ON I^δ_g- CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

 ¹ Dr. C. Santhini, ² B. Priyatharshini
¹ Associate Professor, ² M. Phil Scholar Department of Mathematics,
V. V. Vanniaperumal. College for Women, Virudhunagar - 626 001, India.

Abstract : In this paper we define and study a new class of generalized closed sets called I_g^{δ} - closed set in ideal topological

space. Also we discuss the characterizations and properties of $\,I_{_{g}}^{\delta}$ - closed set.

Keywords: δ - closed set, τ_g^* - closed set, g - local function, I_g^{δ} - closed set.

AMS 2010 Subject Classification: 54A05.

I. INTRODUCTION

Levine introduced the novel idea of generalized closed set in 1970[6] which is a generalization of closed sets. Nowadays ideals are playing very important role in General topology. It was the works of Vaidyanathaswamy [11], Jankovic and Hamlett [4] which initiated the research in applying topological ideals to generalize the most basic properties in General topology. In 2014, g-local functions was introduced by K. Bhavani [1]. Recently using g - local functions I_g^{**} - closed sets was introduced by C. Santhini et al in ideal topological spaces [10]. Following the trend, we have introduced and investigated a new class of generalized closed sets in an ideal topological space called I_g^{δ} - closed set.

1.1 Preliminaries

A collection $I \subseteq P(X)$ is called an ideal on X if it satisfies the following conditions:

- a. $A \in I$ and $B \subseteq A$ implies $B \in I$
- b. $A \in I$ and $B \in I$ implies $A \cup B \in I$.

An ideal topological space is a topological space (X, τ) with an ideal I on X and it is denoted by (X, τ, I) . For a subset A of X, $A^*(I, \tau) = \{x \in X / A \cap U \notin I \text{ for every } U \in \tau(x)\}$ is called the local function of A with respect to I and τ [5] and simply we can write A^* . A Kuratowski closure cl*(.) for a topology $A^*(I, \tau)$, called the *- topology and finer than τ , is defined by $cl^*(A) = A \cup A^*[11]$. A subset A of an ideal topological space (X, τ, I) is *- closed [4], if $A^* \subseteq A$. The complement of *- closed set is called a *- open set. A subset A of a topological space (X, τ) is said to be g - closed [9], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. The complement of a g - closed set is called a g - open set. For every subset A of X, $A_g^*(I, \tau) = \{x \in X / U_x \cap A \notin I$, for every g - open set U_x containing x } is called the g - local function of A [2] with respect to I and τ_g and is denoted by A_g^* . Also, $cl_g^*(A) = A \cup A_g^*$ [2] is a Kuratowski closure operator for a topology $\tau_g^* = \{X - A / cl_g^*(A) = A\}$ on X which is finer than τ_g . A subset A of an ideal topological space (X, τ, I) is said to be *- perfect [4] if $A^* = A$. A subset A of a topological space (X, τ, I) is said to be $\tau_g^* - closed$ [2] if $A_g^* \subseteq A$.

Definition 1.2:

A subset A of a topological space (X, τ) is said to be δ - closed[12] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x \in X / int(cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$. The complement of a δ - closed set is called a δ - open set. **Definition1.3:**

A subset A of an ideal topological space (X, τ, I) is said to be semi - I - closed (sI- closed)[3] if $int(cl^*(A)) \subseteq A$. **Definition 1.4:** A subset A of a topological space (X, τ) is said to be

a. g^* - closed [1] if cl(A) \subset U whenever A \subset U and U is g - open in (X, τ).

b. $g\delta$ - closed [9] if cl(A) \subseteq U whenever A \subseteq U and U is δ - open in (X, τ).

c. rg - closed [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

Definition 1.5: A subset A of an ideal topological space (X, τ, I) is said to be

- a. I_g closed [9] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ, I) .
- b. I_{gg} closed [1] if $A_g^* \subset U$ whenever $A \subset U$ and U is g open in (X, τ, I) .
- c. * g closed [8] if cl (A) \subseteq U whenever A \subseteq U and U is * open in (X, τ , I).
- d. I_g * closed [7] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is * open in (X, τ , I).

© 2019 JETIR May 2019, Volume 6, Issue 5

- e. $I_{g\delta}$ -closed [9] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is δ open in (X, τ, I)
- $f. \quad I_{rg}\text{-}closed \ [9] \ if \ A^* \subseteq U \ whenever \ A \subseteq U \ and \ U \ is \ regular \ open \ in \ (X, \ \tau, \ I).$
- g. I_g^{**} closed [10] if $A_g^* \subseteq U$ whenever $A \subseteq U$ and U is * open in (X, τ, I) .

