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ABSTRACT 

We study power-mixture type functional equations in terms of Laplace–Stieltjes transforms of 

probability distributions on the right half-line [0, ∞). These equations arise when studying 

distributional equations of the type Z d= X + TZ, where the random variable T ≥ 0 has known 

distribution, while the distribution of the random variable Z ≥ 0 is a transformation of that of X ≥ 

0, and we want to find the distribution of X. We provide necessary and sufficient conditions for 

such functional equations to have unique solutions. The uniqueness is equivalent to a 

characterization property of a probability distribution. We present results that are either new or 

extend and improve previous results about functional equations of compound-exponential and 

compound-Poisson types. In particular, we give another affirmative answer to a question posed by 

J. Pitman and M. Yor in 2003. We provide explicit illustrative examples and deal with related 

topics. 

Keywords: distributional equation; power-mixture transform; functional equation; 

characterization of distributions 

INTRODUCTION 

We deal with probability distributions on the right half-line [0, ∞) and their characterization properties 

expressed in the form of distributional equations of the type Z d= X + TZ, where the random variable T ≥ 0 

has known distribution, the distribution of the random variable Z ≥ 0 is a transformation of that of X ≥ 0, and 

we want to find the distribution of X. By using Laplace–Stieltjes (LS) transform of the distributions of the 

random variables involved, we transfer such a distributional equation to a functional equation of a specific 

type. Our goal is to provide necessary and sufficient conditions for such a functional equation to have a 

unique solution. The unique solution is equivalent to a characterization property of a probability distribution. 

The impetus for considering ill-specified random variables is that, in most practical situations, no information 

about the random variable’s probability distribution is available. The analyst, lacking adequate information 

to faithfully model a random variable, often will assume additional knowledge, and hope to safeguard this 

assumption with sensitivity analysis.  
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Our proposed definition of ill-specified random variables requires limited amounts of information that often 

will be available, we will show that our definition also encompasses many of the established procedures for 

modeling ambiguity. 

Characterization results for probability distributions are important part of statistics and probability 

applications. This includes generic distribution classifiers like characteristic or mean residual life functions 

as well as specific identification methods like independence of mean and variance estimators for Gaussian 

distributions; see Galambos and Kotz (2006) and Ahsanullah (2017), and references therein. In this note, we 

focus on the former and show that the information about doubly quantile censored variance function is 

sufficient to uniquely determine the distribution up to an additive constant. 

The power-mixture functional equations arise when studying power-mixture transforms involving two sii-

processes. Here the abbreviation “sii-processes” stands for stationary independent-increments stochastic 

processes. Think, for example, of the Lévy processes. Consider a continuous time sii-process (X1(t))t≥0, and 

let F1,t be the (marginal) distribution of X1(t); we write this as X1(t) ∼ F1,t .  

Moreover, let X1 := X1(1) ≥ 0 be the generating random variable for the process, so X1 ∼ F1 := F1,1 uniquely 

determines the distribution of the process (X1(t))t≥0 at any time t. Thus, we have the multiplicative semigroup 

(Fˆ 1,t(s))t≥0 satisfying the power relation 

 

Here Fˆ 1,t is the LS transform of the distribution F1,t of X1(t): 

 

 

LITERATUTE REVIEW 

Nagaraja H. (2016), A characterization is a certain distributional or statistical property of a statistic or 

statistics that uniquely determines the associated stochastic model. This chapter provides a brief survey of 

the huge literature on this topic. Characterizations based on random (complete or censored) samples from 

common univariate discrete and continuous distributions, and some multivariate continuous distributions 

are presented. Characterizations that use the properties of sample moments, order statistics, record 

statistics, and reliability properties are reviewed. Applications to simulation, stochastic modeling and 

goodness-of-fit tests are discussed. An introduction to further resources is given. 

S. Chukova, B. Dimitrov and Z. Khalil (2012), A concept of the lack-of-memory property at a given time 

point c > 0 is introduced. It is equivalent to the concept of the almost-lack-of-memory (ALM) property of the 

random variables. A representation theorem is given for the cumulative distribution function of such random 
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variables as well as for corresponding decompositions in terms of independent random variables. It is shown that 

a periodic failure rate for a random variable is equivalent to the ALM property.  

