Ultrasonic Velocity Study of Binary Liquid Mixtures of Ethylene Glycol (EG) With Different Amines at 308.15ky

Dr. K.G. Neerajakshi Lecturer Chemistry Department A.A.S. College, Adoni, Andhra Pradesh, India

Abstract : The Ultrasonic velocity studies on intermolecular interactions of binary liquid mixtures of Ethylene Glycols (EG) + n-butylamine (NBA), + sec-butylamine (SBA) + tert-butylamine (TBA), + n-hexylamine (NHA), + n-octylamine (NOA) and + cyclohexylamine (CHA) have been measured at 308.15K. From the experimental results the excess molar volume (V^E), excess viscosities (η^{E}), and excess molar Gibbs free energy of activation of viscous flow (G*^E) have been computed as a function of composition. The parameter d¹ of the Grunberg and Nissan expression has been computed. The values of V^E are negative whereas the values of η^{E} , G*^E and d¹ are positive. Deviations from the ideal behavior are discussed from the point of view of the molecular interactions present between the unlike molecules. The strength of these interactions is related with the chain length of the amines. The results are discussed in terms of the theories of non-electrolyte solutions.

IndexTerms - viscous flow , binary liquid mixtures , molar Gibbs.

I. INTRODUCTION

Ultrasonic technique is a versatile tool for investigating the physical properties of matter-solids, liquids and gases. Ultrasonic velocity measurements have proved that they are useful in dealing with the problems of liquid structure and molecular interactions in liquid mixtures. This method has been applied both to pure liquids and to electrolyte solutions. For four and a half decade, extensively ultrasonic velocity measurements have been carried out for a large number of liquid mixtures. Ultrasonic propagation parameters yield valuable information regarding behaviour of binary liquid systems because intramolecular and intermolecular association, dipolar interactions, complex formation and related structural changes affect the compressibility of the system which in turn produces corresponding variations in the ultrasonic velocity.

It may be mentioned here that the sound velocity is not a primary thermodynamic parameter and there is no single agreed view regarding the method of evaluation of sound velocity in an ideal mixture. Even though the sound velocity in an ideal mixture can be expressed as an additive on the mole fraction basis^{1,2} or weight fraction basis³, the excess sound velocity so obtained does not properly characterize the deviations of the acoustic properties of the mixture from ideality. However, the attempts made by Ernst and Glinski⁴ and Kiyohara *et al.*^{5,6} indicate that sound velocities evaluated making use of thermodynamically valid expressions may be utilized to obtain excess sound velocities which are useful in understanding the solute-solvent interactions. It is worthwhile to note here that Kudriavtsev⁷ derived expressions for evaluating theoretically the velocity of sound in pure liquids and liquid mixtures based on thermodynamically valid equations for internal energy in liquids and liquid mixtures and found that the expressions yield velocity data in good agreement with the experimental data for binary mixtures.

In many industrial applications, liquid mixtures are mostly used in processing and product formulations rather than single component liquid systems. Thermodynamic and transport properties⁸⁻¹⁰ of liquid mixtures have been extensively used to study the deviation of real liquid mixtures from ideality. In addition, these properties have been widely used to study the intermolecular interactions between the various species present in the liquid mixtures⁸⁻¹⁰. Ultrasonic velocity and related data of liquid mixtures are also found to be the most powerful tool in testing the theories of liquid state. In addition, ultrasonic velocity data can be utilized to deduce some useful properties of liquid mixtures which are not easily accessible by other means.

The high precision of ultrasonic velocity measurements make it possible to calculate many other reliable parameters which gives information regarding deviations of the system from ideality. Molecular association in solution and some important correlations with various parameters, e.g. ratio of heat capacities, isentropic compressibilities, free volume, intermolecular free-length, available volume, internal pressure, energy of vaporisation, solubility parameter, non-linearity parameter, thermoacoustical parameters etc. can be very well studied through ultrasonic velocity measurements in liquid mixtures.

It has been pointed out by several workers that excess thermodynamic functions sensitively depend not only on the differences in intermolecular forces, but also on the differences in size of molecules. It is

© 2019 JETIR May 2019, Volume 6, Issue 5

www.jetir.org (ISSN-2349-5162)

obvious that the study of excess compressibility and other excess acoustical parameters provide important information on the intermolecular forces existing in the liquid mixtures. Through the statistical theory of solutions, using the ultrasonic velocity and density data, it is also possible to investigate the solute-solvent interactions.

