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Abstract :  In this paper we have proved the existence of the solution of perturbed abstract measure differential equation by using 

Dhage’s iteration method. The main result is based on the iteration method included in the hybrid fixed point theorem in a 

partially ordered normed linear space. Also we have solved an example for the applicability of given results in the paper. Sharma 

[23] initiated the study of nonlinear abstract differential equations and some basic results concerning the existence of solutions for 

such equations. Later , such equations were studied by various authors for different aspects of the solutions under continuous and 

discontinuous nonlinearities. The study of fixed point theorem for contraction mappings in partial ordered metric space is initiated 

by different authors. The study of hybrid fixed point theorem in partially ordered metric space is initiated by Dhage[3,4,5] with 

applications to nonlinear differential and integral equations. The iteration method is also embodied in hybrid fixed point theorem 

in partially ordered spaces by Dhage[19,20]. In this paper we adopted this iteration method technique for abstract measure 

differential equations. 
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I. INTRODUCTION 

The abstract measure differential equations involve the derivative of the unknown set-function with respect to the σ -finite 

complete measure. Some of the abstract measure differential equations have been studied in a series of papers by Joshi [1], Shendge 

and Joshi [2], Dhage [3–5], Dhage et al. [9] and Dhage and Bellale [10] for different aspects of the solutions. 

The perturbed ordinary differential equations have been treated in Krasnoselskii [6] and it is mentioned that the inverse of such 

equations yields the sum of two operators in appropriate function spaces. The Krasnoselskii [6] fixed point theorem is useful for 

proving the existence results for such perturbed differential equations under mixed geometrical and topological conditions on the 

nonlinearities involved in them. 

II.  PRELIMINARIES 

A mapping : T X X  is called D -Lipschitz if there exists a continuous and nondecreasing function : R R   such that 

|| || (|| ||)Tx Ty x y   
 

for all ,x y X , where (0) 0  . In particular if ( ) , 0,r r     T is called a Lipschitz function with a Lipschitz constant α . 

Further if α < 1, then T is called a contraction on X with the contraction constant α .  

 Let X be a Banach space and let :T X X T is called compact if ( )T X is a compact subset of X . T is called totally bounded 

if for any bounded subsets S of X, T (S ) is a  bounded subset of X . T is called completely continuous if T is continuous and 

bounded on X. Every compact operator is totally bounded, but the converse may not be true, however, two notions are equivalent 

on bounded subsets of X . The details of different types of nonlinear contraction, compact and completely continuous operators 

appear in Granas and Dugundji [7]. 

III. STATEMENT OF THE PROBLEM 

Let X be a real Banach algebra with a convenient norm ||.|| . Let ,x y X . Then the line segment xy  in X is defined by 

{ ( ),0 1}xy z X z x r y x r                  (3.1) 

Let 0x X be a fixed point and z X . Then for any 0x x z , we define the sets Sx and xS in X by 

{ | 1},xS rx r                  (3.2) 

and { | 1}xS rx r                  (3.3) 

 Let 1 2,x x xy  be arbitrary. We say 1 2x x  if 
1 2x xS S , or equivalently, 0 1 0 2x x x x . In this case we also write 2 1x x . 

Let M denote the  -algebra of all subsets of X such that (X, M) is a measurable space. Let ca (X, M) be the space of all vector 

measures (real signed measures) and define a norm ||.||  on ca (X, M) by 

||p|| = |p|(X),                 (3.4) 

where |p| is a total variation measure of p and is given by 
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| | ( ) sup | ( ) |, ,i i

i

p X p E E X




              (3.5) 

where the supremum is taken over all possible partitions 1{ : }E i N  of X. It is known that ca(X,M) is a Banach space with respect 

to the norm ||.|| given by (3.4). 

Let 
 
be a  -finite positive measure on X, and let ( , )p ca X M . We say p is absolutely continuous with respect to the 

measure   if  (E) = 0 implies p(E) = 0 for some E M . In this case we also write p   . 

Let 0x X be fixed and let M0 denote the σ - algebra on 
0xS .  Let z X  be such that 0z x  and let Mz denote the -algebra 

of all sets containing M0 and the sets of the form 0,xS x x z . 