Andrew Weatherbee, Mitsuro Sugita, Kostadinka Bizheva, Ivan Popov, and Alex Vitkin (2016), The 

distribution of backscattered intensities as described by the probability density function (PDF) of tissue-

scattered light contains information that may be useful for tissue assessment and diagnosis, including 

characterization of its pathology. In this Letter, we examine the PDF description of the light scattering 

statistics in a well characterized tissue-like particulate medium using optical coherence tomography (OCT). 

It is shown that for low scatterer density, the governing statistics depart considerably from a Gaussian 

description and follow the K distribution for both OCT amplitude and intensity. The PDF formalism is shown 

to be independent of the scatterer flow conditions; this is expected from theory, and suggests robustness and 

motion independence of the OCT amplitude (and OCT intensity) PDF metrics in the context of potential 

biomedical applications. 

Magdy E. El-Adll (2018), In this paper, characterization of probability distributions by equalities of two 

different generalized order statistics (gos) or dual generalized order statistics (dgos) is considered. It is proved 

that, if two different gos or dgos via the same distribution function (df) F are equal, then F has at most two 

growth points. 

 

MEAN AND VARIANCE BOUNDS 

We call a real-valued variable an ill-specified random variable when we do not know the precise 

probability measure on, but we have enough information to constrain the possible realizations to a 

finite number of points, sets or bounded intervals, i.e., , and we can constrain the 

probability mass assignments on Ai to points or bounded intervals; i.e., . At 

least one of the sets or intervals must be nondegenerate in order to have an ill-specified random 

variable. Furthermore, may overlap. Thus,   . If there is a singleton set 

, then there is also a lower bound . Since in this ill-specified space we 

cannot determine the precise values of the distribution’s mean and variance, we propose procedures 

for obtaining their optimal bounds. 

An unwary approach for obtaining the bounds is to use a limited or no exhaustive-sensitivity 

analysis. However, this approach does not guarantee optimal bounds. For example, consider the 

following outcome-probability pairs  where all ’s 

and ’s are crisp except two ’s which are only known to be in the given intervals. By stepping through 

the two intervals in small increments, the mean and variance points in Fig. 1 were generated. Now, 

as might be suggested by a limited or no exhaustive sensitivity-analysis approach, we calculate the 

mean and variance points using the high, low, and midpoint values of the two intervals. The results 
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are the nine highlighted points in the figure. Note the minimum variance is not found by the 

sensitivity-analysis approach. The smallest of the nine variance values found by sensitivity analysis 

is 2.02, whereas the minimum variance determined with techniques from Section III-B is 1.91. 

 

Fig. 1: Typical, irregularly shaped region of E-V points for an ill-specified random variable 

The characterization theorems based on conditional second (and higher) moments have been studied in the 

literature only in specific contexts. For example, in Unnikrishnan Nair and Sudheesh (2010) the authors study 

how the properties of truncated variance function could result in characterizations for specific classes of non-

negative absolutely continuous random variables satisfying certain properties; see Unnikrishnan Nair and 

Sudheesh (2006) where the required condition, given in Theorem 2.1(iv), is discussed in details. Also, in El-

Arishy (2005) the conditional variance characterization in a specific context of some discrete probability 

distributions is given. Finally, it should be noted that the potential usage of truncated moments as classifiers 

has been communicated in the literature (e.g., in Laurent, 1974) but we found no direct treatment of this 

property and the discussion about its potential application. 

While the conditional variance function with quantile set trimming seems to be a natural (local) extension of 

standard variance, it is not considered in the literature as a benchmark framework. This is quite surprising, as 

the conditional second moments seem to be more natural (e.g. for engineering applications) compared to 

higher-order moment analysis, e.g. when the tail structure is assessed. In fact, it was shown recently in Jelito 

and Pitera (2018) that a simple test based on conditional second moments outperforms most of the popular 

benchmark methods when normality testing is considered. More explicitly, the statistical test power for 

various choices of popular alternatives (t-student, logistic, and Cauchy distributions) was shown to be bigger 

compared to reference normality tests based on Jarque–Bera, Anderson– Darling, or Shapiro–Wilk statistics; 

see Jelito and Pitera (2018,). 

The characterization result presented in this note shows that conditional variances might be used for efficient 

distribution identification and goodness-of-fit testing. In particular, it shows that one could develop efficient 

statistical testing framework, by controlling the number of included conditional sets with the sample size. 

