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Abstract:  In this paper an attempt has been made to study the effect of surface roughness on the squeeze film lubrication of porous 

partial journal bearing with micropolar fluid. On the basis of Christensen’s stochastic theory for the study of rough surfaces, the 

stochastic generalized Reynolds equation is derived for the micropolar fluids. Two types of one dimensional rough structures viz; 

longitudinal roughness pattern and the transverse roughness pattern are considered. It is assumed that, the roughness asperity heights 

are small as compared to the film thickness. The averaged film pressure distribution equation is solved numerically by using the 

conjugate gradient method. According to the results, the effect of micropolar fluid is to increase the film pressure, load carrying 

capacity and reduces the squeezing velocity. The effect of surface roughness on the squeeze film characteristics is dependent on the 

type of roughness structure. 
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I. INTRODUCTION 

Self-lubricating porous journal bearings are extensively used in industrial applications because of their long life without 

any external supply of lubricants. An extensive study of porous journal bearings has been made during the last few decades Cameron 

[1], Roulean [2], Wu [3], Bhatt [4] and Murthi [5-6]. These studies are confined to Newtonian lubricants. The pulsating or 

reciprocating loads on bearings and bearing surfaces are produced in several machine components. Due to this the oil film breaks 

down and relatively high friction and wear are to be expected. When the conditions are favorable an oil film is maintained between 

the contacting surfaces when the relative motion is momentarily zero. The load carrying phenomenon arises due to the fact that a 

viscous lubricant cannot be squeezed out instantaneously from between two matting surfaces due to the resistance of lubricants to 

extrusion, pressure build up and hence load is supported by the lubricant film. When the load is relived or reversed the lubricant 

film can recover its thickness before the next cycle if the bearing has been designed to permit this build up. Such phenomenon is 

observed in reciprocating machines in which the bearings are subjected to fluctuating dynamic loads. When the bearings are subjects 

to reciprocating loads the lubricants may become contaminated with dirt and metal particles then the lubricant behaves as a fluid 

suspension. The classical Newtonian theory will not predict the accurate flow behaviour of fluid suspensions specially when the 

clearance in the bearing is comparable with the average size of the lubricant additives. An experimental study of Henniker [7] 

suggests that an addition of 2% aluminimum napthenate to turbine oil produces a many fold increases in its effective viscosity in 

thin films. Several microcontinuum theories have been proposed to take into account of intrinsic motion of material constituents. 

The Eringen’s [8] microcontinuum theory of micropolar fluid theory has gained considerable attention, as this theory has unique 

feature which is suitable for modeling a wide variety of fluid flow problems. The micropolar fluids are the subclass of micro fluids 

which include the effects of local rotating inertia couple stresses and inertial spin. Several investigators used the micropolar fluid 

theory for the study of several bearings systems.[9-12]. 

All the studies mentioned above have been made under the common assumption that the bearing surfaces are perfectly 

smooth. Even early attempts to develop a theory of friction recognized the fact that all practically prepared surfaces are rough on 

the microscopic scale. The aspect ratio and absolute height of the asperities and valleys observed under the microscope vary greatly 

depending on the material properties and on the method of surface preparation. Height of the surface roughness may range from 

0.05 micrometer or less on polished surfaces to 10 micrometer on medium machined surfaces. Even the chemical degration of the 

lubricants leading to the contamination of lubricants is also a plausible reason for developing roughness on the bearing surfaces in 

some cases. The study of surface roughness on the bearing surfaces has attracted several researchers in the field of tribology during 

the last few decades. Several methods have been proposed to study the effects of surface roughness on the bearing performance. 

Due to the random structure of the surface roughness, a stochastic approach has been used to mathematically model the surface 

roughness Christensen [13] developed a stochastic model for the study of surface roughness on hydrodynamic lubrication of 

bearings and this theory formed the basis for the study of several investigators [14-18]. In all these studies it is assumed that the 

probability density function for the random variable characterizing the surface roughness is symmetric and has zero mean. 

