INTEGRAL EQUATION INVOLVING HERMITE POLYNOMIAL AS ITS KERNEL..

[PRASANTH.P, ASSISTANT PROFESSOR, GOVT. COLLEGE, KASARGOD, KERALA]

1. ABSTRACT: In this paper an integral equation involving Hermite polynomial as kernel is solved by the method of Laplace transform. Certain special cases are included.

Key words: Hermite polynomial, Laplace transforms

2. NOTATIONS AND RESULTS USED:

The Laplace Transform $f(p)=\int_{0}^{\infty} e^{-p t} f(t) d t, \quad \operatorname{Re}(p)>0$ is represented as $F(p) \underset{\bullet}{\bullet} f(t)(2.1)$
Erdelyi \{ [1], p. 129,131,144,172,238\}
If $F(p) \stackrel{\bullet}{=} f(t)$ then $F(p+a) \stackrel{\bullet}{\bullet} e^{-a t} f(t)$
If $F(p) \stackrel{\bullet}{=} f(t), f(0)=f^{\prime}(0)=\ldots . . .=f^{n-1}(0)=0$ and $f^{n}(t)$ is continuous, then

$$
\begin{equation*}
p^{n} F(p) \stackrel{\bullet}{=} f^{n}(t) \tag{2.3}
\end{equation*}
$$

If $F_{1}(p) \stackrel{\bullet}{=} f_{1}(t)$ and $F_{2}(p) \stackrel{\bullet}{=} f_{2}(t)$, then
$\int f_{1}(u) f_{2}(t-u) d u \stackrel{\dot{=}}{\bullet} F_{1}(p) F_{2}(p)$
$\Gamma m(p+b)^{-m} \stackrel{\bullet}{=} t^{m-1} e^{-b t}, \operatorname{Re}(m)>0, \operatorname{Re}(\mathrm{p})>-\operatorname{Re}(\mathrm{b})$
$e^{\beta t} H e_{2 n+1}\left[2^{\frac{1}{2}}(\alpha-p)^{\frac{1}{2}} t^{\frac{1}{2}} \underset{\bullet}{\bullet}(-2)^{-n}\left(\frac{1}{2 \pi}\right)^{\frac{1}{2}}(\alpha-\beta)^{\frac{1}{2}} \frac{(2 n+1)!}{n!} \frac{(p-\alpha)^{n}}{(p-\beta)^{n+\frac{3}{2}}}, \quad \operatorname{Re}(p)>\operatorname{Re}(\beta)\right.$
(2.6)

$$
\begin{equation*}
e^{\beta t} t^{-\frac{1}{2}} H e_{2 n}\left[2^{\frac{1}{2}}(\alpha-p)^{\frac{1}{2}} t^{\frac{1}{2}} \stackrel{\bullet}{\bullet}(-2)^{-n}(\pi)^{\frac{1}{2}} \frac{(2 n)!}{n!} \frac{(p-\alpha)^{n}}{(p-\beta)^{n+\frac{1}{2}}}, \quad \operatorname{Re}(p)>\operatorname{Re}(\beta)\right. \tag{2.7}
\end{equation*}
$$

$t^{\alpha-1}{ }_{1} F_{1}(n ; \alpha ; k t) \underset{\sim}{\oplus} \Gamma(\alpha) p^{n-2}(p-k)^{-n}, \quad \operatorname{Re}(p)>0, \operatorname{Re}(k)>0, \operatorname{Re}(\alpha)>0$.
$t^{2 \alpha+2 n-1}{ }_{1} F_{2}\left(n ; \alpha+n ; \alpha+n+\frac{1}{2} ; \frac{-1}{4} a^{2} t^{2}\right) \dot{=} \Gamma(2 \alpha+2 n) p^{-2 \alpha}\left(p^{2}+a^{2}\right)^{-n}, \quad \operatorname{Re}(\alpha+n)>0$.

3. MAIN RESULTS.

THEOREM-I

Each of the integral equation

$$
\begin{align*}
& f(t)=\int_{0}^{t} e^{b(t-u)} H e_{2 n+1}\left[(2 a)^{\frac{1}{2}}(t-u)^{\frac{1}{2}}\right] g(u) d u \tag{3.1}\\
& g(t)=A \int_{0}^{t} e^{b(t-u)}(t-u)^{n-\frac{3}{2}}{ }_{1} F_{2}\left[n, \frac{n}{2}-\frac{1}{4}, \frac{n}{2}+\frac{1}{4}, \frac{a^{2}}{4}(t-u)^{2}\right] \times\left[(D-b)(D+a-b)^{n} f(u)\right] d u \tag{3.2}
\end{align*}
$$ is the solution of the other, provided

i) $\quad \mathrm{n}$ is a positive integer
ii) $\quad a$ and b are complex numbers
iii) $\quad f^{n+1}(t)$ is sectionally continuous for $0 \leq t \leq x<\infty$ and $f(0)=f^{\prime}(0)=\ldots . .=f^{n-1}(0)=0$.
iv) $\quad D \equiv \frac{d}{d u}, \quad A=\frac{(-2)^{n} n!(2 \pi)^{\frac{1}{2}}}{a^{\frac{1}{2}}(2 n+1)!\Gamma\left(n-\frac{1}{2}\right)}$.

