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Abstract  

To study problems in geometry the technique known as Differential geometry is used. Through which in calculus, linear algebra and 

multi linear algebra are studied from theory of plane and space curves and of surfaces in the three-dimensional Euclidean space formed 

the basis for development of differential geometry during the 18th century and the 19th century. Since the late 19th century, differential 

geometry has grown into a field concerned more generally with the geometric structures on differentiable manifolds. The differential 

geometry of surfaces captures many of the key ideas and techniques characteristic of this field. Keywords: Curvature Manifolds, 

Riemannian geometry and surface of revolutions. 

I. Introduction  

Carl Friedrich Gaul (1777-1855)[1] is the father of differential geometry. He was (among many other things) a cartographer and many 

terms in modern differential geometry (chart, atlas, map, coordinate system, geodesic, etc.) reflect these origins. He was led to his 

Theorema Egregium by the question of whether it is possible to draw an accurate map of a portion of our planet. We can distinguish 

extrinsic differential geometry and intrinsic differential geometry. The former restricts attention to sub manifolds of Euclidean space 

while the latter studies manifolds equipped with a Riemannian metric. The extrinsic theory is more accessible because we can visualize 

curves and surfaces in R 3, but some topics can best be handled with the intrinsic theory. Organization of the paper is with respective 

sections: manifold, discussion of major branches of differential geometry, applications of differential geometry, differential geometry 

of curvature, differential geometry of surfaces and conclusions.  

II. Manifold  

In differential geometry, a differentiable manifold is a space which is locally similar to a Euclidean space [2]. In an n-dimensional 

Euclidean space any point can be specified by n real numbers. These are called the coordinates of the point. An n-D differentiable 

manifold is a generalization of n-dimensional Euclidean space. In a manifold it may only be possible to define coordinates locally. 

This is achieved by defining coordinate patches: subsets of the manifold which can be mapped into n-dimensional Euclidean space. 

1.1 Kähler manifold  

Kähler manifold is three mutually compatible structures; a complex structure, a Riemannian structure, and a symplectic structure. It 

finds important applications in the field of algebraic geometry where they represent generalizations of complex projective algebraic 

varieties via the Kodaira embedding theorem .  

Definition 2.1.1: Symplectic viewpoint: A Kähler manifold is a symplectic manifold  equipped with an integral almost-complex 

structure which is compatible with the symplectic form.   

Definition 2.1.2: Complex viewpoint: A Kähler manifold is a Hermitian manifold whose associated Hermitian form is closed. The 

closed Hermitian form is called the Kähler metric.  

Definition 2.1.3: Equivalence: Every Hermitian manifold  is a complex manifold which comes naturally equipped with a Hermitian 

form  and an integral, almost complex structure . Assuming that  is closed, there is acanonical symplectic form defined as  which is 

compatible with J, hence satisfying the first definition. On the other hand, any symplectic form compatible with an almost complex 

structure.  

1.2 Laplacians on Kähler manifolds  

Definition 2.2.1: Let * be the Hodge operator and then on an differential manifold X we can define the Laplacian as  Where d is the 

exterior derivative and .Furthermore if X is  

Kähler then d and   are decomposed as , and we can define another Laplacians   

,    that satisfy . From these facts we obtain the Hodge  

decomposition  where  is r - degree harmonic form and   is {p, q}-degree harmonic form on X.   

Remark 2.2.2: A differential form  is harmonic if and only if each  belong to the {i, j}-degree harmonic  

form.  
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Definition2.2.3: A pseudo-Riemannian manifold (M, g) is a differentiable manifold M equipped with a nondegenerate, smooth, 

symmetric metric tensor g which, unlike a Riemannian metric, need not be positivedefinite, but must be non-degenerate. Such a metric 

is called a pseudo-Riemannian metric and its values can be positive, negative or zero. The signature of a pseudo-Riemannian metric 

is (p, q) where both p and q are nonnegative.  

Definition2.2.4: Lorentzian manifold: A Lorentzian manifold is an important special case of a pseudoRiemannian manifold in which 

the signature of the metric is (1, n−1) (or sometimes (n−1, 1), see sign convention). Such metrics are called Lorentzian metrics. They 

are named after the physicist Hendrik Lorentz. 

