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Abstract: This paper is concerned with the problem of robust finite-time stability analysis for neural networks 

with time-varying delays. We construct a new Lyapunov-Krasovskii function with suitable activation function 

condition and then utilizing Jensen’s inequality technique. A novel set of sufficient conditions are derived in 

terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to demonstrate the usefulness 

and effectiveness of the proposed results.  
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I. INTRODUCTION 

 

Neural networks are generally recognized as one of the simplified models of neural processing in the 

human brain, which can provide good performance and strong capability of information processing. In recent 

years, much attention has been put on neural networks dynamics due to their many successful applications in 

areas of pattern recognition, image and signal processing, associative memories, optimization problems and 

even mechanics of structures and materials [1, 2]. It should be noted that time-delay inevitably exists, due to 

the finite switching speed of involved electronics and the inherent communication time among neurons. 

Exactly, time delay is a main factor that can cause performance degradation and/or instability of neural 

networks. Therefore, stability analysis of neural networks with time delay has attracted considerable attention 

of many researchers in the last few decades and a number of excellent results have emerged.  

 

The existing stability criteria can be grouped into delay-independent and delay-dependent ones. In general, 

delay-dependent criteria are less conservative than the delay independent ones. For delay-dependent stability 

criteria, the maximum delay bound is an important index for evaluating the conservatism of the criteria. In 

turn, rather significant research efforts [3]-[6] have been devoted to reducing the conservativeness of delay 

dependent stability criteria for neural networks with time delay. Thus, effort needs to study the stability of 

NNs with time delays. Consequently, several approaches based on various tools to evaluate the stability 

analysis of NNs with time delay components, and a lot of related results have been reported in the sense of 

Lyapunov stability method via LMIs approach (see [12]-[30]) and reference therein.  

 

Sometimes people pay more attention to the performance requirements of the dynamic system in finite 

time. Since Dorato P. and Weiss L. had proposed the concept of finite-time stability for the first time [7, 8] 

finite-time boundedness, stability and stabilization have been widely studied [9]-[12] in linear or nonlinear 

systems. In [9] investigated the problem of finite time stability of continuous autonomous system. Input-

output finite- time stability of linear systems have been studied in [10]. The problem finite-time boundedness 

and stabilization of uncertain switched neural networks with time-varying delay is discussed in [11]. In [12] 

authors investigated the problem of finite-time non-fragile passivity control for neural networks with time-

varying delay. Which is the main motivation of this paper. Since it is not sensible to associate them together. 

This attention motivates us to make known to multiple time delays into the stability of the neural networks. 

Thus, the concept of two time-varying delays have been received an extensive attention in the field of stability 

analysis problems [14]-[18] many interesting results about stability and passivity of NNs have been obtained 

with additive time delays [19]-[23]. 

 

Inspired by the discussion above, in this paper, we investigated finite-time stability problem of neural 

networks with time-varying delays. A suitable Lyapunov-Krasovskii function (LKF) with triple and four 
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integral terms are constructed and a tighter upper bound for the derivative of LKF is derived. By utilizing 

Jensen’s lemma and Wirtinger-type inequality technique. All the obtained criteria are expressed in terms of 

LMIs that can be solved by using Matlab Toolbox. Finally, a numerical example is given to demonstrate that 

the proposed condition. 

 

       Notations: Throughout this paper, the following notions are used. Let ℂ𝑛,ℝ𝑚×𝑛 and ℝ𝑚×𝑛  denote, 

respectively, the n-dimensional Euclidean space and the set of all 𝑚 × 𝑛 real and complex matrices. The 

subscript ∗ and T denote matrix complex conjugation and transposition and matrix transposition. The notation 

𝑋 ≥ 𝑌  (respectively, 𝑋 > 𝑌) means that 𝑋 − 𝑌 is positive semidefinite (respectively, positive definite). The 

shorthand notation 𝑑𝑖𝑎𝑔[𝑀1,𝑀2,… ,𝑀𝑛] denotes a block diagonal matrix with diagonal blocks being the 

matrices 𝑀1,𝑀2,… ,𝑀𝑛. I is the identity matrix with appropriate dimension. 
 

2. Problem formulation and preliminaries 
 

  In this paper, we consider the following neural networks with discrete and distributed time-varying 

delays described by 

𝑦̇(t) = −𝐶𝑦(𝑡) + 𝐴𝑓(𝑦(𝑡)) + 𝐵𝑓(𝑦(𝑡 −  𝜏(𝑡))) + 𝐷 ∫ 𝑓(𝑦(𝑠))𝑑𝑠

𝑡

𝑡−𝑑(𝑡)

   

   𝑦(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝛿, 0], 𝛿 = 𝑚𝑎𝑥[𝜏, 𝑑]                                                                         (1) 

 

 where 𝑦(𝑡) ∈ 𝑅𝑛 is the state vector, 𝑓(𝑦(𝑡)) ∈ ℝ𝑛denotes the activation function. ℂ =
𝑑𝑖𝑎𝑔{𝑐1, 𝑐2, … , 𝑐3} > 0 is a diagonal matrix and 𝐴, 𝐵, 𝐶 are the connection weight matrix, discrete delayed 

connection weight matrix and distributed delayed connection weight matrix respectively. 