Definition 1.6: A subset A of an ideal topological space (X, τ, I) is said to be a χ_I -set [9] if $A = U \cap V$, where U is a δ - open set and V is *- perfect set.

Definition 1.7: A subset A of an ideal topological space (X, τ , I) is said to be a γ_{I} - set [9] if A = U \cap V, where U is a δ - open set and V is a *- perfect set.

2. I_{σ}^{δ} - closed set

In this section a new class of generalized closed sets called I_g^{δ} - closed set is introduced and several characterizations of this notion are discussed.

Definition 2.1: A subset A of an ideal topological space (X, τ, I) is said to be an I_g^{δ} - closed set if $A_g^* \subseteq U$ whenever $A \subseteq U$ and U is δ - open in X.

Example 2.2: Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $I = \{\phi, \{a\}\}$. Then $\{a\}$ is an I_g^{δ} - closed set.

Theorem 2.3: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then

- a. Every τ_{g}^{*} closed set is I_{σ}^{δ} closed.
- b. Every *- closed set is I_g^{δ} closed.
- c. Every $g\delta$ closed set is I_g^{δ} closed.
- d. Every I_{gg} closed set is I_g^{δ} closed.
- e. Every I_g closed set is I_g^δ closed.
- f. Every δ closed set is I_{σ}^{δ} closed.
- g. Every g^* closed set is I_{α}^{δ} closed.
- h. Every I_g^{**} closed set is I_g^{δ} closed.

Proof:

- a. Let A be an τ_g^* closed set and U be a δ open set such that A \subseteq U. Since A is τ_g^* closed, $A_g^* \subseteq A$, which implies $A_g^* \subseteq A \subseteq U$ and hence A is an I_g^{δ} - closed set.
- b. Let A be a * closed set and U be a δ open set such that A \subseteq U. Since A is * closed A^{*} \subseteq A which implies A^{*} \subseteq A \subseteq U. By theorem 3.7 [2], $A_g^* \subset A^* \subseteq A \subseteq U$. Consequently A is an I_g^{δ} - closed set.
- c. Let A be a $g\delta$ closed set and U be a δ open set such that A \subseteq U. Since A is $g\delta$ closed, cl (A) \subseteq U. By theorem 3.7 [2], $A_g^* \subset cl (A) \subseteq U$ and hence A is an I_g^{δ} - closed set.
- d. Let A be a Igg closed set. By theorem 2.14[1], A is τ_g^* closed set. Then by (a) result follows.
- e. Let A be an I_g closed set and U be a δ open set such that $A \subseteq U$ and hence $A \subseteq U$ where U is open. Since A is

I_g - closed, $A^* \subseteq U$. By theorem 3.7 [2], $A_g^* \subset A^* \subseteq U$. Hence A is an I_g^{δ} - closed set.

- f. Let A be a δ closed set. Since every δ closed set is * closed, by (b), result follows.
- Let A be a g^* closed set and U be a δ open set such that A \subseteq U. Then A \subseteq U where U is g open and since A is g^* closed, cl (A) \subseteq U. By theorem 3.7 [2], $A_g^* \subset$ cl (A) \subseteq U and hence A is an I_g^{δ} - closed set.
- h. Let A be an I_g^{**} closed set and U be a δ open such that $A \subseteq U$. Since every δ open set is * open, $A \subseteq U$ where U is * - open and since A is I_g^{**} - closed, $A_g^* \subseteq U$ and so A is I_g^{δ} - closed.

Remark 2.4: Converses of the above theorem are not true as seen from the following examples.

 $\textbf{Example 2.5: Let } X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\} \text{ and } I = \{\phi\}. \text{ Then } \{c\} \text{ is } I_g^\delta \text{ - closed but not } \tau_g^* \text{ closed.}$

Example 2.6: Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{c\}$ is I_g^{δ} - closed but not * - closed.

© 2019 JETIR May 2019, Volume 6, Issue 5

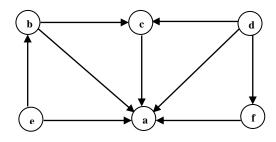
www.jetir.org (ISSN-2349-5162)

Example 2.7: Let X = {a, b, c, d}, $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$ and I = { ϕ , {d}}. Then {c} is I_g^{δ} - closed but not $g\delta$ - closed.