Throughout this paper, unless otherwise mentioned, let ( , , || · ||)E  denote a partially ordered normed linear space. Two 

elements x and y in E are said to be comparable if either the relation  or x y y x holds. A non-empty subset C of E is called a 

chain or totally ordered if all the elements of C are comparable. It is known that E is regular if {xn} is a non decreasing (resp. 

non increasing) sequence in E such that *nx x  as ,n
 

then *nx x (resp. *nx x ) for all .n N  The conditions 

guaranteeing the regularity of E may be found in Heikkiländ  and Lakshmikantham [21] and the references therein. We need 

the following definitions(see Dhage [17, 18, 19] and the references therein) in what follows. 

Definition 3.1. A mapping :T E E is called isotone or non-decreasing if it preserves the order relation , that is, if x y

implies Tx Ty for all , .x y E Similarly, T is called nonincreasing if x y implies Tx Ty for all , .x y E Finally, T is called 

monotonic or simply monotone if it is either non decreasing or  non increasing on E. 

Definition 3.2. A mapping :T E E is called partially continuous at a point a E if for 0  there exists a 0  such that

|| ||Tx Ta    whenever x is comparable to a and || || .x a   T called partially continuous on E if it is partially continuous at 

every point of it. It is clear that if T is partially continuous on E, then it is continuous on every chain C contained in E. 

Definition 3.3. A non-empty subset S of the partially ordered Banach space E is called partially bounded if every chain C in 

S is bounded . An operator T on a partially normed linear space E into itself is called partially bounded if T (E) is a partially 

bounded subset of E. T is called uniformly partially bounded if all chains C in T (E) are bounded by a unique constant. 

Definition 3.4. A non-empty subset S of the partially ordered Banach space E is called partially compact if every chain C in 

S is a relatively compact subset of E. A mapping :T E E is called partially compact if T (E) is a partially relatively compact 

subset of E. T is called uniformly partially compact if T is a uniformly partially bounded and partially compact operator on E. T 

is called partially totally bounded if for any bounded subset S of E,T (S) is a partially relatively compact subset of E. If T is 

partially continuous and partially totally bounded, then it is called  partially completely continuous on E. 

Definition3.5. An upper semi-continuous and monotone non decreasing function :    is called a D-function provided

(0) 0.  An operator :T E E is called partially nonlinear D-contraction if there exists a D-function such that 

 || || (|| ||)Tx Ty x y             (3.6) 

For all comparable elements , ,x y E where 0 ( )r r   for r > 0. In particular, if ( ) , 0,r kr k T   is called a partial 

Lipschitz operator with a Lipschitz constant k and more over,if  0 < k < 1, T is called a partial linear contraction on E with a 

contraction constant k. 

 The Dhage iteration method or Dhage iteration principle embodied in the following applicable hybrid  fixed point 

theorem of Dhage[11] in a partially ordered normed linear space is used as a key tool for our work contained in this paper. The 

details of the Dhage iteration method or principle is given in Dhage [15,19,20], Dhage et al.[11, 14] and the references therein. 

Theorem3.1 (Dhage[16]). Let ( , ,|| · ||)E be a regular partially ordered complete normed linear space such that every 

compact  chain C of E . Let A, B : E E be two non decreasing operators such that 

 (a) A is partially bounded and partially nonlinear D-contraction, 

 (b) B is partially continuous and partially compact, and 

 (c) there exists an element 0x E such that 0 0 0x Ax Bx or 0 0 0x Ax Bx . 

Then the operator equation Ax + Bx = x has a solution x* in E and the sequence {xn} of successive iterations defined by                 

xn+1 = Axn + Bxn, n = 0, 1,…,converges  monotonically to x*.  