II. EXPERIMENTAL

An ultrasonic interferometer is a simple and direct device to determine the ultrasonic velocity in liquids with a high degree of accuracy.

The principle used in the measurement of velocity (u) is based on the accurate determination of the wavelength (\Box) in the medium. Ultrasonic waves of known frequency (f) (2 MHz in the present study) are produced by a quartz plate fixed at the bottom of the cell. The waves are reflected by a movable metallic plate (reflector) kept parallel to the quartz plate. If the separation between these two plates is exactly equal to the multiples of the sound wavelength, standing waves are formed in the medium. The acoustic resonance gives rise to an electrical reaction on the generator driving the quartz plate, and the anode current of the generator becomes maximum.

III. RESULTS AND DISCUSSIONS

The density (ρ) and the ultrasonic velocity (u) have been measured over the whole composition range for the binary liquid mixtures of EG + NBA, + SBA, + TBA, + NHA, + NOA and + CHA at 308.15 K. The acoustical parameters like acoustic impedance (Z), isentropic compressibility (K_s), intermolecular free-length (L_f) and relative association (R_A) have been calculated from the measured density (ρ) and ultrasonic velocity (u) values using the relations given in Section 1. The results are given in Tables 1 to 6.

From the Tables 1 to 6, it is observed that the values of u, z, K_{s_t} , L_f and R_A with the mole fraction of EG (X_{EG}) varied nonlinearly. This indicates the presence of interactions between the components in these binary liquid mixtures. The variation of ultrasonic velocity (u) with mole fraction of EG for all the mixtures is shown in Fig. 1 as a typical graph. Fig.1 shows that the speed of sound for these mixtures increases monotonically with an increase in the ethylene glycol content of the mixtures and it is observed that the ultrasonic velocity value for EG is high. Normally when the medium is thick the higher values of ultrasonic velocity is expected. In the present study the higher ultrasonic velocity values are observed in the EG rich region of the mixtures which indicate the presence of strong intermolecular interactions between the ethylene glycol and amine molecules. This further confirms the formation of complex between the unlike molecules. This complex formation is responsible for thickening of the media in the ethylene glycol rich region which might be responsible for higher ultrasonic velocity values.

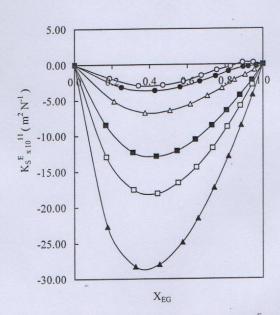
Table									ance (Z), Exce cular free-leng	
									hylene Glycol	
(EG) +	n-butylamin	ne (NBA) at	308.15 K.							
Mole fraction	ρ x 10 ⁻³	u	uE	Z x 10 ⁻⁶	Z ^E X 10 ⁻⁴	K _s x 10 ¹¹	$K_{\rm S}^{\rm E} {\rm x} 10^{11}$	L _f x 10 ¹¹	$L_{f}^{E} \ge 10^{12}$	R _A
of EG	Kg m ⁻³	m s ⁻¹	m s ⁻¹	Kg m ⁻² s ⁻¹	Kg m ⁻² s ⁻¹	m ² N ⁻¹	$m^2 N^{-1}$	m	m	
X _{EG}				ł						
0.0000	0.7239	1221.5	0.0000	0.8842	0.0000	92.58	0.0000	6.3725	0.0000	1.0000
0.1666	0.7749	1317.0	27.6105	1.0205	-1.3432	74.40	-8.4453	5.7126	-2.4293	1.0439
0.3109	0.8251	1397.0	48.8083	1.1527	-1.5694	62.10	-12.3124	5.2191	-3.7531	1.0899
0.4353	0.8693	1456.0	57.1153	1.2657	-1.6340	54.26	-12.8798	4.8786	-4.0441	1.1326
0.5453	0.9084	1505.0	61.2903	1.3671	-1.5422	48.60	-12.1130	4.6171	-3.9064	1.1705
0.6427	0.9443	1543.0	59.5998	1.4571	-1.3436	44.48	-10.5428	4.4169	-3.4700	1.2067
0.7296	0.9764	1573.0	54.1880	1.5359	-1.0544	41.39	-8.5516	4.2609	-2.8556	1.2398
0.8076	1.0089	1596.0	45.4030	1.6102	-0.5655	38.91	-6.4726	4.1313	-2.1994	1.2748
0.8780	1.0414	1612.0	32.7150	1.6787	-0.2494	36.95	-4.3172	4.0259	-1.4908	1.3115
0.9418	1.0738	1624.0	18.7165	1.7439	-0.1053	35.31	-2.2312	3.9354	-0.7990	1.3490
1.0000	1.1038	1629.0	0.0000	1.7981	0.0000	34.14	0.0000	3.8697	0.0000	1.3853