PROOF:

Let $F(p) \stackrel{\bullet}{=} f(t)$ and $G(p) \stackrel{\bullet}{\oplus} g(t)$. Using (2.3) and (2.4) in (3.1), the integral equation (3.1) becomes;

$$
\begin{equation*}
F(p)=(-2)^{-n}\left(\frac{a}{2 n}\right)^{\frac{1}{2}} \frac{(2 n+1)!}{n!}(p-a-b)^{n}(p-b)^{-\left(n+\frac{3}{2}\right)} G(p) \tag{3.3}
\end{equation*}
$$

Using (2.2), (2.3), (2.4) and (2.9)in (3.2), the integral equation (3.2) becomes,

$$
\begin{equation*}
G(p)=(-2)^{-n}\left(\frac{2 \pi}{a}\right)^{\frac{1}{2}} \frac{n!}{(2 n+1)!}(p-a-b)^{-n}(p-b)^{\left(n+\frac{3}{2}\right)} \tag{3.4}
\end{equation*}
$$

The equations (3.3) and (3.4) can be obtained from each other. Hence by LERCHS theorem [3,P.5] it follows that each of the integral equation(3.1) and (3.2) is the solution of the other.

SPECIAL CASE:

Put $a=1, b=0$, in (3.1) and (3.2), to get the following result.

Each of the integral equations

$$
\begin{align*}
& f(t)=\int_{0}^{t} H e_{2 n+1}(2)^{\frac{1}{2}}(t-u)^{\frac{1}{2}} g(u) d u \\
& g(t)=A \int_{0}^{t}(t-u)^{n-\frac{3}{2}}{ }_{1} F_{2}\left[n, \frac{n}{2}-\frac{1}{4}, \frac{n}{2}+\frac{1}{4}, \frac{a^{2}}{4}(t-u)^{2}\right] \times\left[D(D+1)^{n} f(u)\right] d u
\end{align*}
$$

Is the solution of the other, provided,
i) $\quad \mathrm{n}$ is a positive integer
ii) $\quad f^{n+1}(t)$ is sectionally continuous for $0 \leq t \leq x<\infty$ and $f(0)=f^{\prime}(0)=\ldots \ldots=f^{n-1}(0)=0$
iii) $\quad D \equiv \frac{d}{d u}, \quad A=\frac{(-2)^{n} n!(2 \pi)^{\frac{1}{2}}}{a^{\frac{1}{2}}(2 n+1)!\Gamma\left(n-\frac{1}{2}\right)}$.

THEOREM-II

Each of the integral equation
$f(t)=\int_{0}^{t} e^{b(t-u)}(t-u)^{\frac{-1}{2}} H e_{2 n}\left[(2 a)^{\frac{1}{2}}(t-u)^{\frac{1}{2}}\right] g(u) d u \quad$ and
$g(t)=A \int_{0}^{t} e^{b(t-u)}(t-u)^{n-\frac{3}{2}}{ }_{1} F_{1}\left[n, n+\frac{1}{2} ; a(t-u)\right] \times\left[(D-b)^{n+1} f(u)\right] d u$
is the solution of the other, provided,
i) $\quad n$ is a positive integer
ii) $\quad a$ and b are complex numbers
iii) $\quad f^{n+1}(t)$ is sectionally continuous for $0 \leq t \leq x<\infty$ and $f(0)=f^{\prime}(0)=\ldots \ldots=f^{n-1}(0)=0$.
iv) $\quad D \equiv \frac{d}{d u}, \quad A=\frac{(-2)^{n} n!}{\pi^{\frac{1}{2}}(2 n)!\Gamma\left(n+\frac{1}{2}\right)}$.

PROOF;

Let $f(t) \stackrel{\bullet}{\oplus} F(p)$ and $\quad g(t) \underset{\bullet}{\stackrel{\bullet}{\bullet}} G(p)$
Using (2.2), (2.4) and (2.7) in (3.7), the integral equation (3.7) becomes,

$$
F(p)=(-2)^{-n} \pi^{\frac{1}{2}} \frac{(2 n)!}{n!}(p-a-b)^{n}(p-b)^{-\left(n+\frac{1}{2}\right)} G(p)
$$

Using (2.2), (2.3), (2.4) and (2.8) in (3.8), the integral equation (3.8) becomes,

$$
\begin{align*}
& G(p)=A \Gamma\left(n+\frac{1}{2}\right)(p-b)^{\left(n+\frac{1}{2}\right)}(p-a-b)^{-n} F(p) \tag{3.9}\\
& =\frac{(-2)^{n} n!}{\pi^{\frac{1}{2}}(2 n)!}(p-a-b)^{-n}(p-b)^{\left(n+\frac{1}{2}\right)} F(p) . \tag{3.10}
\end{align*}
$$

The equations (3.9) and (3.10) can be obtained from each other. Hence by LERCHS theorem [3, P.5], it follows that each of the integral equation (3.7) and (3.8) is the solution of the other.

