COMMON FIXED-POINT THEOREMS IN BANACH SPACE

Shambhu Kumar ${ }^{1}$, Abhishek Kumar Singh ${ }^{2}$
${ }^{1}$ Research Scholar, ${ }^{2}$ PhD
${ }^{1}$ P.G. Department of Mathematics, Veer Kunwar Singh University, Ara, Bihar (INDIA)
${ }^{2}$ P.G. Department of Mathematics, Magadh University, Bodhgaya, Bihar (INDIA)

Abstract

This paper is based on the concept of Common Fixed-Point Theorems in Banach Space. Here we establish a common fixed point theorem for self mappings, not necessarily commuting of a closed and convex subset of a Banach space, generalizing a well known result of Gregus.

Keywords- Multi-Valued Function, Fixed Point Theorems, convex subset, Banach Spaces, Euclidean norm.

I. INTRODUCTION

In this paper we establish a common fixed point theorem for self mappings, not necessarily commuting of a closed and convex subset of a Banach space, generalizing a well known result of Gregus.

Let X be a Banach space and T be a mapping of X into itself satisfying the inequality $\|\mathrm{Tx}-\mathrm{Ty}\| \leq\|\mathrm{x}-\mathrm{y}\|$ for all x , y in X. T is said to be non-expensive and it is well known that the class of contraction mapping and it is properly contained in the class of all continuous mapping. Browder [6,7], Goebel [15] and Kirk [20, 21] have independently proved a fixed point theorem for non-expansive mappings defined on a closed, bounded and convex subset of a uniformly convex Banach space and in spaces with richer structure. A number of generalizations of non-expensive mapping have been discussed by many authors. The works of Dotson; Emmanuele; Goebel and Zlotkiewicz [14]; Goebel [15]; Zabreiko and Krasnoselskii [45]; Kirk [20, 21]; Massa and Roux are of special significance. A comprehensive survey concerning fixed point theorems for nonexpansive and related mappings can be found in Kirk [20, 21].

On the other hand, there are mappings which satisfy conditions similar to non-expansive and which possess a unique fixed point. But such mapping cannot be viewed as generalizations of non-expansive mappings. Two such examples occur recently in Gregus and Rhoades. Motivated by a contractive condition of Hardy and Rogers in this paper we extend the result of Gregus to the case of two mappings. Let C be a closed convex subset of X . By summary, assuming $b=c$ in the contractive condition of Gregus, this author proved the following result.

Theorem 1: Let T be a mapping of C into itself satisfying the inequality
(1) $\quad\|T x-T y\| \leq a .\|x-y\|+b .\{\|T x-x\|+\|T y-y\|\}$

For all x , y in C , where $0<\mathrm{a}<1, \mathrm{~b}>0$ and $\mathrm{a}+2 \mathrm{~b}=1$. Then T has a unique fixed point.
We now prove the following theorem.
Theorem 2: Let S and T be mappings of C into itself satisfying the inequality

$$
\begin{equation*}
\|S x-T y\| \leq a .\|x-y\|+b .\{\|S x-x\|+\|T y-y\|\}+c \tag{2}
\end{equation*}
$$

$$
\{\|S x-y\|+\|T y-x\|\}
$$

For all x, y in C, where $0<a<1, b>0$ and $a+2 b+2 c=1$ and $(1-b) . c<a b$. If
(3) $\|T x-x\| \leq\|S x-x\|$

For all x in C, then S and T have a unique common fixed point w in C. Further, w is the unique fixed point of S and T.
Proof: Let x be an arbitrary point in C. From (2), we deduce that

$$
\begin{array}{r}
\|S T x-\operatorname{Tx}\| \leq a .\|\operatorname{Tx}-\mathrm{x}\|+\mathrm{b} .\{\|\mathrm{STx}-\mathrm{Tx}\|+\|\mathrm{Tx}-\mathrm{x}\|\}+\mathrm{c} . \\
\{\|\operatorname{STx}-\mathrm{Tx}\|+\|\mathrm{Tx}-\mathrm{x}\|\}
\end{array}
$$

which implies that
(4) $\quad\|S T x-T x\| \leq \frac{a+b+c}{1-b-c}$. $\|T \mathrm{x}-\mathrm{x}\|=\|\mathrm{Tx}-\mathrm{x}\|$.