(L _f), E:	c impedance	(Z ^E), Isentrolecular free	opic compres -length (L _f ^E)	ssibility (K _S),	Excess isent	ropic compre	essibility (K _S ^E), Intermole	ance (Z), Exce cular free-leng hylene Glycol	th
Mole fraction	ρ x 10 ⁻³	u	uE	Z x 10 ⁻⁶	Z ^E X 10 ⁻⁴	K _s x 10 ¹¹	K _s ^E x 10 ¹¹	L _f x 10 ¹¹	$L_{f}^{E} \times 10^{12}$	RA
of EG X _{EG}	Kg m ⁻³	m s ⁻¹	m s ⁻¹	Kg m ⁻² s ⁻¹	Kg m ⁻² s ⁻¹		$m^2 N^{-1}$	m	m	-74
0.0000	0.7078	1145.0	0.0000	0.8104	0.0000	107.77	0.0000	6.8751	0.0000	1.0000
0.1700	0.7641	1261.0	33.7200	0.9635	-1.5525	82.30	-12.9452	6.0083	-3.5591	1.0454
0.3155	0.8154	1353.0	55.2980	1.1032	-1.8801	66.99	-17.5429	5.4207	-5.0617	1.0897
0.4413	0.8610	1425.0	66.4108	1.2269	-1.9360	57.20	-18.0783	5.0087	-5.4012	1.1309
0.5513	0.9027	1480.0	68.1708	1.3360	-1.8932	50.57	-16.6011	4.7099	-5.0836	1.1708
0.6483	0.9418	1526.0	67.2228	1.4372	-1.6316	45.60	-14.4376	4.4721	-4.5464	1.2091
0.7344	0.9767	1562.0	61.5504	1.5256	-1.2476	41.96	-11.7311	4.2902	-3.7770	1.2442
0.8114	1.0099	1588.0	50.2824	1.6037	-0.8096	39.27	-8.7596	4.1500	-2.8647	1.2794
0.8806	1.0418	1608.0	36.7896	1.6752	-0.4949	37.12	-5.8081	4.0352	-1.9335	1.3144
0.9432	1.0717	1622.0	20.4912	1.7383	-0.3694	35.47	-2.8552	3.9442	-0.9624	1.3482
1.0000	1.1038	1629.0	0.0000	1.7981	0.0000	34.14	0.0000	3.8697	0.0000	1.3866

Table:	.3: Value	s of Density	(o), Ultrasor	nic velocity (i), Excess ult	rasonic velo	city (u ^E), Aco	ustic impeda	nce (Z), Exce	SS
					the support of the second		essibility (Ks	the second s		
	1999 A. C. 1997			and the second			oinary liquid n			
	tert-butylan									
(LO)		inte (TDA)	1							
Mole fraction	ρ x 10 ⁻³	u	u ^E	Z x 10 ⁻⁶			$K_{S}^{E} x 10^{11}$	$L_{f} \ge 10^{11}$	$L_{f}^{E} \ge 10^{12}$	RA
of EG	Kg m ⁻³	m s ⁻¹	m s ⁻¹	Kg m ⁻² s ⁻¹	Kg m ⁻² s ⁻¹	$m^2 N^{-1}$	$m^2 N^{-1}$	m	m	
X _{EG}										
0.0000	0.6787	1039.8	0.0000	0.7057	0.0000	136.28	0.0000	7.7313	0.0000	1.000
0.1760	0.7411	1188.0	44.5008	0.8804	-2.1215	95.61	-22.6938	6.4757	-5.7596	1.04
0.3246	0.7944	1297.0	65.9457	1.0303	-2.9961	74.83	-28.2925	5.7290	-7.4878	1.08
0.4517	0.8434	1381.0	75.0584	1.1647	-3.3294	62.17	-27.9721	5.2219	-7.6508	1.13
0.5748	0.8961	1455.0	76.5278	1.3038	-2.9786	52.71	-24.8558	4.8084	-7.0325	1.18
0.6578	0.9336	1501.0	73.6242	1.4013	-2.6174	47.54	-21.5494	4.5665	-6.2466	1.21
0.7425	0.9720	1544.0	66.7190	1.5008	-1.9615	43.16	-17.2847	4.3507	-5.1333	1.25
0.8177	1.0067	1579.0	57.4112	1.5896	-1.2494	39.84	-12.9183	4.1803	-3.9334	1.29
0.8849	1.0406	1604.0	42.8169	1.6691	-0.6967	37.35	-8.5448	4.0476	-2.6658	1.32
0.9454	1.0722	1621.5	24.6703	1.7386	0.0126	35.47	-4.2446	3.9445	-1.3607	1.36
	1.1038	1629.0	0.0000							



