UNIFORM CONVERGENCE OF ITERATIVE COMBINATIONS OF BERNSTEIN-KANTOROVITCH POLYNOMIALS

Dr. Manoj Kumar
Faculty Member
Department of Mathematics, R.J. College, Chapra (J.P.U)

Abstract- In this chapter we have studied uniform convergence of iterative combination of Bernstein-Kantorovitch polynomials. Let $f \in L^{p}[0,1], p>1$. The Bernstein-Kantorovitch polynomials are defined as

$$
\begin{array}{r}
K_{n}(f, x)=(n+1) \sum_{v=0}^{n} n_{c_{v}} x^{v}(1-x)^{n-v} \int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}} f(t) d t \tag{1}\\
=(n+1) \sum_{v=0}^{n} p_{n, v}(x) \int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}} f(t) d t
\end{array}
$$

Again, the iterative combinations $I_{n, k}(f, x)$ of operator sequence. $\left\{K_{n}(f, x)\right\}_{n \geq 1}$ is defined as

$$
I_{n, k}(f, x)=\sum_{m=1}^{k}(-1)^{m+1} k_{C_{m}} K_{n}^{m}(f, x), k \in N,
$$

where

$$
K_{n}^{2}(f, x)=K_{n}\left(K_{n} f, x\right), K_{n}^{3}(f, x)=K_{n}\left(K_{n}^{2} f, x\right), K_{n}^{m}(f, x)=K_{n}\left(K_{n}^{m-1} f, x\right) .
$$

Here, we show that $I_{n, k}(f, x)$ converges to $f(x)$ uniformly on [0,1].
Keywords :- Iterative combinations, Bernstein-Kantorovitch polynomials, Operator sequence, Uniformconverquence.

1. INTRODUCTION AND BASIC RESULTS- Lorentz ${ }^{[14]}$ defined a sequence of polynomials $\left\{B_{n}(f, x)\right\}_{n>1}$ for $f \in[0,1]$.
by equation (1),

$$
\begin{aligned}
& \left\{B_{n}(f, x)\right\}=\sum_{v=0}^{n} p_{n, v}(\mathrm{x})\left(\frac{v}{n}\right), \text { where } \\
& p_{n, v}(x)=n_{C_{v}} x^{v}(1-x)^{n-v}
\end{aligned}
$$

kantorovitch modified equation (1) for $f \in L^{p}[0,1]$ by

$$
\begin{equation*}
K_{n}(f, x)=(n+1) \sum_{v=0}^{n} p_{n, v}(x) \int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}} f(t) d t \tag{2}
\end{equation*}
$$

It can be also written as

$$
K_{n}(f, x)=\int_{0}^{1} W(n, x, t) f(t) d t,
$$

Where,

$$
\begin{equation*}
W(n, x, t)=(n+1) \sum_{v=0}^{n} p_{n, v}(x) \psi_{n, v}(t) \tag{4}
\end{equation*}
$$

$\psi_{n, v}(t)$ is characteristic function of $\left[\frac{v}{n+1}, \frac{v+1}{n+1}\right)$
$K_{n}(\cdot, x)$ is linear positive operator from $L^{p}[0,1]$ to $C[0,1]$.
It follows from (2) that

$$
\begin{align*}
K_{n}(1, x) & =1 \quad ; x \epsilon[0,1] \tag{5}\\
K_{n}(t, x) & =\frac{2 n x+1}{2(n+1)} \tag{6}\\
K_{n}\left(t^{2}, x\right) & =\frac{3 n(n-1) x^{2}+6 n x+1}{3(n+1)^{2}} \tag{7}
\end{align*}
$$

Therefore, first and second order moments are computed as

$$
\begin{equation*}
\mu_{1}(x)=K_{n}(t-x, x)=\frac{1-2 x}{2(n+1)} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{2}(x)=K_{n}\left((t-x)^{2}, x=\frac{3(n-1) \chi+1}{3(n+1)^{2}}\right. \tag{9}
\end{equation*}
$$

Where $\mathrm{x}=\mathrm{x}(1-\mathrm{x})$
Moreover, the general moment of $\mathrm{r}^{\text {th }}$ order of Bernstein - Kantorovitch polynomial is related to moments of Bernstein polynomial (Lorent $Z^{[14]}$) by

$$
\begin{equation*}
\mu_{r}(x)=\frac{n+1}{(r+1) x(1-x)} B_{n+1}\left((t-x)^{r+2}, x\right) \tag{10}
\end{equation*}
$$

The iterative combinations $I_{n, k}(f, x)$: of operator sequence $\left\{\mathrm{r} K_{n}(f, x), x\right\} \mathrm{n}>1$ is defined as
$I_{n, k}(f, x)=\sum_{m=1}^{k}(-1)^{m+1} k_{c_{m}} K_{n}^{m}(f, x)$
where

$$
\begin{aligned}
& K_{n}^{2}(f, x)=K_{n}\left(K_{n} f, x\right), \\
& K_{n}^{m}(f, x)=K_{n}\left(K_{n}^{m-1} f, x\right) .
\end{aligned}
$$

2. $I_{n, k}(., x)$ AS AN APPROXIMATION METHOD

Here, we have shown that $I_{n, k}(., x)$ is a method of approximation for functions in $\mathrm{L}^{\mathrm{p}}(\mathrm{I})$.