The aim of this paper is to study the effect of the surface roughness on the finite partial porous journal bearing with 

squeezing effect of micropolar fluids. 
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2. MATHEMATICAL FORMULATION OF THE PROBLEM  

 

The physical configuration of the problem under consideration is shown in the figure 1. The journal of radius R approaches 

the porous bearing surface at a circumferential section, θ with velocity, V 
h

t

 
 
 

The film thickness h is a function of θ and is 

given by  

   cosh C e                                                                                       (1) 

where ‘C’ is radial clearance and ‘e’ is the eccentricity of the journal centre. The lubricant in the film region and also in the porous 

region is assumed to be Eringen’s [8] micropolar fluid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1. Physical configuration of a finite partial porous journal bearing. 

 

The constitutive equations for micropolar fluids proposed by Eringen [8] simplify considerably under the usual assumptions of 

hydrodynamic lubrication. The resulting equations under steady–state conditions are  

Conservation of linear momentum: 
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Conservation of angular momentum: 
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Conservation of mass: 
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                                                                                                    (6) 

Where  , ,u v w  are the velocity components of the lubricant in the x, y and z directions, respectively, and  1 2 3, ,v v v  are micro 

rotational velocity components,   is the spin viscosity and   is the viscosity coefficient for micropolar fluids and   is the 

Newtonian viscosity coefficient. 

The flow of micropolar lubricants in a porous matrix governed by the modified Darcy law, which account for the polar effects is 

given by [20]  
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Where  * * * *, ,q u v w  is the modified Darcy velocity vector, with 

 
 

*
* k p

u
x 

 


 
   ,      

 

*
* k p

v
y 

 


 
   ,      

 

*
* k p

w
z 

 


 
                        (8) 

k  is the permeability of the porous matrix  and 
*p  is the pressure in the porous region.  

Due to continuity of fluid in the porous matrix, 
*p  satisfies the Laplace Equation. 
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The relevant boundary conditions are 

(a) at the bearing surface  0y  

          0u , 
*v v  , 0w                                                                                  (10a) 

          1 0v    , 3 0v                                                                                           (10b) 

(b) at the journal surface  y H   

         0u ,
H

v
t





, 0w                                                                                 (11a) 

         1 0v   ,  3 0v                                                                                            (11b) 

3   SOLUTION OF THE PROBLEM 

 

The generalized Reynolds equation is given by   [21] 
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Let  sf h  be the probability density function of the stochastic film thickness sh  taking the stochastic average of equation (12) 

with respect to  sf h , we obtain  
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In accordance with Christensen (1970), we assume that  
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Where / 3c   is the standard deviation. 

 Introducing the non-dimensional scheme into equation (13)  
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Into equation (13), we get the modified stochastic Reynolds type equation (13) can be written in a non- dimensional form as 
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(16) 
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the left-hand side of the stochastic Reynolds equation (16) will depend upon the structures of surface roughness and the following 

two types of directional structures are of special theoretical interest.  

Longitudinal Roughness 

 For the longitudinal model, the roughness is assumed to have the form of long narrow ridge and valleys running in the x-

direction. Therefore the lubricant film thickness can be expressed as 

    ( , )sH h h z                                      (17) 

And the Reynolds-type equation (16) can be reduced to  
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                                         (18) 

Transverse Roughness 

 For the transverse model, the roughness is assumed to have the form of long narrow ridge and valley running in the z-

direction. Therefore the lubricant film thickness can be expressed as 
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 
 

2 2

2 2 2

1 1 1 1
12 , , 12 12cos

1 4 1, ,

N p N p
E f N l H

x x z zN NE f N l H
  



                                                         

  

                                        (20) 

 

 After simplication, the modified Reynolds equations for longitudinal and transverse types of directional structure can be 

expressed as   

   2

1
, , , , 12cos

4

p p
N l H N l H

x x z z
  



        
     

        
                          (21) 

Where 

 

 

 

2

2

2

2

1
12

1

1 1
12

1

N
E f N l H longitudinal roughness

N l
N

N
transverse roughness

NE f N l

H

H







  
        


         

, ,

, ,

, ,

 

    
 

 

2

2

2

2

1 1
12

1

1
12

1

N
longitudinal roughnes

N l H

s
NE f N l H

N
E f N l H transverse roughness

N







  
  

     
  

        

