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Abstract- In this chapter we have studied uniform convergence of iterative combination of Bernstein-Kantorovitch 

polynomials. Let                        , p > 1. The Bernstein-Kantorovitch polynomials  are defined as 

 

  

                            

 

 
 

                                        
 

 Again, the iterative combinations , ( , )n kI f x  of operator sequence .  
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is defined as  

            

          

Here, we show that   , ( , )n kI f x  converges to f(x) uniformly on [0,1].
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 kantorovitch modified equation  (1) for                   by  
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It can be also written as  

                                                                            (3) 

 

 

 

 

Where ,                                                                                 __    (4) 

 

 

 
 

 
It follows from (2) that  
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Therefore, first and second order moments are computed as  

                  
 

 

                                                
Where x = x(1-x)                

Moreover, the general moment of  rth order of Bernstein – Kantorovitch polynomial is related to moments of 

Bernstein polynomial (LorentZ[14]) by  

 

  
 

The iterative combinations                   of operator sequence {n               }n>1 is defined as  
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2. , (., )n kI x AS AN APPROXIMATION METHOD 

Here, we have shown that , (., )n kI x is a method of approximation for functions in Lp(I). 

 

Lemma :- 1 The sequence 
n 1{k ( ,.)}nf 

 is 
pL -bounded.      

Proof :- we use Holder’s inequality in summation and then in integration to obtain 

                 

     
We next use Fubini’s theorem to interchange in  

 

 

                                      
This prove that 

 
Corollary 2:- The sequences 

 

Proof:- We use (13) repeatedly in 

 (13) 

 (12) 
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   And using (14) 

         
This completes the proof. 

 

Theorem 1:- Let [0,1].f c  then , ( ,.)n kI f converges to ( .)f  uniform on [0,1] 

Proof:- It follows from continuity of on [0,1] that for a given 𝜀 > 0 such that  

  
Now, 

 
(Analogously (14) and (15)) 

 

 

 

 
This is compounded with (5) and (9) so that for every,     ɛ I 

 
This estimate in conjunction with (16) completes the proof of the theorem. 

 

Theorem 2 : The sequence  
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From coro.(2) 

                            
The proof now follows from theorem 1. 

 

3. Conclusion:- Iterative combination of Bernstein Kantorovitch polynomials                   , Converges to             

uniformly on [0,1]. 
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