Example 2.8: Let X = {a, b, c, d}, $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$ and I = { ϕ }. Then {c} is I_g^{δ} - closed but not I_{gg} - closed. **Example 2.9:** Let X = {a, b, c, d}, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and I = { ϕ }. Then {c} is I_g^{δ} - closed but not I_g - closed. **Example 2.10:** Let X = {a, b, c, d}, $\tau = \{\phi, X, \{a\}, \{c\}, \{d\}, \{a, d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ and I = { ϕ }. Then {b} is I_g^{δ} - closed but not δ - closed.

Example 2.11: Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{c\}, \{d\}, \{a, d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, \{a, b, c\}\}$ and $I = \{\phi\}$. Then $\{a, c\}$ is I_{g}^{δ} - closed but not g^{*} - closed.

Remark 2.12: From the above results, we get the following diagram where $a \rightarrow b$ represents a implies b but not conversely.



(a)
$$I_g^{\delta}$$
 - closed (b) *- closed (c) I_g^{**} - closed (d) g^* - closed (e) δ - closed (f) g- closed.

Remark 2.13: sI - closed sets and I_g^{δ} - closed sets are independent.

Example 2.14: Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$ and $I = \{\phi\}$. Then $\{a\}$ is sI - closed but not I_g^{δ} - closed. Also $\{a, b, d\}$ is I_g^{δ} - closed but not sI -closed.

3. Characterizations of I_g^{δ} - closed set

Theorem 3.1: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If $A \subset A_g^*$, then the following are equivalent.

- a. A is I^{δ}_{σ} closed.
- b. $cl_g^*(A) \cap F = \phi$ whenever $A \cap F = \phi$ and F is δ closed.

Proof

(a) \Rightarrow (b) Suppose A \cap F = ϕ where F is δ - closed. Then A \subseteq X - F where X - F is δ - open. Since A is I_g^{δ} - closed, $A_g^* \subseteq X$ - F. By theorem 3.10 [2], $cl_g^*(A) = A_g^* \subseteq X$ - F. Hence $cl_g^*(A) \cap F = \phi$.

(b) \Rightarrow (a) Let U be a δ -open set such that $A \subseteq U$. Then $A \cap (X - U) = \phi$, where X - U is δ - closed. By (b) $cl_g^*(A) \cap (X - U) = \phi$ which implies $cl_g^*(A) \subseteq U$. By theorem 3.10 [2], $A_g^* = cl_g^*(A) \subseteq U$. Consequently A is I_g^{δ} - closed.

Theorem 3.2: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If $A \subset A_g^*$, then the following are equivalent.

- a. A is an $I_{g\delta}$ closed set.
- b. A is an I_g^{δ} closed set.

Proof

(a) \Rightarrow (b) Let A be an $I_{g\delta}$ - closed set and U be a δ - open set such that $A \subseteq U$. Since A is $I_{g\delta}$ -closed, $A^* \subseteq U$. By theorem 3.10 [2], $A_g^* = A^* \subseteq U$. Hence A is I_g^{δ} - closed.

(b) \Rightarrow (a) Suppose A is I_g^{δ} - closed and U be a δ - open set such that $A \subseteq U$. Since A is an I_g^{δ} - closed set, $A_g^* \subseteq U$. By theorem 3.10 [2], $A^* = A_g^* \subseteq U$. Hence A is an $I_{g\delta}$ - closed set.

Theorem 3.3: For a subset A of an ideal topological space (X, τ , I), then the following are equivalent, when $A \subset A_g^*$.

a. A is *- closed.

b. A is a γ_I - set and a $I_{\rm g}^{\delta}$ - closed set.

Proof:

(a) \Rightarrow (b) Let A be *- closed and U be a δ - open set such that A \subseteq U. By theorem 3.10 [2], $A_g^* = A^* \subseteq A \subseteq U$ and so A is I_g^{δ} - closed. Also A = X \cap A, where X is δ - open and A is *- closed implies A is a γ_I - set.

(b) \Rightarrow (a) Let A be a γ_{I} - set and an I_{g}^{δ} - closed set. Then A = U \cap V, where U is δ - open and V is *- closed. Since A = U \cap V, A \subseteq U and A is I_{g}^{δ} - closed, implies $A_{g}^{*} \subseteq$ U. By theorem 3.10 [2], $A^{*} = A_{g}^{*} \subseteq$ U. Also since A \subseteq V, by theorem 3.7 [2], $A^{*} \subseteq V^{*}$. Since V is *- closed, $V^{*} \subseteq$ V. Thus we have $A^{*} \subseteq$ V which implies $A_{g}^{*} \subseteq$ U \cap V = A. Consequently A is *- closed.