Table 4: Values of Density (p), Ultrasonic velocity (u), Excess ultrasonic velocity (u ^E), Acoustic impedance (Z), Exacoustic impedance (Z ^E), Isentropic compressibility (K _S), Excess isentropic compressibility (K _S ^E), Intermolecular free-length (L _t ^E) and Relative association (R _A) for the binary liquid mixture of Ethylene Glya (EG) + n-hexylamine (NHA) at 308.15 K. Mole fraction $p \times 10^{-3}$ u u ^E $Z \times 10^{-6}$ Z ^E X 10^{-4} Ks x 10^{11} Ks ^E x 10^{11} L _t x 10^{11} L _t e x 10^{12} Mole fraction $p \times 10^{-3}$ u u ^E $Z \times 10^{-6}$ Z ^E X 10^{-4} Ks x 10^{11} Ks ^E x 10^{11} L _t x 10^{11} L _t e x 10^{12} Mole fraction $p \times 10^{-3}$ u u ^E Z x 10^{-6} Z ^E X 10^{-4} Ks x 10^{11} Ks $E^{-x} \times 10^{11}$ L _t e x 10^{11} L _t e x 10^{11} L _t e x 10^{11} Mole fraction $p \times 10^{-3}$ u u ^E Z x 10^{-6} Z ^E X 10^{-4} Ks m ² s ⁻¹ m ² N ⁻¹ m m 0.0000 0.7507 1314.5 0.0000 0.9868 0.0000 77.09 0.0000 5.8150 0.0000 0.2108 0.7982 1410.8 30.0034 1.1261 -1.2515 62.94 <t< th=""><th>ol</th></t<>	ol
acoustic impedance (Z^E) , Isentropic compressibility (K _S), Excess isentropic compressibility (K _S), Intermotectual Arcord (L _t), Excess intermolecular free-length (L _t ^E) and Relative association (R _A) for the binary liquid mixture of Ethylene Glya (EG) + n-hexylamine (NHA) at 308.15 K. Mole fraction $\rho \ge 10^3$ u u ^E $Z \ge 10^6$ $Z^E \ge 10^{41}$ $K_S \ge 10^{11}$ $L_f \ge 10^{11}$ of EG Kg m ⁻³ m s ⁻¹ m s ⁻¹ Kg m ⁻² s ⁻¹ Kg m ⁻² s ⁻¹ m ² N ⁻¹ m m 0.0000 0.7507 1314.5 0.0000 0.9868 0.0000 77.09 0.0000 5.8150 0.0000 0.2108 0.7982 1410.8 30.0034 1.1261 -1.2515 62.94 -5.0938 5.2544 -1.5054 0.3754 0.8422 1480.0 47.4367 1.2465 -1.5128 54.21 -6.7605 4.8761 -2.0862 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812	ol
acoustic impedance (Z^E) , Isentropic compressibility (K _S), Excess isentropic compressibility (K _S), Interindectian Arcord (L _t), Excess intermolecular free-length (L _t ^E) and Relative association (R _A) for the binary liquid mixture of Ethylene Glya (EG) + n-hexylamine (NHA) at 308.15 K. Mole fraction $p \ge 10^3$ u u ^E $Z \ge 10^6$ $Z^E \ge 10^{41}$ $K_S \ge 10^{11}$ $L_f \ge 10^{11}$ of EG Kg m ⁻³ m s ⁻¹ m s ⁻¹ Kg m ⁻² s ⁻¹ Kg m ⁻² s ⁻¹ m ² N ⁻¹ m m 0.0000 0.7507 1314.5 0.0000 0.9868 0.0000 77.09 0.0000 5.8150 0.0000 0.2108 0.7982 1410.8 30.0034 1.1261 -1.2515 62.94 -5.0938 5.2544 -1.5054 0.3754 0.8422 1480.0 47.4367 1.2465 -1.5128 54.21 -6.7605 4.8761 -2.0862 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812	ol