IV. MAIN RESULT 

In this section, we prove an existence and approximation  result for the AMDE (4.3) on a closed and bounded interval                

J = [a, b] under mixed partial Lipschitz and partial compactness type conditions on the nonlinearities involved in it. We place the 

AMDE (4.3) in the function space ( , )C J  of continuous real-valued functions defined on J. We define a norm || · || and the order 

relation ≤ in ( , )C J by 

 || || sup | ( ) |
t J

x x t


           (4.1) 

and ( ) ( )x y x t y t   for all t J         (4.2) 

Clearly, ( , )C J is a Banach space with respect to above supremum norm and also partially ordered w. r. t. the above partially 

order relation ≤. It is known that the partially ordered Banach space ( , )C J is regular and lattice so that every pair of elements of 

E has a lower and an upper bound in it.  

 

Given a ( , )p ca X M with p   . Consider the following Abstract Measure Differential Equation (in short AMDE) 
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   0

0

( , ( ) ,max ( ) , . ,

( ) ( ), ,

x

a x

dp
f x p s g x p s a e x x z

d

p E q E E M





 
    

       

     (4.3) 

 , , : zf g s R R    are continuous functions. where q is a given known vector measure, 
dp

d
 is a Randon-Nikodym 

derivate of p with respect to , , : zf g S R R   , and ( , ( ))xf x p S  and / 2,K    is  -integrable for each a( , )z zp c S M . 

By a solution of equation (4.3) we mean a differentiable function ( , )x C J that satisfies equation (4.3), where C (J, ) is 

the space of continuous real-valued functions defined on J. 

Differential equations with maxima are often met in the applications, for instance in the theory of automatic control. 

Numerous results on existence and uniqueness, asymptotic stability as well as numerical solutions have been obtained. To name a 

few, we refer the reader to [16, 17, 18, 19] and the references there in. The AMDE (4.3) is a linear perturbation of first type of 

nonlinear differential equations. The details of different types of perturbation appears in Dhage [14]. The special cases of the 

AMDE (4.3) in the forms 

 
  0

0

( , ( ) ), . ,

( ) ( ),

x

dp
f x p S a e x x z

d
p E q E E M


  

  

       (4.4) 

and   0

0

,max ( ) , . ,

( ) ( ),
a x

dp
g x p S a e x x z

d

P E q E E M





 
   

       

      (4.5) 

have already been discussed in the literature for different aspects of the solutions using usual Picard iteration method. See Bainov 

and Hristova [13] and the references there in for the details. In this paper we discuss the AMDE (4.3) for existence and 

approximation of solutions via a new approach based upon the Dhage iteration method. In consequence, we obtain the existence 

and approximation results for AMDEs (4.4) and (4.5) as special cases which are also new to the literature. 

In the following section we give some preliminaries and the key tool that will be used for proving the main result of this paper. 

Definition 4.1. A vector measure u ϵ ca(Sz, Mz) said to be a lower solution of the equation (4.3) if it satisfies 

 

0

( , ( )) , max ( )

( ) ( ), ,

x

a x

du
f x p S g x p S

d

u E q E E M R





 
   

        

       (4.6) 

  0. , .a e x x z  . Similarly.A vector measure ( , )z zv ca S M  is called an upper solution of the AMDE (4.3) if the above 

inequality is satisfied with reverse sign. 

We consider the following set of assumptions in what follows: 

  (H1) There exist constants λ > 0, µ > 0 with λ ≥ µ such that 

  0 ≤ [f (x, p(Sx)) + λx] − [f (x, p(Sy)) + λy] ≤ µ(x − y) 

    0. ,a e x x z   and , , .x y x y   

 (H2) There exists a constant M > 0 such that |g(x,max p(S)| ≤ M, for all   0. ,a e x x z   

 (H3) ( ,max ( ))g x p s is non decreasing in x for each 0x x z  

 (H4) AMDE (4.3) has a lower solution ( , ).z zu C S M
 

Now we consider the following AMDE 

 

0

( ) ( , ( )) ,max ( ) ,

( ) ( ),

x x

a x

dp
x p S f x p S g x p S

d

p E q E E M





 
     

       

      (4.7) 

for all 0x x z  where , : zf g S   and ( , ( )) ( , ( )) ( ), 0.x x xf x p S f x p S p S     

Remark 4.1. A vector measure ( , )z zu ca S M is a solution of the equation (4.7) if and only if it is a solution of the equation 

(4.3) defined on 0x z  

We also consider the following condition in what follows. 

