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INTEGRAL EQUATION INVOLVING 

HERMITE POLYNOMIAL AS ITS KERNEL.. 

[PRASANTH.P, ASSISTANT PROFESSOR, GOVT. COLLEGE, KASARGOD, KERALA] 

 

1. ABSTRACT:  In this paper an integral equation involving Hermite polynomial as kernel is solved 

by the method of Laplace transform. Certain special cases are included. 
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2. NOTATIONS AND RESULTS USED: 
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  1)( , Re (m) > 0, Re (p) > - Re (b)          (2.5) 
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3. MAIN RESULTS. 

THEOREM-I 
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(3.2)                               is the solution of the other, provided 

i) n is a positive integer 

ii) a and b are complex numbers 

iii) )(1 tf n  is sectionally continuous for  xt0 and 0)0(......)0()0( 1/  nfff . 
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PROOF: 
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 . Using (2.3) and (2.4) in (3.1), the integral equation (3.1) becomes; 
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Using (2.2), (2.3), (2.4) and (2.9)in (3.2), the integral equation (3.2) becomes, 
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      (3.4). 

The equations (3.3) and (3.4) can be obtained from each other. Hence by LERCHS theorem [3,P.5] it 

follows that each of the integral equation(3.1) and (3.2) is the solution of the other. 

SPECIAL CASE: 

Put a = 1, b = 0, in (3.1) and (3.2), to get the following result. 
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Is the solution of the other, provided, 

i) n is a positive integer 
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THEOREM-II 

Each of the integral equation  
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  is the solution of the other, provided, 

i)   n is a positive integer 

ii) a and b are complex numbers 

iii) )(1 tf n  is sectionally continuous for  xt0 and 0)0(......)0()0( 1/  nfff . 

iv) 
du

d
D  ,           

)()!2(

!)2(

2

12

1






nn

n
A

n


. 

PROOF; 
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Using (2.2), (2.4) and (2.7) in (3.7), the integral equation (3.7) becomes, 
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Using (2.2), (2.3), (2.4) and (2.8) in (3.8), the integral equation (3.8) becomes, 
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The equations (3.9) and (3.10) can be obtained from each other. Hence by LERCHS theorem [3, P.5], 

it follows that each of the integral equation (3.7) and (3.8) is the solution of the other. 

SPECIAL CASE: 

In (3.7) and (3.8), put a =, and b = 0, to get: 
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Is the solution of the other, provided, 

i)   n is a positive integer 
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THEOREM-III. 

Each of the integral equations  
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Is the solution of the other, provided, 

i)   n is a positive integer 

ii) a and b are complex numbers 

iii) )(1 tf n  is sectionally continuous for  xt0 and 0)0(......)0()0( 1/  nfff  
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PROOF: Similar to that of Theorem –II using (2.9). 

SPECIAL CASE: 

In (3.11) and (3.12), put a =, and  b = 0, to get: 
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Is the solution of the other, provided, 
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