlI.
It is easily seen that (8) and (9) imply that
211Sz—zll<a.@2-b). IISx—x Il +2b. {ll Sx—x [+ 11 Sz—z II}
+c.{211Sz-z|1+(3-b). |l Sx—x I}
Consequently we have that
(10)  NSz-zlI<k.llISx—xII,
Where

1 ,2a—ab+2b+3c—bc

}L:E ( 1-b—c

)

from the assumptions on the constants a,b and c, it follows that 0 < A < 1. We claim that h = inf {|| Sx - x || : x € C} =0,
otherwise, for 0< g < (1 - A) . h/A, there exists a point x in C such that || Sk — i ||<h + ¢ and hence (10) implies that h< || Sz —
ZII<A.IISx—x|I< A.(h+¢g) < h,a contradiction.
Thus h = 0 and the sets
Ho={xeC:{llSx-x <.}

are non-empty for any n=1, 2, ...; of course, we have
(11) Hi2H2......2H, 2 ......
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Let Hn be the closure of Hn. We now show that
(12) diam H,< (3 -a)/2bn
For any n=1, 2,....... Indeed, we obtain on using (2) for all x, y in Hp,
IX—yH<IISXx—xIl+]ISx—-yIl
SHUSX=XI+1Ty-yll+1ISx-Tyll

< Z+a.lIx-yll+b. {1 Sx—x I+ Ty-yIi}

+C. {IISX=xIl+1Ix=yll+ ITy-yll+lIx-yll}

%+@+2®.Hx—y”+ (2b + 2c)/n

(3-a)y/n+(@1-2b). lIx-Vyll

Since (3) implies that || Ty —y [ <l Sy -y II S% . The above inequality implies (12) since diam H, = diam H, and

AN

clearly it follows from (11) that
Hi2H;2......2H,2......
Thus {Hn} is a decreasing sequence of non-empty subsets of C such that the sequence {diam Hn} converges to zero as n — o
by (12). Since X is complete, so is C and by Cantor’s intersection theorem, there exists a point w in C such that
w € N%—; Hn.
This means that || Sw —w || 5% foranyn=1,2, ...... and so Sw = w. Using (3), we have Tw = w. Then w is a common fixed
point of S and T. Let us suppose that w’ is another fixed point of S. On using (2) for x = w and y = w’, we have that
W —wIl=[ISw —~Twl|
<a.llw-wll+c. {llw—-wll+Ilw-w" |}
=@+2).1lw-wll.
This implies that w” = w since a + 2¢ = 1 — 2b < 1. Therefore w is the unique fixed point of S and similarly it is shown that w is
the unique fixed point of T. This completes the proof.

Remark: By assuming S =T and ¢ = o, theorem 2 becomes theorem 1.
By enunciating theorem 2 for some iterates of S and T, we obtain the following result.

Theorem 3: Let S and T be mapping of C into itself satisfying the inequality
I Sp, —Tg, N<a. lIx=yIl +b.{lISp, —x 1+ 11Ty, -y}
+C Al Sp, =y Il + 11 Tg,— X 11}
For all x, y in C, where p and g are positive integers and a, b, ¢ are as in theorem 2. If
I Tq, =X 11 <11 Sp, —xII

For all x in C, than S and T have a unigue common fixed point w in C. Further, w is the unique fixed point of S and T.
Proof: By theorem 2, mapping Sp and Tq of C into itself have a unique common fixed point w in C. Since Sw = SSpw =
SpSw, we deduce that Sw is also a fixed point of Sp, it follows that Sw = w. Similarly, we can prove that Tw = w and

therefore w is common fixed point S and T. If w’ is another fixed point of S, then we have that Spw’ = w’ but the uniqueness

of w implies w = w’. Thus w is also the fixed point of S as well as for the mapping of T.

The following example shows the stronger generality of theorem 3 over theorem 2.

Example: Let X be the Banach space of reals with Euclidean norm and C = [0,2]. We define S and T by putting Sx = 0 if
0<x<1, Sx= % f1<x<2, Tx=01f0< x<2and T, = g . Then the condition (2) of theorem 1 does not hold, otherwise, we
should have for x =1l and y = 2.

6

S=NSi-Toll<a. 12111 +b. {1 1-211+112-2 11}
9 3
e {llc-1i+12-2113
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- 3b  1lic
=1-2b-2c+ 5 + S

., ... 1 7b . . .. . )
Which implies : + - < 55, i.e, 1+ 7b <c, a contradiction. However, the conditions of theorem 3 are trivially satisfied for p =

q = 2since S?x =T?x =0 forall xin C.

We explicitly observe that the results of this paper, for S = T, are not comparable with the results, where, although the
contradictive condition used in more general than (2), the additional assumptions on the coefficients and the uniform convexity
of X neither imply nor are implied by the assumptions of theorem 2.

Further generalizations of theorem 1, under different contractive conditions, can be found in [6].
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