, ,
, ,

, ,

 

 
2 2

3 2 212 6
3 9

Hc c
E f N l H H Hl Nl H g

 
         

 
, ,  

 
3

2 2

7

35 1

32

2

c

s s

c

g c h dh
NHc

l


 
 
   
  
  

  


tanh

 

http://www.jetir.org/


© 2019 JETIR April 2019, Volume 6, Issue 4                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1904U45 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1152 
 

 

 
3

2 2

7

3 2 2

1 35

32

1
12 6

2

c
s

s

c

c h
dh

cE f N l H

H Hl NlH
NH

l




 

   
   

  
  
  

  


, ,

tanh

 

In order to solve the stochastic generalized Reynolds equation (21) to obtain the film pressure distribution of the journal bearing 

system. The Reynolds boundary conditions  are used 
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Numerical formulation 

Since the  modified Reynolds equation (21) is too complicated to be solved analytically , a finite difference scheme is adopted. 

First, the film domain under consideration is divided by the grid spacing shown in figure 2. then the mesh for the film extent is 

constructed. To avoid the divergence of the finite difference scheme. The conservative form of finite increment formats is applied, 

in this case, the terms of equation (21) are given by 
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After the Substitution for the above finite difference forms, the modified Reynolds equation leads to 
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.                                                                (23.f)                

The pressure, p  is calculated by using the numerical method with grid spacing of 
09   and 0.05z  . 

The load carrying capacity of the bearing, W  generated by the film pressure is obtained by 

   

3 1
2 2

1
22

cos .

z

z

E W LR E p d dz





 

 



                                    (24) 

The non-dimensional load carrying capacity, W of the 1800 porous partial journal bearing  is obtained in the form  

 
3 1

2 2 2

3 1
22

cos .

z

i

z

E W C
W P d dz

d
LR

dt





 




 



  
 
 
 

            (25) 

    ,

0 0

cos .
M N

i j i

i j

P z 
 

   =  , , ,g l N   

where M+1 and N+1 are the grid point numbers in the x  and z  directions respectively. 

 Time-height relation is calculated by considering the time taken by the journal center  to move from 0   to 1   can 

be obtained from equation (25) 

 

                         

 
1

, , ,

d

d g l N



  
             (26) 

 

Where  

2

3

WC
t

LR



  is the non-dimensional response time. 

The first order non-linear differential equation (26) is solved numerically by using the fourth order Runge-Kutta method with the 

initial conditions 0   to 0  . 

 

 

4  RESULTS AND DISCUSSIONS 

   The effect of surface roughness pattern on the squeeze film characteristics of a finite partial journal 

bearings lubricated with micropolar fluids are obtained for different values of various non-dimensional parameters such as coupling 

number,

1
2

2
N



 

 
 

 
 the parameter,  ll

C
  characterizes the interaction of the bearing geometry with the lubricant 
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properties. In the limiting case as 0l  the effect of microstructures becomes negligible. The effect of permeability is observed 

through the non-dimensional permeability parameter, 0

3

kH

C

 
 
 

 and it is to be noted that as 0  the problem reduces to the 

corresponding solid case. 

The effect surface roughness is characterized by the roughness parameter  cc
C

  and it is to be noted that as 0c   the 

problem reduces to the corresponding smooth case and as 0,l N   it reduces to the corresponding Newtonian case. 

 

4.1 SQUEEZE FILM PRESSURE 

The variation of non-dimensional squeeze film pressure p  for different values of l  as a function is shown in fig.3 with 

the parameter values of  0 8 1 5 0 2 0 2N c    . , . , . , .  and 0 01.   for both types of roughness patterns. It is observed 

that, the effect of l is to  increases p  in either cases as compared to Newtonian case. Further the increase in p  is more pronounced 

for the longitudinal roughness pattern as compared to the transverse roughness pattern. 

The variation of non-dimensional film pressure p , for different values of c roughness parameter c   as a function is 

shown in fig.4.  with the parameter values of  0 2 0 8 3 0 0 6l N     . , . , . , . and 0 01  . , for both types of roughness 

patterns. It is observed that, the effect of longitudinal (transverse) roughness pattern is to increases(decreases) as compared to the 

corresponding smooth case. 