SPECIAL CASE:

In (3.7) and (3.8), put $a=$, and $b=0$, to get:

Each of the integral equations

$$
\begin{equation*}
f(t)=\int_{0}^{t}(t-u)^{\frac{-1}{2}} H e_{2 n}\left[(2)^{\frac{1}{2}}(t-u)^{\frac{1}{2}}\right] g(u) d u \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
g(t)=A \int_{0}^{t}(t-u)^{n-\frac{3}{2}} F_{1}\left[n, n+\frac{1}{2} ;(t-u)\right] \times\left[D^{n+1} f(u)\right] d u \tag{3.11}
\end{equation*}
$$

Is the solution of the other, provided,
i) $\quad \mathrm{n}$ is a positive integer
ii) $\quad f^{n+1}(t)$ is sectionally continuous for $0 \leq t \leq x<\infty$ and $f(0)=f^{\prime}(0)=\ldots . .=f^{n-1}(0)=0$
iii) $\quad D \equiv \frac{d}{d u}, \quad A=\frac{(-2)^{n} n!}{\pi^{\frac{1}{2}}(2 n)!\Gamma\left(n+\frac{1}{2}\right)}$.

THEOREM-III.

Each of the integral equations
$f(t)=\int_{0}^{t} e^{b(t-u)}(t-u)^{\frac{-1}{2}} H e_{2 n}\left[(2 a)^{\frac{1}{2}}(t-u)^{\frac{1}{2}}\right] g(u) d u$
and
$g(t)=A \int_{0}^{t} e^{b(t-u)}(t-u)^{n-\frac{3}{2}}{ }_{1} F_{1}\left[n, \frac{n}{2}-\frac{1}{4}, \frac{n}{2}+\frac{1}{4} ; \frac{a^{2}}{4}(t-u)^{2}\right] \times\left[(D+a-b)^{n+1} f(u)\right] d u$.

Is the solution of the other, provided,
i) $\quad \mathrm{n}$ is a positive integer
ii) a and b are complex numbers
iii) $\quad f^{n+1}(t)$ is sectionally continuous for $0 \leq t \leq x<\infty$ and $f(0)=f^{\prime}(0)=\ldots \ldots=f^{n-1}(0)=0$
iv) $\quad D \equiv \frac{d}{d u}, \quad A=\frac{(-2)^{n} n!}{\pi^{\frac{1}{2}}(2 n)!\Gamma\left(n-\frac{1}{2}\right)}$.

PROOF: Similar to that of Theorem -II using (2.9).

SPECIAL CASE:

In (3.11) and (3.12), put $a=$, and $b=0$, to get:
Each of the integral equations

$$
\begin{equation*}
f(t)=\int(t-u)^{\frac{-1}{2}} H e_{2 n}\left[2^{\frac{1}{2}}(t-u)^{\frac{1}{2}}\right] g(u) d u \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
g(t)=A \int_{0}^{t}(t-u)^{n-\frac{3}{2}}{ }_{1} F_{2}\left[n, \frac{n}{2}-\frac{1}{4}, \frac{n}{2}+\frac{1}{4} ; \frac{1}{4}(t-u)^{2}\right] \times\left[(D+1)^{n+1} f(u)\right] d u \tag{3.15}
\end{equation*}
$$

Is the solution of the other, provided,
i) $\quad \mathrm{n}$ is a positive integer
ii) $\quad f^{n+1}(t)$ is sectionally continuous for $0 \leq t \leq x<\infty$ and $f(0)=f^{\prime}(0)=\ldots \ldots=f^{n-1}(0)=0$
iii) $\quad D \equiv \frac{d}{d u}, \quad A=\frac{(-2)^{n} n!}{\pi^{\frac{1}{2}}(2 n)!\Gamma\left(n-\frac{1}{2}\right)}$.

REFERENCES:

1. Erdelyi, A [1954]: Tables of integral transforms, Vol-I,Megraw Hill, New York.
2. Erdelyi, A [1954]: Tables of integral transforms, Vol-II,Megraw Hill, New York.
3. Melaehean, N.V [1962]:Laplace Transforms and their applications to differential equations, Power publications, Newyork.
4. Mohemmed.T [1977]:Special functions and their applications; Ph.D Thesis, Calicut University.
5. Nair, V.C [1968]: Investigations in transform calculus, Ph.D Thesis, University of Rajasthan.
6. Rainvalle, E.D [1977]: Special functions, Chelsea publishing company, New York.
7. Rusiya, K.C [1966]:An integral equation involving confluent hyper geometric functions, Math Student,
8. Sharma, C. K [1977]: On generalized Laplace transforms II, Vijnana Parishad Anusandhan Patrika.
9. Srivastava, K. N [1964]: Integral Equations involving confluent hyper geometric function as kernel. J.Analyze.Math.
10. Srivastava, H. M and Buschman, R.G [1974]:Some convolution integral equations. Indag. Math.
11. Ta Li [1960]: A new class of integral transforms, Proc. Amer.Math.Soc. II.