Theorem 3.4: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If $A \subset A_g^*$ and A is I_g^{δ} -closed, then

a. A is I_{rg} - closed.

b. A is rg - closed.

Proof:

(a) Let A be an I_g^{δ} - closed set and U be a regular open set such that $A \subseteq U$. Then $A \subseteq U$ where U is δ - open and since A is I_g^{δ} - closed, $A_g^* \subseteq U$. By theorem 3.10 [2], $A^* = A_g^* \subseteq U$. Consequently A is an I_{rg} - closed set. (b) Similar to the proof of (a).

Remark 3.5: The converses of the above theorem are not true as seen from the following examples.

Example 3.6: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $I = \{\phi\}$. Then $\{a, b\}$ is I_{rg} -closed but not I_{σ}^{δ} - closed.

Example 3.7: Let X= {a, b, c, d}, $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$ and I = { ϕ , {b}, {c}, {b, c}}. Then {a, d} is rg - closed but not an I_g^{δ} - closed set.

Theorem 3.8: Let (X, τ, I) be an ideal topological spaces and let $A \subseteq X$. If $A \subset A_g^*$, then the following hold.

- a. If A is * g closed, then A is I_g^{δ} closed.
- b. If A is I_g * closed, then I_g^{δ} closed.
- c. If A is * perfect, then A is I_{σ}^{δ} closed.

Proof:

(a) Let A be *- g - closed and U be a δ - open set such that A \subseteq U. Since every δ - open set is *- open, A \subseteq U where U is *- open and since A is *- g - closed, cl (A) \subseteq U. By theorem 3.10 [2], $A_g^* = cl$ (A) \subseteq U. Hence A is an I_g^{δ} - closed set. (b) Similar to the proof of (a).

(c) Let A be *- perfect and U be a δ - open set such that A \subseteq U and then A^{*} = A \subseteq U. By the theorem 3.10 [2], A^{*}_g = A^{*} \subseteq U.

Consequently A is an I_g^{δ} - closed set.

Remark 3.9: The converses of the above theorem are not true as seen from the following examples.

Example 3.10: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$ and $I = \{\phi\}$. Then $\{c\}$ is I_g^{δ} - closed but not *-g - closed.

Example 3.11: Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $I = \{\phi, \{a\}\}$. Then $\{c\}$ is I_g^{δ} -closed but not I_g -*-closed. **Example 3.12:** Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{a\}$ is

 I_{σ}^{o} - closed but not * - perfect.

Theorem 3.13: Let (X, τ, I) be an ideal topological space. If A and B are I_g^{δ} - closed sets, then $A \cup B$ is an I_g^{δ} - closed set. **Proof:**

Let U be a δ - open set such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are I_g^{δ} - closed sets, $A_g^* \subseteq U$ and $B_g^* \subseteq U$ and so $A_g^* \cup B_g^* \subseteq U$. By theorem 3.7 [2], $(A \cup B)_g^* = A_g^* \cup B_g^* \subseteq U$ and so $A \cup B$ is an I_g^{δ} - closed set.

Remark 3.14: If A and B are I_g^{δ} - closed sets then A \cap B is not I_g^{δ} - closed.

© 2019 JETIR May 2019, Volume 6, Issue 5 Example 3.15: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$ and $I = \{\phi\}$. Then $A = \{a, b\}$ and $B = \{a, c\}$ are I_g^δ - closed whereas $A \cap B = \{a\}$ is not I_g^δ - closed.

 $\textbf{Theorem 3.16:} \text{ Let } (X, \tau, I) \text{ be an ideal topological space and } A \subseteq X. \text{ If } A \text{ is } I_g^\delta \text{ - closed then } A \text{ - I is } I_g^\delta \text{ - closed, for every } I \in I.$ **Proof:**

Let U be a δ - open set such that A - I \subseteq U. Since A is I_g^{δ} - closed, $A_g^* \subseteq$ U. By theorem 3.7 [2], (A - I)_g^* = A_g^* \subseteq U. Consequently

A - I is an I_g^{δ} - closed set.

Theorem 3.17: Let (X, τ, I) be an ideal topological space and $I \in I$, then I is an I_g^{δ} - closed set.

Proof:

By theorem 3.12 [2], I is τ_g^* - closed and by theorem 2.3, the results follows.

Theorem 3.18: Let (X, τ, I) be an ideal topological space. If A and B are subsets of X such that $A \subseteq B \subseteq A_g^*$ and A is an

 I_g^δ - closed set, then B is an $\,I_g^\delta\,$ - closed set.