Preliminaries 

Let (Ω, Σ, P) be a probability space and let L 0 := L 0 (Ω, Σ, P) denote the set of all (a.s. identified) random 

variables. For any X ∈ L 0 and A ∈ Σ, such that P[A] ̸= 0, we use 
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to denote (possibly infinite) conditional variance of X on A; all regularity conditions are taken for granted. 

For brevity, for any X ∈ L 0 and 0 ≤ a < b ≤ 1 we define a quantile conditioned variance 

        (2.2) 

where AX (a, b):= {ω ∈ Ω : X(ω) ∈ [QX (a), QX (b)]} is the quantile set with the lower quantile function 

QX : [0, 1] → [−∞, +∞] given by 

QX (u): = inf {x: u ≤ FX (x)}, u ∈ [0, 1), QX (1): = sup {x: FX (x) < 1}.  (2.3) 

It should be noted that VX (a, b) is well defined as for 0 ≤ a < b ≤ 1, we get  

P [AX (a, b)] = FX (QX (b)) − F l X (QX (a)) ≥ b − a > 0, (2.4) 

where F l X (t): = P (X < t), t ∈ R, denotes the Kolmogorov distribution function. Indeed, recalling that QX 

is the left continuous generalized inverse of the cumulative distribution function, and for any u ∈ [0, 1] we 

have F l X (QX (u)) ≤ u ≤ FX (QX (u)), we get (2.4). Also, it is worth noting that for u ∈ [0, 1] we get  

FX (QX (u)) − F l X (QX (u)) = P [X = QX (u)]. (2.5) 

Finally, note that the quantile conditional variance function given in (2.2) is defined up to an additive 

constant, i.e. for any fixed X ∈ L 0, 0 ≤ a < b ≤ 1, and c ∈ R, we get AX (a, b) = AX+c (a, b), and VX (a, b) 

< ∞ if additionally 0 < a and b < 1. 

MAIN RESULT 

In this section we state and prove the main result of this note, i.e., that the information about quantile-based 

conditional variance is sufficient to characterize the distribution of X up to an additive constant. 

Theorem 1.1 Let X, Y be any random variables such that for 0 ≤ a < b ≤ 1 we have VX (a, b) = VY (a, b). 

Then, there exists c ∈ R such that FX (t) = FY+c (t), t ∈ R, i.e. the laws of X and Y coincide almost surely 

up to an additive-constant. 

Proof. Following the second proof of Theorem 14.1 in Billingsley (2008) we observe that a random variable 

X has the same distribution as the random variable QX (U), where U(ω):= ω is a uniformly distributed random 

variable defined on the standard probability space ( (0, 1), B((0, 1)), λ) and λ is the Lebesgue measure. 

 

Recalling (2.4) and noting that 
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we get 

 

Consequently, using the property 

 

We get 

 

Now, let ∆KX denote the mixed second difference of KX, 

 

Now, we show that the intervals where the quantile function Q is constant are determined by the conditional 

variance V. Let ϕ, ψ : [0, 1] −→ [0, 1] be given by ϕ(0) = 0, ψ(1) = 1 and 

 

For u ∈ [0, 1] such that ϕ(u) < ψ(u), the quantile function QX is constant on (ϕ(u), ψ(u)], and for any v ∈ (0, 

1) such that v ̸= u and QX (v) = QX (u), we get v ∈ [ϕ(u), ψ(u)]. Therefore, for u ∈ (0, 1), we get ϕ(u) = F l 

X (QX (u)) and ψ(u) = FX (QX (u)). Consequently, recalling (3.1), for 0 < a < b < 1, we get 
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Furthermore, for ϕ(u) > 0 and small ε > 0, we get QX (ϕ(u) − ϵ) < QX (u), which implies 

 

Since F (QX (ϕ(u) − ϵ)) = ψ(ϕ(u) − ϵ), we get limv→ϕ(u)− ψ(v) = ϕ(u). Next, since KX (a, b) is continuous, 

for b such that ϕ(b) > 0, we get KX (a, ϕ(b)) = limv→ϕ(b)− KX (a, ψ(v)) and, due to (3.5), for ϕ(a) < ϕ(b), 

we obtain 

 

Note that if ψ(a) = ψ(b), then K(ψ(a), ψ(b)) = 0, and if ϕ(b) = ϕ(a), then K(ϕ(a), ϕ(b)) = 0. 

Now, if ϕ(u) < ψ(u), then the quantile function QX (·) is constant on (ϕ(u), ψ(u)), so both KX (·, ψ(u)) and 

KX (ϕ(u), ·) are linear on (ϕ(u), ψ(u)). Combining all facts, we get that integrals KX and ∆KX are determined 

by the conditional variance VX. 

