A STUDY OF QUALITY OF WATER FOR IRRIGATION IN THE STREAM OF INDUSTRIAL BELT AREA OF MEDAK DIST, TELANGANA STATE

¹HASHMATH ALI KHAN, ²Dr KHAJA ZAHEERUDDIN

Research scholar Mewar university, Research Supervisor Mewar university

Mewar University, Rajasthan, INDIA

Abstract : Water is used for many purposes like washing, bathing, drinking, thus it is one of the most important resources on the earth. Water pollution degrades quality of water and affects the organisms living in it. Water which is used for irrigation depends on chemical properties such as Total salt concentration, Sodium adsorption ratio, Residual sodium carbonate or bicarbonate ion concentration and boron content. This paper deals withthe parameter sodium absorption ratio (SAR) of water in industrial areas of Medakdist during pre and post monsoon 2015 & 2016. Sterile bottles were used to collect the samples. Present study area is surrounded by industries. Thus contaminated by many organic and inorganic chemicals. Seven samples were collected and were also studied fordifferent parameters like P^H,tds ,tss, and different electrolytic ions. Thus it was found that quality of water is not up to the mark for its consumption in domestic and irrigation purpose.

IndexTerms -: Water pollution, Water for irrigation, Sodium Adsorption Ratio

INTRODUCTION

Sodium adsorption ratio is an important parameter that helps to understand suitability of water for irrigation and to understand about the soils which are affected by sodium. It is also used as an indicator which gives information about suitability of soil for irrigation. If water used for irrigation contains more percentage of sodium the soil becomes more difficult for ploughing and become more unstable for seed emergence (Trivedy&Goel,1984)(Kranth,1987).Presence of sodium will enhance the exchange of sodium with calcium and magnesium.

As per the Bureau of INDIAN STANDARDS(SEPT 1987)(IS:11624-1986) the Water Quality ratings based on sodium adsorption ratio is given below.

S/No	Class	SAR RANGE
1	Low	Below 10
2	Medium	10-18
3	High	18-26
4	Very High	Above 26

As per INDIAN STANDARDS(SEPT 1987)(IS:11624-1986) and the NSW –Department of primary industries GOVT. SAR is an indicator which helps in finding the suitability of water for the use of agriculture .

$$SAR = \frac{Na^{+}}{\sqrt{1/2(Ca^{+2} + Mg^{+2})}}$$

SAR = Sodium adsorption ratio

 $Na^+=$ Sodium ion concentration ,inmilli equivalence per liter $Ca^{2+}=$ Calcium ionconcentration ,inmilli equivalence per liter $Mg^{2+}=$ Magnesium ion concentration, in milli equivalence per liter

RESULTS

Table 1 :SURFACE WATERANALYSIS SODIUM , CALCIUM & MAGNESIUM ION OF"PREMONSOON" 2015

S/NO	SAMPLE	Na + in Meq/l Ca 2+ in Meq/l		Mg 2+ in Meq/l
		Pre mansoon	Pre mansoon	Pre mansoon 2015
		2015	2015	
1	KHAZIPALLY			
	TANDA	188	188 60.6	
2	MALLAMPET	140	56.4	24.5
3	GANDIGUDEM	164	55.8	32.3
4	ASANIKUNTA	173	56.2	41.4
5	KISTAREDDY			
	РЕТ	187	46.5	31.7
6	PALMAVAGU	170	52.6	36.3
7	PEDDA VAGU	196	54.5	29.4
8	NAKKAVAGU	190	54.5	38.6

				[
S/NO	SAMPLE	Na + in Meq/l	Ca 2+ in Meq/l	Mg 2+ in Meq/l	
		postmansoon Postmansoon		Post mansoon	
		2015	2015	2015	
1	KHAZIPALLY				
	TANDA	176	49.6	21.8	
2	MALLAMPET	135	45.5	18.6	
3	GANDIGUDEM	152	44.3	27.2	
4	ASANIKUNTA	168	46.7	36.2	
5	KISTAREDDY				
	PET	173	34.8	24.6	
6	PALMAVAGU	154	41.4	30.1	
7	PEDDA VAGU	193	42.6	26.5	
8	NAKKAVAGU	181	41.9	33.1	

S/NO	SAMPLE	Na + in Meq/l	Ca 2+ in Meq/l	Mg 2+ in Meq/l
		premansoon	Premansoon	Premansoon 2016
		2016	2016	
1	KHAZIPALLY			
	TANDA	200	62.5	30
2	MALLAMPET	164	57.8	23.4
3	GANDIGUDEM	175	60.5	35.5
4	ASANIKUNTA	185	64	45.5
5	KISTAREDDY			
	PET	196	56.5	38.4
6	PALMAVAGU	188	60	40
7	PEDDA VAGU	200	60.4	35
8	NAKKAVAGU	200	58.6	40