acoustic impedance (Z^E) , Isentropic compressibility (K_S) , Excess intermolecular free-length (L_f^E) and Relative association (R_A) for the binary liquid mixture of Ethylene Glya (EG) + n-hexylamine (NHA) at 308.15 K. Mole fraction $\rho \ge 10^3$ u u^E Z \ge 10^6 Z^E \ge 10^4 K_S \ge 10^{11} K_S^E \ge 10^{11} L_f \ge 10^{12} of EG Kg m ⁻³ m s ⁻¹ m s ⁻¹ Kg m ⁻² s ⁻¹ Kg m ⁻² s ⁻¹ m ² N ⁻¹ m ² N ⁻¹ m ² N ⁻¹ m m m X_{EG} 0.0000 0.7507 1314.5 0.0000 0.9868 0.0000 77.09 0.0000 5.8150 0.0000 0.2108 0.7982 1410.8 30.0034 1.1261 -1.2515 62.94 -5.0938 5.2544 -1.5054 0.3754 0.8422 1480.0 47.4367 1.2465 -1.5128 54.21 -6.7605 4.8761 -2.0862 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812	ol
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _A
Mole fraction $p \ge 10^{-5}$ u u u $2 \ge 10^{-5}$ $2 \ge 10^{-5}$ $R_S = 10^{-5}$	R _A
of EG Kg m ³ m s ⁻¹ m s ⁻¹ Kg m ² s ⁻¹ Kg m ² s ⁻¹ m ² N ⁻¹ m ² N ⁻¹ m m 0.0000 0.7507 1314.5 0.0000 0.9868 0.0000 77.09 0.0000 5.8150 0.0000 0.2108 0.7982 1410.8 30.0034 1.1261 -1.2515 62.94 -5.0938 5.2544 -1.5054 0.3754 0.8422 1480.0 47.4367 1.2465 -1.5128 54.21 -6.7605 4.8761 -2.0862 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.0000 0.7507 1314.5 0.0000 0.9868 0.0000 77.09 0.0000 5.8150 0.0000 0.2108 0.7982 1410.8 30.0034 1.1261 -1.2515 62.94 -5.0938 5.2544 -1.5054 0.3754 0.8422 1480.0 47.4367 1.2465 -1.5128 54.21 -6.7605 4.8761 -2.0862 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812	
0.0000 0.7507 1314.5 0.0000 0.9868 0.0000 17.09 0.0000 17.09 0.0000 0.2108 0.7982 1410.8 30.0034 1.1261 -1.2515 62.94 -5.0938 5.2544 -1.5054 0.3754 0.8422 1480.0 47.4367 1.2465 -1.5128 54.21 -6.7605 4.8761 -2.0862 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812	1.000
0.2108 0.7982 1410.8 30.0034 1.1261 -1.2515 62.34 50.050 1.003 0.3754 0.8422 1480.0 47.4367 1.2465 -1.5128 54.21 -6.7605 4.8761 -2.0862 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812	1.038
0.3754 0.8422 1480.0 47.4367 1.2465 -1.3128 54.21 -0.700 0.5075 0.8804 1524.6 50.4913 1.3423 -1.4767 48.87 -6.4281 4.6296 -1.9812	1.078
0.5075 0.8804 1524.6 50.4913 1.3423 -1.4707 46.67 0.1201	1.116
	1.15
0.6158 0.9148 1557.0 48.8309 1.4249 1.5707 42.36 4.3933 4.3105 -1.3049	1.180
0.7063 0.9468 1579.0 42.3087 1.4750 1.6597 40.17 -3.2938 4.1976 -0.9441	1.22
0.7829 0.9785 1595.0 54.2780 1.5007 0.2885 38.50 -2.1425 4.1092 -0.5485	1.25
0.8487 1.0099 1603.8 22.3838 1.0197 5.2005 3671 -1.4719 4.0129 -0.400	1.29
0.9058 1.0417 1617.0 17.6259 1.6844 -0.0805 30.71 -1.4719 4.012 0.9558 1.0712 1626.7 11.6009 1.7425 0.0227 35.28 -0.7599 3.9337 -0.219	1.32