Similarly, we have
(5) $\quad\|T S x-S x\| \leq\|S x-x\|$.

Since (4) holds for all x in C, we deduce that

$$
\|S T S x-S T x\| \leq\|T S x-S x\|,
$$

Which implies, by (3) and (5), that
(6) $\quad\|\operatorname{TTSx}-\mathrm{TSx}\| \leq\|\operatorname{STS} \mathrm{x}-\mathrm{TSx}\| \leq\|S \mathrm{x}-\mathrm{x}\|$.

We now define the point z by

$$
\mathrm{z}=\frac{1}{2} \mathrm{TS} \mathrm{x}+\frac{1}{2} \mathrm{TTS} \mathrm{x} .
$$

Then, it follows, from (6), that

$$
\begin{equation*}
2\|\mathrm{TSx}-\mathrm{z}\|=2\|\mathrm{TTS} x-\mathrm{z}\|=\|\mathrm{TTS} \mathrm{x}-\mathrm{TS} \mathrm{x}\| \leq\|\mathrm{Sx}-\mathrm{x}\| . \tag{7}
\end{equation*}
$$

Since C is convex, z belongs to C and using (2), (5), (6) and (7), we have that

$$
\begin{align*}
2\|S z-z\| & =\|2 S z-(T S x+T T S x)\|=\|S z-T S x\|+\|S z-T T S x\| \tag{8}\\
& \leq\|S z-T S x\|+\|S z-T T S x\| \\
& \leq \mathrm{a} \cdot\|\mathrm{z}-\mathrm{Sx}\|+\mathrm{b} \cdot\{\|\mathrm{Sz}-\mathrm{z}\|+\|S \mathrm{~S}-\mathrm{x}\|\} \\
& +\mathrm{c} \cdot\{\|\mathrm{Sz}-\mathrm{z}\|+\|\mathrm{Sx}-\mathrm{z}\|+\|\mathrm{TSx}-\mathrm{z}\|\} \\
& +\mathrm{a} \cdot\|\mathrm{z}-\mathrm{TSx}\|+\mathrm{b} \cdot\{\|\mathrm{Sz}-\mathrm{z}\|+\|\mathrm{Sx}-\mathrm{x}\|\} \\
& +\mathrm{c} \cdot\{\|\mathrm{Sz}-\mathrm{z}\|+\|\mathrm{TSx}-\mathrm{z}\|+\|\mathrm{TTS} \mathrm{x}-\mathrm{z}\|\} \\
& \leq \mathrm{a} \cdot\left\{\|\mathrm{Sx}-\mathrm{z}\|+\frac{1}{2} \cdot\|\mathrm{Sx}-\mathrm{x}\|\right\}+2 \mathrm{~b} \cdot\{\|\mathrm{Sz}-\mathrm{z}\|+\|\mathrm{Sx}-\mathrm{x}\|\} \\
& +\mathrm{c} \cdot\left\{2\|\mathrm{Sz}-\mathrm{z}\|+\|\mathrm{Sx}-\mathrm{z}\|+\frac{3}{2} \cdot\|\mathrm{Sx}-\mathrm{x}\|\right\} .
\end{align*}
$$

On the other hand, using (2), (5) and (6), we obtain that

$$
\begin{align*}
& 2\|S x-z\|=\|2 S-(T S x+T T S x)\|=\|S x-T S x\|+\|S x-T T S x\| \tag{9}\\
& \leq\|S x-T S x\|+\| S x-\text { TTSx } \| \\
& \leq\|S x-x\|+a .\|x-T S x\|+b .\{\|S x-x\|+\|S x-x\|\} \\
& +c .\{\|S x-x\|+\|T T S x-T S x\|+\|T S x-S x\|+\|S x-x\|\} \\
& \leq\|S x-x\|+a \cdot\{\|S x-x\|+\|T S x-S x\|\} \\
& +(2 b+4 c) .\|S x-x\| \\
& \leq(1+2 a+2 b+4 c) .\|S x-x\| \\
& =(3-2 b) .\|S x-x\| \text {. }
\end{align*}
$$