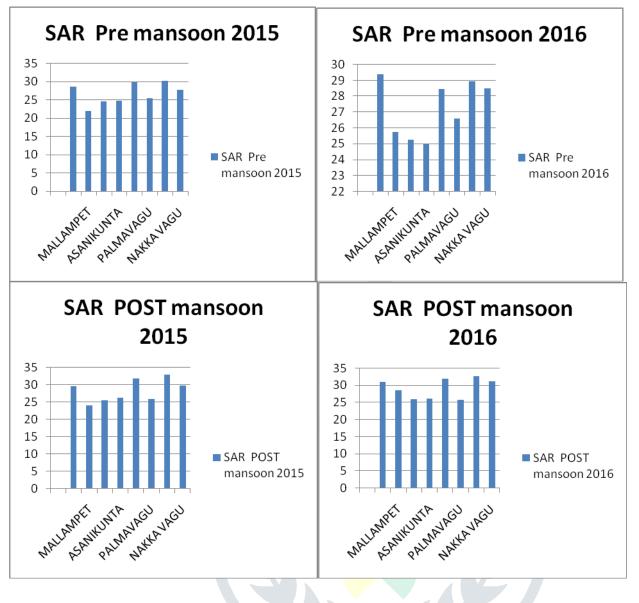

S/NO	SAMPLE	Na + in Meq/l	Ca 2+ in Meq/l	Mg 2+ in Meq/l
		post mansoon	oost mansoon Post mansoon	
		2016 2016		2016
1	KHAZIPALLY			
	TANDA	189	51.5	23.5
2	MALLAMPET	172	46	26.6
3	GANDIGUDEM	166	52.4	29.4
4	ASANIKUNTA	174	50.6	38.5
5	KISTAREDDY			
	PET	184	38.4	28.6
6	PALMAVAGU	164	46.5 34.5	
7	PEDDA VAGU	200	46.5	28.5
8	NAKKAVAGU	195	43	35.4

TABLE SHOWING SAR- VALUES FOR PRE-
POST MANSOON- 2015 & 2016

r					
S/NO	SAMPLE	SAR Pre mansoon 2015	SAR POST mansoon 2015	SAR Pre mansoon 2016	SAR POST mansoon 2016
1	KHAZIPALLY TANDA	28.66973122	29.45632479	29.40858488	30.86357076
2	MALLAMPET	22.012469 <mark>78</mark>	23.84 <mark>623127</mark>	25.73835764	28.5479636
3	GANDIGUDEM	24.709894 <mark>53</mark>	25.4 217571	25.25907428	25.95651809
4	ASANIKUNTA	24.76487796	26.09438191	25.002283	26.06906135
5	KISTAREDDY PET	29.90564873	<mark>31.7</mark> 4445523	28.45364855	31.79035806
6	PALMAVAGU	25.4984064	25.75625391	26.58721497	25.7701138
7	PEDDA VAGU	30.26147474	32.83471743	28.95814952	32.65986324
8	NAKKA VAGU	27.84798384	29.55717623	28.48436459	31.14523254

DISCUSSIONS AND GRAPHICAL REPRESENTATION OF SAR VALUES FOR PRE AND POST MONSOON 2015-16

SAR value of all the samples collected duringpre-monsoon 2015 and pre monsoon is found to be in an increasing order .Over all the water is becoming contaminated .The SAR which are increasing shows that the water is not useful for the purpose of irrigation which is clearly seen in the graphical representation.

CONCLUSIONS

The study shows that the chemicals draining from the various industries have a very bad impact on the water which is used for agriculture. As per the guide lines of Bureau of INDIAN STANDARDS(SEPT 1987)(IS:11624-1986) If the Water Quality ratings based on sodium adsorption ratio is above "26" then the water is not suitable for agriculture. From the above table it is very clear that the SAR value is ranging from 22.0124 to 32.659 which is very high and the water is becoming not suitable for irrigation

The study also shows that there is an increase in SAR values in the two years as the values are in the increasing order.

The industrial pollutants had affected the lakes which should be monitored by at least twice a year.

The hazardouseffect of SAR values should be Monitored and necessary steps should be taken such that the SAR value comes down below 10 or at least in the range 10-18

REFERENCES

1.Indian Standarde Guidelines For The Quality Of Irrigation Water (Reaffirmed 2009)(Is:11624-1986)(Reaffirmed 2001)

2.{ APHA}, Standard methods of water and wastewater examination. American Public Health Association, USA/ (1992).

<u>3</u>.World health organization (WHO) standerds

4.Assessment of the ground water quality and its suitability for drinking and irrigation purposes .A case study of patancheru , AP India by MushtaqHussain and T.V.D. Prasad(Scholers research Library)2013.

5.Engineering chemistry Byb.Sivasankar professor department of chemistry Anna university Chennai.(Tata McGraw Hill Education Private Limited. New Delhi)

6."Nasrullah, RafiaNaz, HamidaBibi, MudassarIqbal and M. IlyasDurrani, Pollution in industrial effluent and ground water of GadoonAmazai Industrial Estate". "Journal of Agricultural and biological science".

7.Engineering Chemistry by PrasanthRath((CENGAGE Learning)

8."PremlataVikal and SandhyaTyagi/ (2007) Assessment of water quality of lakePichhola before and after rains in "Arjun, Udaipur, Rajasthan Poll. Res. 26(2): 249-252/ (2007) Environ media".

9. "Ch. Srinivas, Ravi Shankar Piska, C. Venkateshwar M.S. SatyanarayanRao and R. Ravindra Reddy, Studies on ground water quality of Hyderabad. Poll. Res./19(2): 285- 289/ (2000)".

10." Gupta M.K. VibhaSinghs, PoonamRajwanshi, ShaliniServastava and Sahab Das, Flouride in ground water at Agra. Indian J. Environ Health 36(1) :/ 43-46/ (1994)".

11."Bhagat P R, RJC,/ 2008, 11(1), 195-197".

12. Text book of Engineering Chemistry by R.Gopalan/D Venkappayya/Sulochana/Nagarjana .

13.A Text Book Of Engineering Chemistry By Dr.Sunita Rattan (Katson Books)

14.Engineering Chemistry By B.K Sharma (Krishna Prakashan Media (P) Ltd., Meerut

15.A Text Book Of Engineering Chemistry By Shashi Chawla Dhanpat Rai & Co.

16.Organic Chemistry By Dro.P.Tandon&Dr.A.K.Virmani (G.R.Bathla&Sons)