4.2 LOAD CARRYING CAPACITY 

The variation of non-dimensional load carrying capacity W  with eccentricity ratio parameter,  for different 

values of l  with 0 8 0 01 0 2 1 5N c and    . , . , . .  is shown in the fig 5. It is observed that, W  increases for the 

increasing values of   increases and this increase is more accentuated for larger values of l for both the types of roughness patterns. 

Further the increases in  W  is more pronounced for the longitudinal roughness pattern as compared to the transverse roughness 

pattern. The variation of non-dimensional load carrying capacity W  with eccentricity ratio parameter,   for different values of N  

with 0 8 0 1 0 2 2 5l c and    . , . , . .  is shown in the fig 6. It is observed that, W  increases for the increasing values of 

N  for both the types of roughness patterns. Further the increases in  W  is more pronounced for the longitudinal roughness pattern 

as compared to the transverse roughness pattern. The variation of non-dimensional load carrying capacity W  with eccentricity ratio 

parameter,  as a function of roughness parameter c  with 0 8 0 2 0 01 3 0N l and    . , . , . .  is depicted in the figure 

7. it is observed that, the effect of  longitudinal (transverse) roughness pattern is to increases (decreases) W  as compared to the 

corresponding smooth case.  

4.3 MINIMUM SQUEEZE FILM HEIGHT  

The response time of the squeeze film is one of the significant factor in the design of bearings. The response time 

is the time that will elapse for a squeeze film reduces to some minimum permissible height.  

The variation of the non-dimensional minimum film height  0 1h    with the non-dimensional time   as a function of  l  

with 0 8 0 01 0 2 1 5N c and    . , . , . .  is shown in the figure.8. It is observed that, the response time increases for 

increasing values of l  for both the types of roughness patterns, hence the pressure of the mocrostructures in the lubricant the 

squeeze film time as compared to that of the Newtonian lubricants. This result can be attributed to the increased load carrying 

capacity for the micropolar fluids as compared to the corresponding Newtonian lubricants. The variation of the non-dimensional 

minimum squeeze film height, 0h with    as a function of the coupling number N  with  0 8 0 1 0 2l c  . , . , . and 2 5  .  

is shown in the figure.9. It is observed that, the response time increases for increasing values of N for both the types of roughness 

patterns. The variation of the non-dimensional minimum squeeze film height, 0h with    as a function of non-dimensional 

roughness parameter,  c  with  0 8 0 2 0 01N l   . , . , . and 3 0  . .is depicted in the figure 10.  It is interesting to note 

that the effect of c  is to increases (decreases) the response time of the squeeze film for the longitudinal (transverse) roughness 

pattern as compared to the corresponding smooth case ( 0.0c  ). 

 

CONCLUSIONS 

On the basis of Eringen’s [8] micropolar fluid theory and Christensen stochastic theory for rough surfaces this paper predicts 

the effect of micropolar on the squeeze film characteristics of finite partial rough porous journal bearings. The following conclusion 

can be drawn on the basis of the results and discussion. 
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1) The presence of the microstrucutre additives in the lubricants enhances the load carrying capacity and squeeze film 

time as compared to the corresponding Newtonian case. 

2) The Christensen surface roughness longitudinal (Transverse) pattern on the finite porous partial journal bearings 

increases (decreases) the load carrying capacity and the squeeze film time as compared to the corresponding smooth 

case. 

3) The presence of the porous facing on the bearing surface reduces the load carrying capacity and response time. 

 

NOMENCLATURE 

C  radial clearance 

c  roughness parameter 

c  non-dimensional parameter (= c/C) 

e  eccentricity 

E  expectancy operator 

h  mean film thickness  cosh C e    

h  non-dimensional film thickness (= h/C) 

H  film thickness  sh h   

sh  stochastic film thickness 

0h  minimum film height 

0H  porous layer thickness 

k  permeability of the porous matrix  

l  characteristic length of the polar suspension 

1

2

4





 
  

  
  

 

 

l  non-dimensional form of  l (= l/C) 

L  bearing length 

N  coupling number 

1

2

2



 

 
  

    
 