It is easily seen that (8) and (9) imply that

$$
\begin{aligned}
2\|S z-z\| & \leq a \cdot(2-b) \cdot\|S x-x\|+2 b \cdot\{\|S x-x\|+\|S z-z\|\} \\
& +c \cdot\{2\|S z-z\|+(3-b) \cdot\|S x-x\|\}
\end{aligned}
$$

Consequently we have that

$$
\begin{equation*}
\|S z-z\| \leq \lambda .\|S x-x\| \tag{10}
\end{equation*}
$$

Where

$$
\lambda=\frac{1}{2}\left(\frac{2 a-a b+2 b+3 c-b c}{1-b-c}\right)
$$

from the assumptions on the constants a, b and c , it follows that $0<\underline{\lambda}<1$. We claim that $\mathrm{h}=\inf \{\|\mathrm{Sx}-\mathrm{x}\|: \mathrm{x} \in \mathrm{C}\}=0$, otherwise, for $0<\underline{\varepsilon}<(1-\underline{\lambda}) \cdot \mathrm{h} / \underline{\lambda}$, there exists a point \bar{x} in C such that $\|\mathrm{S} \bar{x}-\bar{x}\| \leq \mathrm{h}+\underline{\varepsilon}$ and hence (10) implies that $\mathrm{h} \leq \| \mathrm{Sz}-$ $\mathrm{z}\|\leq \underline{\lambda}\| .\mathrm{S} \bar{x}-\bar{x} \| \leq \underline{\lambda} .(\mathrm{h}+\underline{\varepsilon})<\mathrm{h}$, a contradiction.

Thus $\mathrm{h}=0$ and the sets

$$
\mathrm{H}_{\mathrm{n}}=\left\{\mathrm{x} \in \mathrm{C}:\left\{\|S \mathrm{x}-\mathrm{x}\| \leq \frac{1}{n}\right\}\right.
$$

are non-empty for any $n=1,2, \ldots$; of course, we have

$$
\begin{equation*}
\mathrm{H}_{1} \supseteq \mathrm{H}_{2} \supseteq \ldots \ldots \supseteq \mathrm{H}_{\mathrm{n}} \supseteq \ldots \ldots \tag{11}
\end{equation*}
$$

Let \bar{H}_{n} be the closure of H_{n}. We now show that

$$
\begin{equation*}
\operatorname{diam} \bar{H}_{n} \leq(3-\mathrm{a}) / 2 \mathrm{bn} \tag{12}
\end{equation*}
$$

For any $\mathrm{n}=1,2, \ldots \ldots$. Indeed, we obtain on using (2) for all x , y in H_{n},

$$
\begin{aligned}
\|x-y\| & \leq\|S x-x\|+\|S x-y\| \\
& \leq\|S x-x\|+\|T y-y\|+\|S x-T y\| \\
& \leq \frac{2}{n}+a \cdot\|x-y\|+b \cdot\{\|S x-x\|+\|T y-y\|\} \\
& +c \cdot\{\|S x-x\|+\|x-y\|+\|T y-y\|+\|x-y\|\} \\
& \leq \frac{2}{n}+(a+2 c) \cdot\|x-y\|+(2 b+2 c) / n \\
& =(3-a) / n+(1-2 b) .\|x-y\|
\end{aligned}
$$

Since (3) implies that $\|\mathrm{Ty}-\mathrm{y}\| \leq\|S y-\mathrm{y}\| \leq \frac{1}{n}$. The above inequality implies (12) since diam $\mathrm{H}_{\mathrm{n}}=\operatorname{diam} \overline{\mathrm{H}}_{\mathrm{n}}$ and clearly it follows from (11) that

$$
\overline{\mathrm{H}}_{1} \supseteq \overline{\mathrm{H}}_{2} \supseteq \ldots \ldots \supseteq \overline{\mathrm{H}}_{\mathrm{n}} \supseteq \ldots \ldots
$$