 (H5) There exits a constant K  > 0 such that | ( , ( )) | ,xf x p S K  for all 0x x z   

Lemma 4.1. Suppose that the hypotheses (H2), (H3) and (H5) hold. Then a vector measure ( , )z zu ca S M is a solution of the 

AMDE (4.7) if and only if it is a solution of the nonlinear integral equation 

0( ) ( , ( ))
xx x x

xa
p x a e e e f x p S dx      

 

, max ( ) ,
xx x

a
a x

e e g x p S dx 




 
  

 
 

         (4.8) 

for all 0x x z  

Theorem 4.1. Suppose that hypotheses (H1) − (H5) hold. Then the AMDE (4.3) has a solution x* defined on 0x z  and the 

sequence  {pn}  of successive approximations defined by 
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                                            x0 = u, 

 
1 0( ) ( , ( ))

xx x x
n n xa

p x a e e e f x p S dx  
    ,max ( ) ,

xx x
na

a x

e e g x p S dx 




 
  

 
 

                            (4.9) 

for all 0x x z
 
converges monotonically to x*. 

Proof. Set ( , ).E C J Then, in view of Lemma 4.1, every compact chain C in E possesses the compatibility property with 

respect to the norm ||·|| and the order relation ≤  so that every compact chain C is in E. 

Define two operators A and B on E by 

 0 0( ) ( , ( )) , ,
xx x x

xa
Ap x a e e e f x p S dx x x z           (4.10) 

and 0( ) , max ( ) , .
xx x

a
a x

Bp x e e g x p S dx x x z 




 
  

 
 

       (4.11) 

From the continuity of the integral, it follows that A and B define the operators , : .A B E E Applying Lemma 4.1, the AMDE 

(4.3) is equivalent to the operator equation 

Ap(x) + Bp(x) = p(x), 0x x z . 

Now, we show that the operators A and B satisfy all the conditions of Theorem 4.1 in a series of following steps. 

Step I.  A and B are non decreasing on E. 

Let ,x y E be such that .x y Then by hypothesis (H1), we get  

1 2 0,

lim ( ) lim ,max ( )

lim ,max ( ) lim ,max ( ) ,max ( )

,max ( )

xx x
n nan n

a x

xx x
n n na n n

a x a x a x

x x
n

a x

x x x z

Bp x e e g x p S dx

e e g x p S dx g x p S g x p S

e e g x p S

 


 


 
  

 
  

 






 
  

 
 

      
        

            







( ),

x

a
dx

Bp x

 
 
 
 





   

for all  0x x z  

Next, we show that the operator B is also non decreasing on E. Let ,x y E be such that x ≥ y. Then p(Sx) ≥ p(Sy) for all

0 .x x z  Since y is continuous on [a, x], there exists a * [ , ]a x  such that 

 

( *) max ( ).
a x

p S p S 



  

By definition of ≤ , one has ( *) ( *).x yp S p S Consequently, we obtain 

 

max ( ) ( *) ( *) max ( )x y

a x a x

p S p S p S p S 

 

    

Now, using hypothesis (H3), it can be shown that the operator B is also non decreasing on E. 

Step II. A is partially bounded and partially contraction on E. 

Let x E be arbitrary. Then by (H5) we have 

 

0

0

0

| ( ) | | | | ( , ( )) |

| |

| | ( ),

xx x x
xa

x x

a
a

Ap x a e e e f x p S dx

a K e dx

a e K x a

  





 

 

  



  

for all 0x x z
 
Taking the supremum  over x, we obtain 

 0|| ( ) || | | ( ),aAp x a e K x a    

So A is a bounded operator on E. This implies that A is partially bounded on E. 