 

p  lubricant pressure  

  standard deviation  

R  radius of the journal 

p  non-dimensional pressure 
  2

2

E p C

d
R

dt




 
 
 

  
  
  

 

t  time 

, ,u v w  components of fluid velocity in x, y and z directions, respectively 

1 2 3, ,v v v  microrotational velocity components in the x , y and z directions 

, ,r z  cylindrical co-ordinates 

V  squeeze velocity, cos
H

C
t t




  
 

  
 

W  load carrying capacity 

W  non-dimensional load carrying capacity 
  2

3

E W C

d
L R

d t




 
 
 
  
  

  

 

, ,x y z  Cartesian co-ordinates 
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  eccentricity ratio (= e/C) 

  spin viscosity 

  viscosity co-efficient for micropolar fluids 

  viscosity co-efficient 

  dimensionless response time 

  permeability parameter (= kH0/C3) 

  circumferential co-ordinate (= x/R) 

  length to diameter ratio (=L/2R) 

  gradient operator 
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FIGURE CAPTIONS 

Fig    1:    Physical configuration of a finite partial porous journal bearing. 

Fig    2:    Grid point notation for the film element.  

Fig 3: Non-dimensional film pressure p  for different values of l with    0 8 0 01 1 5 0 2N      . , . , . , .  and 0 2c  . . 

Fig 4: Non-dimensional film pressure p  for different values of c with 0 2 0 8 3 0 0 6l N     . , . , . , .  and 0 01  . . 

Fig 5: Variation of non-dimensional load W  with   for different values of l with 0 8 0 01 0 2N c  . , . , .  and 1 5  . . 

Fig 6: Variation of non-dimensional load W  with   for different values of N with 0 8 0 1 0 2l c  . , . , .  and 2 5  . . 

Fig 7: Variation of non-dimensional load W  with   for different values of c with 0 2 0 8 0 01l N   . , . , .  and 3 0  . . 

Fig 8: Variation of non-dimensional minimum film height 
0h  verses   for different values of l with 

0 8 0 01 0 2N c  . , . , .  and 1 5  . . 

Fig 9: Variation of non-dimensional minimum film height 
0h  verses   for different values of N with 0 8 0 1 0 2l c  . , . , .  

and 2 5  . . 

Fig 10: Variation of non-dimensional minimum film height 
0h  verses   for different values of c with 

0 2 0 8 0 01l N   . , . , .  and 3 0  . . 
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                         Longitudinal case                              Transverse case 

            Fig.3.Non-dimensional film pressure p for different values of l with  

                      0.8, 0.01, 1.5, 0.2 0.2N and c       . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Non-dimensional film pressure p  for different values of l with    0 8 0 01 1 5 0 2N      . , . , . , .  and 0 2c  . . 
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                  Longitudinal case      Transverse case 

 

                         

Fig.4. Non-dimensional film pressure p for different values of c with  

                                  0.2, 0.8, 3.0, 0.6 0.01l N and       . 

 

 

  

  

 
 

 
 

  

   

 

 

 

 
 

  

  

  

http://www.jetir.org/


© 2019 JETIR April 2019, Volume 6, Issue 4                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1904U45 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1160 
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

40

45

50

55

60

Fig.5. Variation of non-dimensional load W with  for different

           values of l with N = 0.8,  = 0.01, c = 0.2 and  = 1.5
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Fig.6. Variation of non-dimensional load W with  for different

          values of N with l = 0.8,  = 0.1, c = 0.2 and  = 2.5
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Fig.7. Variation of non-dimensional load W with  for different 

          values of c with N = 0.8, l = 0.2,  = 0.01 and  = 3.0
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Fig.8. Variation of non-dimensional minimum film height h
0
 verses  for 

          different values of l with N = 0.8,  = 0.01, c = 0.2 and  = 1.5
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Fig.9. Variation of non-dimensional minimum film height h
0
 with  for 

              different values of N with l = 0.8,  = 0.1, c = 0.2 and  = 2.5
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Fig.10. Variation of non-dimensional minimum film height h
0
 with  for 

            different values of c with N = 0.8, l = 0.2,  = 0.01 and  = 3.0
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