Now, let us assume that Y is such that VX (a, b) = VY (a, b) for all 0 ≤ a < b ≤ 1. Since QX and QY are left-

continuous and nondecreasing, the equality ∆KX = ∆KY implies that QX (b)−QX (a) = QY (b)−QY (a) for 

all a, b ∈ [0, 1]. This concludes the proof. 

Theorem 1.1 could be easily extended to the multivariate case e.g., by using information about conditional 

variances for all linear combination of marginal random variables. In the following theorem we use ⟨·, ·⟩ to 

denote the standard Euclidean inner product operator. 

Theorem 1.2 Let X, Y be any n-dimensional random vectors such that for 0 ≤ a < b ≤ 1 and α ∈ R n we have 

V⟨α,X⟩(a, b) = V⟨α,Y⟩(a, b). Then, there exists c ∈ R n such that FX (t) = FY+c (t), t ∈ R n , i.e. the laws of 

X and Y coincide almost surely up to an additive shift. 

The proof of Theorem 1.2 follows directly from Theorem 1.1 combined with Theorem 19 from Galambos 

(1995). To conclude, let us present two simple remarks which outline potential application of Theorem 1.1; 

similar remarks are true for the multivariate case. 
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Fig. 2: The plot illustrates the values of R = VX (0.1, 0.3)/VX (0.3, 0.7) under the assumption that X 

has t-student (left) or symmetric α-stable (right) distribution. R is presented as a function of the 

underlying parameters: df for t-student (left) and α for symmetric α-stable (right). The values were 

obtained using Monte Carlo samples of size 10 000 000. In both cases R is a decreasing function of the 

underlying parameter. 

Remark 1.1 (Statistical Goodness-of-fit Testing). As quantile-based conditional variances are easy to 

estimate and could be used to uniquely classify the distribution (up to an additive constant), they are a natural 

candidate for goodness-of-fit (shape) statistical testing. In practical applications, it is reasonable to choose a 

fixed set of specific quantile conditioned sets and then compare conditional variances with the theoretical 

variances coming from the reference distribution. By introducing various quantile splits and appropriate ratios 

one might check certain distributional properties rather than the full fit. For example, the comparison of Vˆ 

X (a, b) and Vˆ X (1 − a, 1 − b) for any 0 ≤ a < b ≤ 1 might be used to test distribution symmetry. Also, for a 

< 0.5, the tail set conditional variances Vˆ X (0, a) and Vˆ X (1 − a, 1) might be compared with the central 

set conditional variance Vˆ X (a, 1 − a) in order to assess heaviness of the distribution tail. 

In fact, exemplary normality testing framework based on conditional variance estimation has been recently 

introduced in Jelito and Pitera (2018). Using the fact that VX (0, 0.2) = VX (0.2, 0.8) = VX (0.8, 1) for 

Gaussian random variables we can define the test statistic 

 

where Vˆ X (a, b) refers to sample conditional variance constructed by sorting the sample, taking appropriate 

subset of observation, and applying standard sample variance estimator.1 In Jelito and Pitera (2018), it is 

shown that the power of related normality test for various choices of popular symmetric alternatives (e.g. t-

student, logistic, and Cauchy distributions) is surprisingly big. In particular, test statistic N outperforms 

popular alternatives like Jarque–Bera, Anderson–Darling, or Shapiro–Wilk tests for samples of size 20, 50, 

100, and 250; see Jelito and Pitera, 2018, Also, it is easy to show that N is asymptotically normal. 
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CONCLUSION 

Conditional variances could be also used for parameter fitting. While being relatively simple to establish, the 

framework based on conditional second moments is much more flexible compared e.g. to method of 

moments. This is due to the fact that one could consider multiple choices of quantile intervals (a, b) and take 

their linear combinations; note that sample quantile conditional variance estimators are consistent. To 

illustrate this, let us consider the ratio R := VX (0.1, 0.3)/VX (0.3, 0.7) for two distribution families: t-student 

and symmetric α-stable; see Ahsanullah (2017) for details. In Fig. 2, we present the values of R as a function 

of degrees of freedom (df) and stability index (α) parameters, respectively; note that R is invariant to affine 

transformations of X. One could see that in both cases R is monotone wrt. parameter change, so that is could 

be used for parameter identification. 
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