Thus $\left\{\overline{\mathrm{H}}_{\mathrm{n}}\right\}$ is a decreasing sequence of non-empty subsets of C such that the sequence $\left\{\right.$ diam $\left.\overline{\mathrm{H}}_{\mathrm{n}}\right\}$ converges to zero as $\mathrm{n} \rightarrow \infty$ by (12). Since X is complete, so is C and by Cantor's intersection theorem, there exists a point w in C such that

$$
\mathrm{w} \in \cap_{n=1}^{\infty} \overline{\mathrm{H}}_{\mathrm{n}} .
$$

This means that $\|\mathrm{Sw}-\mathrm{w}\| \leq \frac{1}{n}$ for any $\mathrm{n}=1,2, \ldots \ldots$ and $\operatorname{so} \mathrm{Sw}=\mathrm{w}$. Using (3), we have $\mathrm{Tw}=\mathrm{w}$. Then w is a common fixed point of S and T. Let us suppose that w^{\prime} is another fixed point of S. On using (2) for $x=w$ and $y=w$ ', we have that

$$
\begin{aligned}
\left\|w^{\prime}-w\right\| & =\left\|S w^{\prime}-T w\right\| \\
& \leq a \cdot\left\|w^{\prime}-w\right\|+c \cdot\left\{\left\|w^{\prime}-w\right\|+\left\|w-w^{\prime}\right\|\right\} \\
& =(a+2 c) \cdot\left\|w^{\prime}-w\right\| .
\end{aligned}
$$

This implies that $\mathrm{w}^{\prime}=\mathrm{w}$ since $\mathrm{a}+2 \mathrm{c}=1-2 \mathrm{~b}<1$. Therefore w is the unique fixed point of S and similarly it is shown that w is the unique fixed point of T . This completes the proof.

Remark: By assuming $\mathrm{S}=\mathrm{T}$ and $\mathrm{c}=\mathrm{o}$, theorem 2 becomes theorem 1 .
By enunciating theorem 2 for some iterates of S and T, we obtain the following result.

Theorem 3: Let S and T be mapping of C into itself satisfying the inequality

$$
\begin{aligned}
&\left\|S_{p_{x}}-T_{q_{y}}\right\| \leq \mathrm{a} .\|\mathrm{x}-\mathrm{y}\|+\mathrm{b} .\left\{\left\|S_{p_{x}}-\mathrm{x}\right\|+\left\|T_{q_{y}}-\mathrm{y}\right\|\right\} \\
&+\mathrm{c} .\left\{\left\|S_{p_{x}}-\mathrm{y}\right\|+\left\|T_{q_{y}}-\mathrm{x}\right\|\right\}
\end{aligned}
$$

For all x, y in C , where p and q are positive integers and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are as in theorem 2 . If

$$
\left\|T_{q_{y}}-\mathrm{x}\right\| \leq\left\|S_{p_{x}}-\mathrm{x}\right\|
$$

For all x in C , than S and T have a unique common fixed point w in C . Further, w is the unique fixed point of S and T .
Proof: By theorem 2, mapping Sp and Tq of C into itself have a unique common fixed point w in C . Since $\mathrm{Sw}=\mathrm{SSpw}=$ SpSw, we deduce that $S w$ is also a fixed point of $S p$, it follows that $S w=w$. Similarly, we can prove that $T w=w$ and therefore w is common fixed point S and T. If w^{\prime} is another fixed point of S, then we have that $S p w '=w '$ but the uniqueness of w implies $w=w$ '. Thus w is also the fixed point of S as well as for the mapping of T.