Let , x y E be such that x ≥ y. Then by (H1) we have 

      
 0 0( ) ( ) ( , ( )) ( , ( ))

x xx x x x x x
x ya a

Ap x Ap y a e e e f x p S dx a e e e f x p S dx          
     

 
[ ( , ( )) ( , ( ))]

xx x
x ya

e e f x p S f x p S dx  
 

   ( ) ( )
xx x

x ya
e e p S p S dx       

   ( ) ( )
xx x

x ya
e e p S p S dx       

   
xx x

a

d
e e x y dx

dx

      

   (1 )ae x y      
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for all 0x x z
  
Taking the supremum over x, we obtain 

 
|| ( ) ( ) || || ||,Ap x Ap y L x y    

for all ,x y E with x ≥ y. Hence A is a partially contraction on E and which also implies that A is partially continuous on E. 

Step III. B is partially continuous on E. 

Let { }n np  be a sequence in a chain C such that ,np p for all .n Then 

 

lim ( ) lim ,max ( )

lim ,max ( )

,max ( )

( ),

xx x
n an n

a x

xx x

a n
a x

xx x

a
a x

Bp x e e g x p S dx

e e g x p S dx

e e g x p S dx

Bp x

 


 


 





 




 
  

 
 

  
   

    

 
  

 
 









 

for all 0x x z
 
This shows that B pn(x) converges to Bp(x) point wise on 0x z . 

Now we show that { }n nBp  is an equicontinuous sequence of functions in E. Let 1 2 0,x x x z
 
with x1 < x2 . We have 

 

2 1
2 1

1 2
2 1 2

1

2 1 2 1

( ).

| ( ) ( ) | ( ) ( ) |

,max ( ) ,max ( )

( ) ,max ( ) ,max ( )

x xx xx x

a a
a x a x

x xx x xx x

a x
a x a x

y B C

y x y x Bp x Bp x

e e g x p S dx e e g x p S dx

e e e g x p S dx e e g x p S dx

  
 

 

   
 

 



  

   
    

   
   

   
     

   
   

 

 

1 20   as x x 

 

Uniformly for all n . This shows that the convergence ( ) ( )nBp x Bp x is uniform and hence B is partially continuous on 

E. 

Step IV. B is partially compact operator on E 

Let C be an arbitrary chain in E. We show that B(C) is uniformly bounded and equicontinuous set in E. First we show that 

B(C) is uniformly bounded. Let ( )y B C be any element. Then there is an element x E such that y = Bx. By hypothesis (H2) 

 

| ( ) | ( ) |

, max ( )

, max ( )

( ) ,

xx x

a
a x

x x

a
a x

b b

a

b

y x Bp x

e e g x p S dx

e g x p S dx

e M dx

e M b a r

 















 
  

 
 

 
  

 
 



  







 

for all 0x x z
 
Taking the supremum over x we obtain || || || || ,y Bx x  for all ( ).y B C Hence B(C) is uniformly bounded 

subset of E. Next we show that B (C) is an equicontinuous set in E. Let 1 2 0, ,x x x z with x1  < x2. Then ,for any ( ),y B C one has 

2 1
2 1

1 2
2 1 2

1

2 1 2 1

( ).

| ( ) ( ) | ( ) ( ) |

,max ( ) ,max ( )

( ) ,max ( ) ,max ( )

x xx xx x

a a
a x a x

x xx x xx x

a x
a x a x

y B C

y x y x Bp x Bp x

e e g x p S dx e e g x p S dx

e e e g x p S dx e e g x p S dx

  
 

 

   
 

 



  

   
    

   
   

   
     

   
   

 

 

1 20   as x x 

 

Uniformly for all ( ).y B C This shows that B(C) is an equicontinuous subset of E. So B(C) is a uniformly bounded and 

equicontinuous set of functions in E and hence it is compact in view of Arzelá-Ascoli theorem. Consequently :B E E is a 

partially compact  operator of E into itself. 

Step V. u satisfies the inequality u ≤ Au + Bu. 