III. Discussion Of Major Branches Of Differential Geometry  

1.3 Riemannian geometry  

It studies Riemannian manifolds, smooth manifolds with a Riemannian metric. This is a concept of distance expressed by means of a 

smooth positive definite symmetric bilinear form defined on the tangent space at each point. Riemannian geometry generalizes 

Euclidean geometry to spaces that are not necessarily flat, although they still resemble the Euclidean space at each point 

infinitesimally, i.e. in the first order of approximation.  Various concepts based on length, such as the arc length of curves, area of 

plane regions, and volume of solids all possess natural analogues in Riemannian geometry. The notion of a directional derivative of a 

function from multivariable calculus is extended in Riemannian geometry to the notion of a covariant derivative of a tensor. Many 

concepts and techniques of analysis and differential equations have been generalized to the setting of Riemannian manifolds.A 

distance-preserving diffeomorphism between Riemannian manifolds is called an isometry. This notion can also be defined locally, i.e. 

for small neighborhoods of points. Any two regular curves are locally isometric. In higher dimensions, the Riemann curvature tensor 

is an important point wise invariant associated to a Riemannian manifold that measures how close it is to being flat. An important 

class of Riemannian manifolds is the Riemannian symmetric spaces, whose curvature is not necessarily constant. These are the closest 

analogues to the "ordinary" plane and space considered in Euclidean and non-Euclidean geometry. 

1.4 Pseudo-Riemannian geometry  

Pseudo-Riemannian geometry generalizes Riemannian geometry to the case in which the metric tensor need not be positive-definite. 

A special case of this is a Lorentzian manifold, which is the mathematical basis of Einstein's general relativity theory of gravity.  

  

1.5 Finsler geometry  

Finsler geometry has the Finsler manifold as the main object of study. This is a differential manifold with a Finsler metric, i.e. a 

Banach norm defined on each tangent space. A Finsler metric is a much more general structure than a Riemannian metric.  Definition: 

A Finsler structure on a manifold M is a function  such that:  for all x, y in TM, F is infinitely differentiable in  The vertical Hessian 

of  is positive definite.  

1.6 Symplectic geometry  

Symplectic geometry is the study of symplectic manifolds. An almost symplectic manifold is a differentiable manifold equipped with 

a smoothly varying non-degenerate skew-symmetric bilinear form on each tangent space, i.e., a non degenerate 2-form ω, called the 

symplectic form. A symplectic manifold is an almost symplectic manifold for which the symplectic form ω is closed: .  Definition: A 

diffeomorphism between two symplectic manifolds which preserves the symplectic form is called a symplectomorphism. Non-

degenerate skew-symmetric bilinear forms can only exist on even dimensional vector spaces, so symplectic manifolds necessarily 

have even dimension. In dimension 2, a symplectic manifold is just a surface endowed with an area form and a symplectomorphism 

is an area-preserving diffeomorphism.   

1.7 Complex and Kähler geometry  

Definition: A real manifold , endowed with a tensor of type  i.e. a vector bundle endomorphism (called an almost complex structure) 

It follows from this definition that an almost complex manifold is even dimensional. Definition: An almost complex manifold is called 

complex if , where  is a tensor of type  related to , called the Nijenhuis tensor (or sometimes the torsion).  Remark: An almost complex 

manifold is complex if and only if it admits a holomorphic.  Definition: An almost Hermitian structure is given by an almost complex 

structure J, along with a Riemannian metric g, satisfying the compatibility condition  Definition: An almost Hermitian structure defines 

naturally a differential two-form The following two conditions are equivalent: 1.  2. where  is the Levi-Civita connection of . In this 

case,  is called a Kähler structure, and a Kähler manifold is a manifold endowed with a Kähler structure. In particular, a Kähler 

manifold is both a complex and a symplectic manifold. A large class of Kähler manifolds (the class of Hodge manifolds) is given by 

all the smooth complex projective varieties.  
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1.8 CR geometry  

CR geometry is the study of the intrinsic geometry of boundaries of domains in complex manifolds.  

  

1.9 Synthetic differential geometry  

Synthetic differential geometry is a reformulation of differential geometry in the language of topos theory, in the context of an 

intuitionistic logic characterized by a rejection of the law of excluded middle. There are several insights that allow for such a 

reformulation. The first is that most of the analytic data for describing the class of smooth manifolds can be encoded into certain fibre 

bundles on manifolds: namely bundles of jets . The second insight is that the operation of assigning a bundle of jets to a smooth 

manifold is functorial in nature. The third insight is that over a certain category, these are representable functors. Furthermore, their 

representatives are related to the algebras of dual numbers, so that smooth infinitesimal analysis may be used.Synthetic differential 

geometry can serve as a platform for formulating certain otherwise obscure or confusing notions from differential geometry. For 

example, the meaning of what it means to benatural (or invariant) has a particularly simple expression, even though the formulation 

in classical differential geometry may be quite difficult.  