Lemma :- 1 The sequence $\left\{\mathrm{k}_{\mathrm{n}}(f, .)\right\}_{n \geq 1}$ is L^{p}-bounded.
Proof :- we use Holder's inequality in summation and then in integration to obtain

$$
\begin{gathered}
\left|(n+1) \sum_{v=0}^{n} p_{n, v}(x) \int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}} f(t) d t\right| \leq \sum_{v=0}^{n} p_{n, v}(x) \int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}}(n+1)|f(t)| d t \\
\leq\left\{\sum_{v=0}^{n} p_{n, v}(x)\left(\int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}}(n+1)|f(t)| d t\right)^{p}\right\}^{\frac{1}{p}} \times \\
\times\left\{\sum_{v=0}^{n} p_{n, v}(x)\right\}^{\frac{1}{q}} \\
\leq\left\{\sum_{v=0}^{n} p_{n, v}(x)\left(\int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}}(n+1)|f(t)|^{p} d t\right)\left(\int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}}(n+1) d t\right)^{\frac{p}{q}}\right\}^{\frac{1}{p}} \\
=\left\{\sum_{v=0}^{n} p_{n, v}(x) \int_{\frac{v}{n+1}}^{\frac{v+1}{n+1}}(n+1)|f(t)|^{p} d t\right\}^{\frac{1}{p}}
\end{gathered}
$$

We next use Fubini's theorem to interchange in

$$
\begin{align*}
\int_{0}^{1}\left|K_{n}(f, x)\right|^{p} d x \leq & \sum_{v=0}^{n} \int_{0}^{1} \int_{0}^{1}(n+1) p_{n, v}(x)|f(t)|^{p} \psi_{n, v}(t) d t d x \\
= & \sum_{v=0}^{n} \int_{0}^{1}(n+1)|f(t)|^{p} \psi_{n, v}(t) \times \\
& \times\left(\int_{0}^{1} p_{n, v}(x) d x\right) d t=\|f\|_{L^{p}[0,1]}^{p} \tag{12}
\end{align*}
$$

This prove that

$$
\begin{equation*}
\left\|K_{n}(f, \cdot)\right\|_{L^{p}[0,1]} \leq\|f\|_{L^{p}[0,1]} . \tag{13}
\end{equation*}
$$

Corollary 2:- The sequences
Proof:- We use (13) repeatedly in

$$
\left\{K_{n}^{m}(f, \cdot)\right\}_{n \geq 1} \text { and }\left\{I_{n, k}(f, \cdot)\right\}_{n \geq 1} \text { are } L^{p}-\text { bounded. }
$$

$$
\begin{align*}
\left\|K_{n}^{m}(f, \cdot)\right\|_{L^{p}[0,1]} & =\left\|K_{n}\left(K_{n}^{m-1} f, \cdot\right)\right\|_{L^{p}[0,1]} \\
& \leq\left\|\left(K_{n}^{m-1} f, \cdot\right)\right\|_{L^{p}[0,1]} \\
& \leq \cdots \\
\leq & \|f\|_{L^{p}[0,1]} \tag{14}
\end{align*}
$$

And using (14)

$$
\begin{align*}
\left\|I_{n, k}(f, \cdot)\right\|_{L^{p}[0,1]} & \leq \sum_{m=1}^{k} k_{C_{m}}\left\|\left(K_{n}^{m} f, \cdot\right)\right\|_{L^{p}[0,1]} \\
& \leq 2^{k}\|f\|_{L^{p}[0,1]} . \tag{15}
\end{align*}
$$

This completes the proof.
Theorem 1:- Let $f \in c[0,1]$. then $I_{n, k}(f,$.$) converges to (f$.) uniform on $[0,1]$
Proof:- It follows from continuity of on $[0,1]$ that for a given $\varepsilon>0$ such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon \text { if }\left|x_{1}-x_{2}\right|<\delta .
$$

Now,

$$
\begin{align*}
\left\|I_{n, k}(f, x)-f(x)\right\|_{c[l]} & \leq 2^{k}\left\|K_{n}^{m}(f(t)-f(x), x)\right\|_{c[l]} \\
& \leq 2^{k}\left\|K_{n}(f(t)-f(x), x)\right\|_{c[l]} . \tag{16}
\end{align*}
$$

(Analogously (14) and (15))
Let $\psi(t)$ be characteristic function of set $\{t \in[0,1] ;|t-x|<\delta\}$.

$$
\begin{aligned}
& \left|K_{n}(f(t)-f(x), x)\right| \leq \int_{0}^{1} W(n, x, t)|f(t)-f(x)| d t \\
& =\int_{0}^{1} W(n, x, t) \psi(t)|f(t)-f(x)| d t+\int_{0}^{1} W(n, x, t)(1-\psi(t)) \times|f(t)-f(x)| d t
\end{aligned}
$$

$$
\begin{equation*}
<\varepsilon \int_{0}^{1} W(n, x, t) d t+\frac{2\|f\|_{c[t]}}{\delta^{2}} \int_{0}^{1} W(n, x, t)(t-x)^{2} d t \tag{17}
\end{equation*}
$$

This is compounded with (5) and (9) so that for every, x \& I

$$
\begin{equation*}
\left|K_{n}(f(t)-f(x), x)\right|<c_{1}\left(\varepsilon+\frac{1}{n}\right) . \tag{18}
\end{equation*}
$$

This estimate in conjunction with (16) completes the proof of the theorem.