Proof:

Let U be a δ - open set such that $B \subseteq U$. Since A is I_g^{δ} - closed, $A_g^* \subseteq U$. Also by theorem 3.7 [2] $B_g^* \subseteq (A_g^*)_g^* \subseteq A_g^* \subseteq U$ and hence B is an I_g^{δ} - closed set.

Theorem 3.19: If a subset A of (X, τ, I) is I_g^{δ} - closed, then A_g^* - A contains no nonempty δ - closed set.

Proof:

Let F be a δ - closed subset of A_g^* - A. Then $A \subseteq X$ - F, where X - F is δ - open. Since A is I_g^{δ} - closed, $A_g^* \subseteq X$ - F. Then $F \subseteq X - A_g^*$ which implies $F \subseteq A_g^* \cap (X - A_g^*) = \phi$.

Theorem 3.20: If a subset A of an ideal topological space (X, τ, I) is a χ_I -set and an I_g^{δ} - closed set, and also if $A \subset A_g^*$, then A is *- closed.

Proof:

Since A is a χ_{I} - set, A = U \cap V, where U is δ - open and V is * - perfect. Now A \subseteq U and A is I_{g}^{δ} - closed implies $A_{g}^{*} \subseteq$ U. By theorem 3.10 [2], $A^* = A_g^* \subseteq U$. Also $A \subseteq V$. By theorem 3.7[2], $A^* \subseteq V^*$. Since V is * - perfect, $V^* = V$. Then we have $A^* \subseteq V$ which implies $A^* \subseteq U \cap V = A$ and so A is *- closed.

Theorem 3.21: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. If A is I_g^{δ} - closed then $A \cup (X - A_g^*)$ is I_g^{δ} - closed. **Proof:**

Let U be a δ - open set such that $A \cup (X - A_g^*) \subseteq U$. Then $X - U \subseteq X - (A \cup (X - A_g^*)) = A_g^* - A$. Since A is I_g^{δ} - closed, by theorem 3.19, $A_g^* - A = \phi$. Then X - U = ϕ and so X = U which implies $A \cup (X - A_g^*) \subseteq X$ and so $(A \cup (X - A_g^*))_g^* \subseteq X_g^* \subseteq X = A_g^*$. U. Consequently $A \cup (X - A_g^*)$ is an I_g^{δ} - closed set.

Theorem 3.22: Let (X, τ, I) be an ideal topological space. Then either $\{x\}$ is δ - closed (or) $\{x\}^{c}$ is I_{g}^{δ} - closed.

Proof:

Suppose {x} is not δ - closed. Then {x}^c is not δ - open. Then the only δ - open set containing {x}^c is X and hence ({x}^c) $g \subseteq X$ which implies $\{x\}^c$ is I_g^{δ} - closed.

References:

- Bhavani. K, Babitha. T, Characterizations of Igg closed sets, International Journal of Mathematical Archive, 6(11), (2015), 65-70.
- [2] Bhavani. K, On g local functions, Journal of advanced studies in topology 5(1) (2014), 1 5.
- [3] Erdal Ekici, On Pre I open sets, Semi I open sets and b I open sets in ideal topology, Acta Unniversitatitis Apulensis No. 30/(2012), 293 - 303.
- [4] Jankovic. D, Hamlett. T. R New topologies from old via ideals, Amer. Math. Monthly, 1990, 97(4), 295 310.
- [5] Kuratowski. K, Topology, volume 1, Academic Press, New York, 1966.
- [6] Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, (2), 1970, 19, 89-96.
- [7] Meena. K, Nethaji. O, Premkumar. R and Ravi. O, Ig -*- closed sets, International Journal of Current Research in Science and Technology, Volume 3, Issue 1 (2017), 37 - 45.
- [8] Mukherjee. M. N, Dhananjoy Mandala, Certain New Classes of Generalized Closed Sets and Their Applications in Ideal Topological Spaces, Filomat (2015), 1113 - 1120.
- [9] Ravi. O, Asokan. R and Thiripuram. A, Another generalized closed sets in ideal topological spaces, International Journal of Mathematics And its Applications, Volume 3, Issue 3- A, (2015), 63 -73.
- [10] Santhini. C, Nivetha. S, On I_g^{**} closed sets in ideal topological space, International Journal of Mathematical Archive, Volume 9, No 9(2018).
- [11] Vaidyanathaswamy. R, Set Topology, Chelsea publishing company, New York, 1960.
- [12] Velicko. N. V, H closed topological spaces, Amer. Math. Soc. Trans., (2) 78 (1968), 103-118.