The following example shows the stronger generality of theorem 3 over theorem 2 .
Example: Let X be the Banach space of reals with Euclidean norm and $\mathrm{C}=[0,2]$. We define S and T by putting $\mathrm{Sx}=0$ if $0 \leq x<1, S x=\frac{3}{5}$ if $1 \leq x \leq 2, T x=0$ if $0 \leq x<2$ and $T_{2}=\frac{9}{5}$. Then the condition (2) of theorem 1 does not hold, otherwise, we should have for $\mathrm{x}=1$ and $\mathrm{y}=2$.

$$
\begin{aligned}
\frac{6}{5}=\| S_{1} & -\mathrm{T}_{2}\|\leq \mathrm{a} \cdot\| 2-1 \|+\mathrm{b} .\left\{\left\|1-\frac{3}{5}\right\|+\left\|2-\frac{9}{5}\right\|\right\} \\
& + \text { c. }\left\{\left\|\frac{9}{5}-1\right\|+\left\|2-\frac{3}{5}\right\|\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{a}+\frac{3 b}{5}+\frac{11 c}{5} \\
& =1-2 \mathrm{~b}-2 \mathrm{c}+\frac{3 b}{5}+\frac{11 c}{5}
\end{aligned}
$$

Which implies $\frac{1}{5}+\frac{7 b}{5} \leq \frac{c}{5}$, i.e, $1+7 \mathrm{~b} \leq \mathrm{c}$, a contradiction. However, the conditions of theorem 3 are trivially satisfied for $p=$ $q=2$ since $S^{2} x=T^{2} x=0$ for all x in C .

We explicitly observe that the results of this paper, for $S=T$, are not comparable with the results, where, although the contradictive condition used in more general than (2), the additional assumptions on the coefficients and the uniform convexity of X neither imply nor are implied by the assumptions of theorem 2.

Further generalizations of theorem 1, under different contractive conditions, can be found in [6].