  

1.10 Abstract differential geometry  

The adjective abstract has often been applied to differential geometry before, but the abstract differential geometry (ADG) of this 

article is a form of differential geometry without the calculusnotion of smoothness, developed by Anastasios  Mallios and others from 

1998 onwards. Instead of calculus, an axiomatic treatment of differential geometry is built via sheaf theory and sheaf cohomology 

using vector sheaves in place of bundles based on arbitrary topological spaces. Mallios says non commutative geometry can be 

considered a special case of ADG, and that ADG is similar to synthetic differential geometry.  

  

1.11 Discrete differential geometry  

Discrete differential geometry is the study of discrete counterparts of notions in differential geometry. Instead of smooth curves and 

surfaces, there are polygons, meshes, and simplicial complexes. It is used in the study of computer graphics and topological 

combinatorics.  

IV. Applications Of Differential  Geometry  

In physics:  

a) Differential geometry is the language in which Einstein's general theory of relativity is expressed. According to the theory, the 

universe is a smooth manifold equipped with a pseudo-Riemannian metric, which describes the curvature of space-time. 

Understanding this curvature is essential for the positioning of satellites into orbit around the earth. Differential geometry is also 

indispensable in the study of gravitational lensing and black holes.  

b) Differential forms are used in the study of electromagnetism.  

c) Differential geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. Symplectic manifolds in 

particular can be used to study Hamiltonian systems.  

d) Riemannian geometry and contact geometry have been used to construct the formalism of geometro thermodynamics which has 

found applications in classical equilibrium thermodynamics.  

In economics [2]: differential geometry has applications to the field of econometrics.  Geometric modeling (including computer 

graphics) and computer-aided geometric design draw on ideas from differential geometry. In engineering, differential geometry can 

be applied to solve problems in digital signal processing.  In probability, statistics, and information theory, one can interpret various 

structures as Riemannian manifolds, which yields the field of information geometry, particularly via the Fisher information metric. In 

structural geology, differential geometry is used to analyze and describe geologic structures. In computer vision, differential geometry 

is used to analyze shapes.   

In image processing [3], differential geometry is used to process and analyse data on non-flat surfaces.  

In wireless communications [4], Grassmanian manifold is used for beam forming techniques in multiple antenna systems.   
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V. Differential Geometry Of Surfaces  

Surface with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various 

perspectives:  Extrinsically: Relating to their embedding in Euclidean space  Intrinsically: Reflecting their properties determined solely 

by the distance within the surface as measured along curves on the surface.  Carl Friedrich Gauss (1825-1827) showed that curvature 

was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space. Surfaces naturally arise as graphs 

of functions of a pair of variables, and sometimes appear in parametric form or as loci associated to space curves. Lie groups can be 

used to describe surfaces of constant Gaussian curvature; they also provide an essential ingredient in the modern approach to intrinsic 

differential geometry through connections. This is well illustrated by the non-linear EulerLagrange equations in the calculus of 

variations: although Euler developed the one variable equations to understand geodesics, defined independently of an embedding, one 

of Lagrange's main applications of the two variable equations was to minimal surfaces, a concept that can only be defined in terms of 

an embedding.  

VII. Conclusion  

Differential geometry is normally considered as a speculation of the Riemannian geometry. The historical backdrop of improvement 

of Finsler geometry can be partitioned into four periods. The primary period of the historical backdrop of advancement of Finster 

geometry started in 1924, when three geometricians J.H. Taylor, J.L. Synge and L. Berwald at the same time began work in this field. 

Berwald is the main man who has presented the idea of association in the hypothesis of Finsler spaces. He is the maker of Finsler 

geometry and, besides, the author. He has built up a hypothesis with specific reference to the hypothesis of bend in which the  

Ricci lesa does not hold great. J.H. taylor gave the name 'Finsler space' to the complex outfitted with this summed up metric. The 

second time frame started in 1934, when E. Cartan distributed his proposition on Finsler geometry. He demonstrated that it was to be 

sure conceivable to characterize association coefficients and subsequently covariant subordinates with the end goal that the Ricci 

lemma is fulfilled. On this premise Cartan built up the hypothesis of curvature tensor and torsion. Every single consequent examination 

considering the geometry of Finsler spaces were ruled by this approach. A few mathematicians, for example, E.T. Davies , Golab , H. 

Hombu , O. Varga , V.V. Wagner have considered Finsler g•ometry along Cartan's approach. They have communicated the conclusion 

that the hypothesis has achieved its last shape. This hypothesis makes certain gadgets, which fundamentally includes the thought of a 

space whose components are not the purposes of the basic complex, but rather the line-components of the last mentioned, which 

shapes a (2n-1) — dimensional assortment. This encourages what Cartan called 'Euclidean association' which by method for specific 

proposes might be gotten extraordinarily from the crucial metric capacity.  
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