) E	teresenia velo	city (u ^E), Acc	ustic imped	ance (Z), Exce cular free-leng	ess
Table :	.5: Value	s of Density	(p), Ultrason	nic velocity (u), Excess ui	ropic compre	ssibility (Ks), Intermoled	cular free-leng hylene Glycol	gth
acousti	c impedance	(Z ⁻), Isentro	pic compres	sidinty (K _S),	Excess isend	P) for the h	inary liquid r	nixture of Et	hylene Glycol	
				and Relative	association	KA) for the c				
(EG) +	n-octylamin	e (NOA) at	308.15 K.					i tell	. E	
Mole fraction	ρ x 10 ⁻³	u	uE	Z x 10 ⁻⁶	Z ^E X 10 ⁻⁴	K _s x 10 ¹¹	K _S ^E x 10 ¹¹	L _f x 10	$L_f \propto 10^{-2}$	R _A
of EG	Kg m ⁻³	m s ⁻¹	m s ⁻¹	Kg m ⁻² s ⁻¹	Kg m ⁻² s ⁻¹	$m^2 N^{-1}$	$m^2 N^{-1}$	m	m	
X _{EG}										
- 10								5.4863	0.0000	1.000
0.0000	0.7702	1375.5	0.0000	1.0594	0.0000	68.62	0.0000	4.9946	-0.8816	1.03
0.2496	0.8141	1469.6	30.8264	1.1964	-1.1823	56.88	-3.1414	4.6943	-1.0004	1.07
0.4280	0.8536	1527.0	43.0020	1.3034	-1.3952	50.24	-3.6228	4.0943	-0.8075	1.10
0.5620	0.8886	1562.3	44.3330	1.3883	-1.3460	46.11	-3.1373	4.4970	-0.5167	1.13
0.6662	0.9199	1584.6	40.2183	1.4577	-1.0876	43.29	-2.3577			
0.7496	0.9508	1598.7	33.1764	1.5200	-0.7549	41.15	-1.6243	4.2484	-0.2604	1.17
0.8179	0.9808	1607.2	24.3624	1.5763	-0.3325	39.47	-0.9486	4.1608	-0.0322	1.20
0.8957	1.0239	1616.9	14.3401	1.6555	-0.0429	37.36	-0.3796	4.0479	0.0960	1.25
0.9229	1.0438	1620.5	11.0448	1.6915	0.0648	36.48	-0.3165	4.0002	0.0590	1.28
0.9642	1.0738	1626.3	6.3753	1.7463	0.0514	35.21	-0.1641	3.9299	0.0232	1.31
1.0000	1.1038	1629.0	0.0000	1.7981	0.0000	34.14	0.0000	3.8697	0.0000	1.354