Reference

[1]. Abraham and Robin, J. Transversal mapping and flows. New York; W.A. Ranjamin Inc, 1967.
[2]. Altman, M. Contractor directions, Directional Contractors and Directional Contractions for solving equations. Pacific J. Math. 62, 1976.
[3]. Altman, M. Directional Contractors and equations in Banach spaces. Studia Math. 46, 1973.
[4]. Asimow, L and Ellis, A.J. Convexity theory and its application in functional Analysis, New York, 1980.
[5]. Berberian, S.K. Lecture in Functional Analysis and Operator Theory. Springer - Verlag, Berlin, 1974.
[6]. Browder, F.E. Non linearity mapping of non-expensive and acertive type in Banach space. Bull AMS, 73, 1967.
[7]. Browder, F.E. The fixed [point theory of multi-valued mappings in topological vector spaces. Math. Ann. 177, 1968.
[8]. Caristi, I. Geometric fixed point theory and inwardness conditions. Proceedings of Conference on Geometry of metric and linear spaces, Lecture Notes in Mathematics. Vol 490. Springer - Verlag, Berlin.
[9]. Caristi, J. and Kirk, W.A. Mapping theorems in metric and Banach spaces. Bull. Acad. Polon. Sc. Ser. Math. Astronom. Physics. 23, 1975.
[10]. Deimling, K. Nonlinear Functional Analysis. Springer - Verlag, Heidelberg, 1985.
[11]. Dowing, D. and Kirk, W.A. Fixed point theorems for set-valued mapping in metric and Banach spaces. Math Japonica, 22, 1977.
[12]. Ekeand, I. and Teman, R. Convex Analysis and variational problems. North Holland, Amsterdam, 1976.
[13]. Ellis, A.J. The duality of partially ordered normed liner spaces. J. Lond. Math. Soc, 39, 1964, Page730-744.
[14]. Goebel, K. and Zlotkiewicz, E. Some Fixed point theorems in Banach spaces. Collog. Math. 23, 1971.
[15]. Goebel, K. Fixed points of rotative Lipschitzian mappings. Seminar Mat. E. Fisico, 10, 1983.
[16]. Halpren, B.R. A Fixed point theorems for outward maps. Trans. Amer. Math. Soc. 130, 1968.
[17]. Halpren, B.R. Fixed point theorems for set-valued maps in infinite dimensions spaces. Math. Anal. 189, 1970.
[18]. Karmardean, S. Fixed point algorithm and application. Academic Press, New York, 1977.
[19]. Kelley, J.L. and Namioka, I. Linear topological spaces. Van Nostrand, East West Press Private Limited, New York, 1968.
[20]. Kirk, N. A. A Fixed point theorems for mappings which do not increase distance. AMS Monthly. 72, 1965.
[21]. Kirk, W. A. A Fixed point theorems for non-expansive mappings satisfying certain boundary conditions. Proceedings of AMS. 50, 1975.
[22]. Lions. J.L. Variational Inequalities. Comm. Pure. Apl. Math. 20, 1967.
[23]. Martin, R. H. Non-linear operators and differential equations in Banach spaces. John Wiely and Sons, New York, 1976.
[24]. Martin, R.H. Invariant sets for evolution system. Proceedings of differential equations. Academic Press, New York, 1975.
[25]. Martin, R.H. Non Linear operators and differential equations in Banach spaces. John Wiely and Sons, New York, 1976.
[26]. Munkers, J.R. Topology. Pearson Prentice Hall, New Delhi, 2008.
[27]. Ng, Kung-Fu. The duality of partially ordered Banach spaces. Proceedings of Lond. Math. Soc. 19(3), 1969, Page 269-288.
[28]. Nussbaum, R.D. The fixed point index for local condensing maps. Ann. Mat. Pura. Appl. 89(4), 1971.
[29]. Park, S. On fixed points of set-valued directional contractions. MSRI, Korea, Rep. Ser. 8, 1984.
[30]. Patty, C. W. Foundations of Topology. Jones and Bartlett India Private Limited, New Delhi, 2010.
[31]. Rudin and Walter. Functional Analysis. Tata Mc-Graw Hill Publishing Company and Limited, New Delhi, 1973.
[32]. Siddiqi, A.H. Functional Analysis with applications. Tata Mc-Graw Hill Publishing Company and Limited, New Delhi, 1986.
[33]. Simmons, G.F. Introduction to topology and Modern Analysis. Tata Mc-Graw Hill Publishing Company and Limited, New Delhi, 2008.
[34]. Singh, B.K. and Kumar, S. Some fixed point theorems for semi- differentiable K-set contractions in ordered Banach space. The Math Mentor, An International Referred Research Journal of Mathematical Sciences. Vol.-3 No.-1. Jan-Jun, 2016. Page 39-43.
[35]. Singh, B.K. and Kumar, S. Some Contributions to fixed point Theorems for generalized non-expensive mappings. ARJPS. ISSN0972. 2432. Vol.-18 No.-1-2. (2015). Page 17-20.
[36]. Singh, B.K. and Tiwary, S.K. Some contributions to a common fixed point theorem in Banach spaces. International Journal of Advances in Science and Technology. Vol.-9. No.-2. Aug. 2014. Silicon Valley Publishers. Page 54-58.
[37]. Smart, D.R. Fixed point theorem. Cambridge University Press, Cambridge, 1974.
[38]. Taylor, A. E. Introduction to functional analysis. John Wiely and Sons, New York, 1958.
[39]. Turner, R.E.L. Transversality in Nonlinear eigen values problems. Functional Analysis, Academic Press, 1971.
[40]. Tuy, H. A fixed point theorem involving a hybrid inwardness contraction condition. Math. Nachr. 102, 1981.
[41]. Webb, J.R.L. Remarks on K-set-contractions. Bull. U.M.I. 4(1971).
[42]. Whyburn, G.T. Topological Analysis. Princeton University Press, 1964.
[43]. Wong, Y.C. and Ng, K.F. Partially ordered topological vector space. Clarendon Press, Oxford, 1973.
[44]. Yoshida, K. Functional Analysis. Springer - Verlag, Berlin, 1974.
[45]. Zabreiko, P.P. and Krasnoselskii, M.A. Solvability of non-linear operator equations. Funktsion, Analizi Ego Prilozhen B5 No. 3, (1971).