Theorem 2 : The sequence $\left\{I_{n, k}(f, \cdot)\right\}_{n \geq 1}$ converges to f in $L^{p}[I]$.
Proof: Let $\left\{f_{r}\right\}_{r \geq 1}$ be a sequence of functions in $C[I]$ converging uniformly to Then

$$
\begin{aligned}
& \left\|I_{n, k}(f, x)-f(x)\right\|_{L^{p}[l]} \leq\left\|I_{n, k}\left(f-f_{r}, x\right)\right\|_{L^{p}[I]} \\
& \quad+\left\|I_{n, k}\left(f_{r}, x\right)-f_{r}(x)\right\|_{L^{p}[l]}+\left\|f_{r}(x)-f(x)\right\|_{L^{p}[l]} \\
& \quad \leq c_{1}\left\|f-f_{r}\right\|_{L^{p}[l]}+\left\|I_{n, k}\left(f_{r}, x\right)-f_{r}(x)\right\|_{L^{p}[l]}+\left\|f_{r}(x)-f(x)\right\|_{L^{p}[l]}
\end{aligned}
$$

From coro.(2)

$$
\leq c_{2}\left\|f-f_{r}\right\|_{c[l]}+\left\|I_{n, k}\left(f_{r}, x\right)-f_{r}(x)\right\|_{c[l]}
$$

The proof now follows from theorem 1 .
3. Conclusion:- Iterative combination of Bernstein Kantorovitch polynomials $I_{n, k}(f, x)$, Converges to $f(x)$ uniformly on $[0,1]$.

References:

1. Agrawal, P.N., Singh, Karunesh kumar and Gairola, A.R.: 2010, Lp - Approximation by Iterates of Bernstein Type Polynomial, V.4, No.10, 469-479.
2. Agrawal, P.N., Gupta, V. and Gairola, A.R.: 2008, on Iterative Combination of Modified Bernstein- Type Polynomial, Georgian Math.J.15(4), 591-600.
3. Berens, H. and Lorentz, G.G.:1972, Inverse Theorem for Bernstein polynomials, Indiana university Maths. J.21, 693-708.
4. Butzer,P.L.: 1953 Linear combination of Bernstein Polynomial, Canad. J. Math 5. 559-567.
5. Derriennic, M.M.: 1981, Sur L' Approximation De Function Integrable Sur[0,1] Par Des Polymes De Bermtein modifies, J. Approx. Theory 31, 325-343.
6. Ditizian, Z. and Ivanov, K.: 1989 Bernstein type Operators and their derivatives, ibid. 56, 72-90.
7. Gairola, A.R.: 2009, Approximation by combination of operators of summation- Integral Type, Ph.D. Thesis, Indian institute of technology, Roorkee, India.
8. Hrushikesh, N. Mhaskar and Devidas, V. Pai : 2000, Fundamentals of Approximation Theory, Narosa Publishing House, New Delhi.
9. Jackson, D.: 1930, The Theory of Appl., Amer. Math. Math. Soc. Coll. Publ. Vol. 11, New York.
10. Kasna, H.S. and Agrawal, P.N.:1988, Oh Sharp estimetes and linear combinations of Modified Berstein Polynomials, Bull. Soc. Math. Belg. Ser. B 40(1), 61-71
11. Kantorovitch, L.V. : 1930, Sur certains Developments Suivant Les polynomials De La Forme De Bernstein. I.11. C.R. Acad. Sci. URSS, A., 563-568.
12. Korovkin, P.P.: 1960, Linear Operators and Approximation Theory, Translated from Russian Eddition(1959), Hindustan Publ. Corp. Delhi.
13. Kumar, Manoj (2012) : Direct and Inverse Theorems for a class of Linear Operators, Ph.D. Thesis. Magadh University Bodh-Gaya (Bihar).
14. Lorentz, G. G. : 1996, Approximation of Functions, Holt Rinehart and Winstom, New-York .
15. Stancu D.D:1968, Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures et. App. 13 (8), 1173-1194.
16. Upreti, Rita : 1982, On Sequence to Sequence Transformation, Indian J. Pure Appl. Math. 13, 454-457
17. Wood, B.: 1984, L ${ }^{p}$-Approximation of Linear combinations of Integral Bernstein Type operators Anal, Number. Theo. Approx. 13(1), 65-72.
18. Xie, L. : 2005, Point wise approx. by combinations of Bernstein Operators, J. Approx. Theory, 137(1),121.
19. Zeng, X.M. and Cheng, F. : 2001, On the Rates of Bernstein Type Operators, J. Approx. Theory, 109, 242256.