By hypothesis (H4) the equation (4.3) has a lower solution u defined on E. Then we have 

 
  0

0

( , ( ) ,max ( ) , . ,

( ) ( ), ,

x

a x

du
f x p S g x p S a e x x z

d

p E q E E M





 
    

       

     (4.12) 
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Adding λ u(x) on both sides of the first inequality in (4.12), we obtain 

 

  0

0

) ( , ( ) ( ) ,max ( ) , . ,

( ) ,

x

a x

du
x f x p s x g x p S a e x x z

d

u a R





 
        

        

 

Again, multiplying the above inequality by eλx, 

  
'

0( , ( ) ( ) ,max ( ) , . ,x x
x

a x

du
e e f x p S x g x p S a e x x z

d

 




   
                 

   (4.13) 

A direct integration of (4.13) from a to x yields 

 

0( ) ( , ( )) ,max ( ) ,
x xx x x x x

xa a
a x

u x a e e e f x p S dx e e g x p S dx    




 
    

 
 

     (4.14) 

for 0x x z
 
From definitions of the operators A and B it follows that 

 u(x) ≤ Au(x) + Bu(x), 

for all 0x x z
 
Hence u ≤ Au + Bu. Thus A and B satisfy all the conditions of Theorem 2.1 and we apply it to conclude that the 

operator equation Ax + Bx = x has a solution. Consequently the integral equation and the equation (4.3) has a solution x* defined 

on J. Furthermore, the sequence 
0n n

p



of successive approximations defined by (3.1) converges monotonically to x*. This 

completes the proof. 

Remark4.2. The conclusion of Theorem 4.1 also remains true if we replace the hypothesis (H4) with the following one. 

( , )z zu ca S M  

4( )H  The AMDE (4.3) has an upper solution ( , )z zu ca S M  

Example 4.1. We consider the following AMDE 

 0

0

arctan ( ) ( ) tanh max ( ) , .

(0) 1.

x x

x

dp
xp s p s p S x x z

d

x





 
     

   


 

     (4.15) 

Here f (x, p(Sx)) = arctan xp(Sx) − p(Sx) and g(x,p(Sx)) = tan hx. The functions f and g are continuous on .J   Next, we have 

 
2

1
0 arctan ( ) arctan ( ) ( ),

1
x yxp s yp s x y   

 
 

for all , , .x y x y    Therefore
2

1
1 1 .     


Hence the function f satisfies the hypothesis(H1). Moreover, the function f 

(x, p(Sx)) = arctan xp(Sx) is bounded on 0x z  with bound / 2,K    so that the hypothesis (H5) is satisfied. The function g is 

bounded on J  by M =1, so (H2) holds. The function g(x, p(Sx)) is increasing in x for each 0 .x x z , so the hypothesis (H3) is 

satisfied. The AMDE  has a lower solution u(x) = −2x + 1, 0x x z
 
Thus all hypothesis of Theorem 4.1 are satisfied and             

hence the AMDE (4.15) has a solution x*defined on 0 .x z
 
and the sequence  

0n n
p




defined by

 
 0 2 1,x x    

 
1 0 0

0

( ) arc tan ( ) tanh max ( )
x xx x x x x

n n x n

x

p x e e e x p s dx e e x p S dx  


 

 
    

 
 

  



 

for each 0 .x x z , converges monotonically to x*. 

Remark 4.3. Finally while concluding, we mention that the study of this paper may be extended with appropriate 

modifications to the nonlinear abstract measure differential equation with maxima, 

 
0 0

0

, ( ),max ( ) , ( ),max ( )

( ) ( ), ,

x x

x x

dp
f x p s p S g x p S p S

d

p E q E E M

 

 

   
     

       


  

    (4.16) 

for all 0x x z ,where , : zf g S    are continuous functions. When 0g   the differential equation (4.16) reduces to the 

nonlinear differential equations with maxima, 

 
0

0

0

, ( ),max ( ) ,

( ) ( ),

x

x

dp
f x p S p S x x z

d

p E q E E M





 
   

   


  

      (4.17) 

which is studied in Otrocol and Rus [22] for existence and uniqueness theorem via Picard iterations under strong Lipschitz 

condition. Therefore, the obtained results for differential equation (4.14) with maxima via Dhage iteration method will include the 

existence and approximation results for the differential equation with maxima (4.15) under weak partial Lipschitz condition. 

 

 

n=0 ∗ 
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