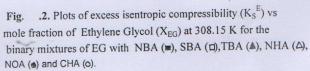
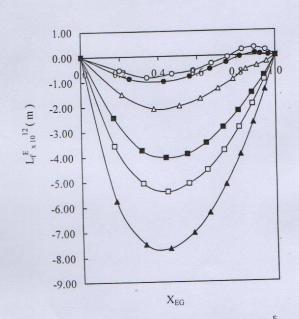
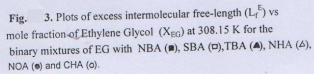


Table	.6: Value	s of Density	(p), Ultraso	nic velocity (u), Excess ul	trasonic velo	city (u ^E), Aco	ustic impeda	ance (Z), Exce	ess
acousti	c impedance	(Z ^E), Isentro	opic compres	sibility (K _S),	Excess isent	ropic compre	essibility (K _S ^E), Intermolec	cular free-leng	th
(L _f), E:	xcess intermo	olecular free-	-length (L_f^E)	and Relative	association ((R_A) for the b	inary liquid n	nixture of Et	hylene Glycol	
(EG) +	cyclohexyla	mine (CHA)	at 308.15 H	ζ.						
	ρ x 10 ⁻³	<u>}</u>	uE	Z x 10 ⁻⁶	Z ^E X 10 ⁻⁴	K- x 10 ¹¹	K _S ^E x 10 ¹¹	L _f x 10 ¹¹	$L_{f}^{E} \times 10^{12}$	RA
Mole fraction		u -1	m s ⁻¹		Kg m ⁻² s ⁻¹		$m^2 N^{-1}$	m	m	~~~~
of EG	Kg m ⁻³	m s ⁻¹	ms	Kgm s	Kgm s	m N	III IN	m	m	
X _{EG}										
0.0000	0.8527	1276.5	0.0000	1.0885	0.0000	71.97	0.0000	5.6185	0.0000	1.000
0,1870	0.8883	1363.0	20.5825	1.2108	-0.8145	60.60	-1.8664	5.1554	-0.5399	1.019
0.3411	0.9218	1430.0	33.2622	1.3182	-1.2348	53.05	-2.9276	4.8238	-0.8415	1.040
0.4702	0.9507	1480.5	38.2545	1.4075	-1.2862	47.99	-2.8534	4.5879	-0.6999	1.061
0.5799	0.9750	1517.5	36.5853	1.4796	-1.1885	44.54	-2.3577	4.4199	-0.5754	1.079
0.6743	0.9973	1547.0	32.8093	1.5428	-0.9676	41.90	-1.5334	4.2868	-0.2987	1.09
0.7565	1.0183	1569.0	25.8338	1.5977	-0.5836	39.89	-0.7776	4.1829	-0.0498	1.11
0.8285	1.0388	1587.0	18.4537	1.6486	-0.1675	38.22	-0.3060	4.0945	0.2497	1.13
0.8923	1.0597	1602.5	11.4643	1.6982	0.0564	36.75	0.2725	4.0147	0.3234	1.15
0.9491	1.0825	1615.5	4.4423	1.7488	0.1536	35.40	0.2448	3.9402	0.2262	1.17
	1.1038	1629.0	0.0000	1.7981	0.0000	34.14	0.0000	3.8697	0.0000	1.19


$\ensuremath{\textcircled{\text{C}}}$ 2019 JETIR May 2019, Volume 6, Issue 5



JETIR1905230 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 239

@ 2019 JETIR May 2019, Volume 6, Issue 5

© 2019 JETIR May 2019, Volume 6, Issue 5

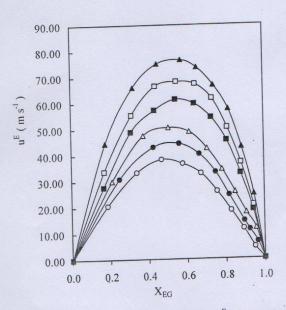
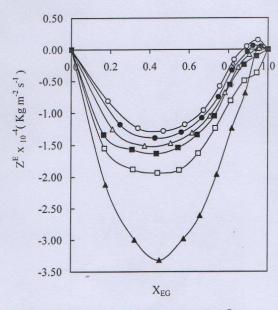
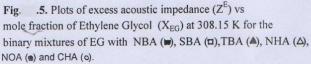




Fig. .4. Plots of excess utbrasonic velocity (u^E) vs mole fraction of Ethylene Glycol (X_{EG}) at 308.15 K for the binary mixtures of EG with NBA (=), SBA (=), TBA (\blacktriangle), NHA (\bigtriangleup), NOA (\bullet) and CHA (\circ).

JETIR1905230 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 241

© 2019 JETIR May 2019, Volume 6, Issue 5

REFERENCES

- [1]. Lara J. and Desnoyers, J.E., Sol. Chem., 10(1981) 465.
- [2] Kiyohar, O., Halpin, C.J. and Benson, G.C., Can. J. Chem, 55(1977) 3544.
- [3] Schaffs, W., Z, Physik., 105(1937) 658.
- [4] Ernst, S. and Glinski, J., Can. J. Chem., 57(1979) 2333.
- [5] Kiyojara, O., Halpin, C.J. and Benson, G.C., Can. J. Chem., 57 (1979) 2335.
- [6] Benson, G.C. and Kiyohara, O., J. Chem. Thermodyn., 11 (1979) 1061.
- [7] Kudriavtsev, B.B., Sov. Phy. Acoustics., 21 (1951) 36.
- [8] Prausnitz, J.M. Lichenthalar and Azevedo, E.G. "Molecular Thermodynamics of fluid Phase Equilibria", Second Edition, Prentince Hall, Inj Eanglewood Cliffs (1986)

[9] Rowlinson, J.S. and Swinton, FL, "Liquids and Liquid Mixtures", "Butterworth Scientific, London (1982), third Edition.
[10] Acree, W.E. (Jr), Thermodynamics properties of Non Electrolyte Solutions, Academic Press, New York, 1984