 (𝑨𝟏)The time-varying delay τ(t) and d(t) are satisfying the following condition:  

0 ≤ 𝜏(𝑡) ≤ 𝜏, 𝜏̇(𝑡) ≤ 𝜇, 0 ≤ 𝑑(𝑡) ≤ 𝑑.            (2) 

where τ, d and µ are known constants. The initial function φ(t) is continuous defined on [-δ, 0] 

 (𝑨𝟐) The each neuron activation function in the neural network (1) is assumed to satisfy 

ℎ𝑗
− ≤

𝑓𝑖(𝑥)−𝑓𝑖(𝑦)

𝑥−𝑦
≤ ℎ𝑗

+, ∀𝑥, 𝑦 ∈ ℝ, 𝑥 ≠ 𝑦, 𝑖 = 1,2, …n                  (3) 

Where 𝒉𝒋
− and 𝒉𝒋

+are some known constants. 

 

Definition 2.1 (Finite-time stability) For a given time constant Tc, neural network (1) is said to be finite-time 

stable with respect to 𝑐1, 𝑐2, 𝑇𝑐 , 𝐿 if 𝑠𝑢𝑝−𝛿≤𝑡0≤0{𝑦
𝑇(𝑡0)𝐿𝑦𝑇(𝑡0), 𝑦̇(𝑡0)𝐿𝑦̇(𝑡0)} ≤ 𝑐1 ⇒ 𝑦𝑇(𝑡)𝐿𝑦𝑇(𝑡) ≤ 𝑐2 for 

𝑡 ∈ [0, 𝑇𝑐], where 0 < 𝑐1 < 𝑐2, L is positive definite matrix. 

 

Lemma 2.2 [13] For a positive matrix M, scalars ℎ𝑈 > ℎ𝐿 > 0, such that the following integrations are well 

defined, it holds that 

−(ℎ𝑈 − ℎ𝐿) ∫ 𝑥𝑇(𝑠)

𝑡−ℎ𝐿

𝑡−ℎ𝑈

𝑀𝑥(𝑠)𝑑𝑠 ≤ −( ∫ 𝑥(𝑠)

𝑡−ℎ𝐿

𝑡−ℎ𝑈

𝑑𝑠)

𝑇

𝑀 ( ∫ 𝑥(𝑠)

𝑡−ℎ𝐿

𝑡−ℎ𝑈

𝑑𝑠), 

−
ℎ𝑈

2 − ℎ𝐿
2

2
∫ ∫𝑥𝑇(𝑢)

𝑡

𝑠

𝑀𝑥(𝑢)𝑑𝑢𝑑𝑠

𝑡−ℎ𝐿

𝑡−ℎ𝑈

 ≤ −( ∫ ∫𝑥(𝑢)𝑑𝑢𝑑𝑠

𝑡

𝑠

𝑡−ℎ𝐿

𝑡−ℎ𝑈

)

𝑇

𝑀 ( ∫ ∫𝑥(𝑢)𝑑𝑢𝑑𝑠

𝑡

𝑠

𝑡−ℎ𝐿

𝑡−ℎ𝑈

), 

−
ℎ𝑈

3 − ℎ𝐿
3

6
∫ ∫ ∫𝑥𝑇(𝑣)

𝑡

𝑢

𝑡

𝑠

𝑀𝑥(𝑣)𝑑𝑣𝑑𝑢𝑑𝑠

𝑡−ℎ𝐿

𝑡−ℎ𝑈

 ≤ −( ∫ ∫ ∫𝑥(𝑣)𝑑𝑣𝑑𝑢𝑑𝑠

𝑡

𝑢

𝑡

𝑠

𝑡−ℎ𝐿

𝑡−ℎ𝑈

)

𝑇

𝑀 ( ∫ ∫ ∫𝑥(𝑣)𝑑𝑣𝑑𝑢𝑑𝑠

𝑡

𝑢

𝑡

𝑠

𝑡−ℎ𝐿

𝑡−ℎ𝑈

). 

Lemma 2.3 [14] For given symmetric positive definite matrices 𝑅 > 0 and for any differentiable function 
𝜔(∙) ∈ [𝑎, 𝑏] → ℝ𝑛 the following inequality holds: 
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∫𝜔̇𝑇

𝑏

𝑎

(𝑠)𝑅𝜔̇(𝑠)𝑑𝑠 ≥
1

𝑏 − 𝑎
[
𝜔(𝑏)

𝜔(𝑎)
𝜐

]

𝑇

𝑊2(𝑅) [
𝜔(𝑏)
𝜔(𝑎)

𝜐

] 

Where 

𝜐 =
1

𝑏 − 𝑎
∫𝜔(𝑠)𝑑𝑠,

𝑏

𝑎

 𝑊2(𝑅) = [
𝑅 −𝑅 0
∗ 𝑅 0
0 0 0

] +
𝜋2

4
[
𝑅 𝑅 −2𝑅
∗ 𝑅 −2𝑅
0 0 4𝑅

]. 

Lemma 2.4 [15] Let 𝐻, 𝐸 𝑎𝑛𝑑 𝐹(𝑡) be real matrices of appropriate dimensions with 𝐹(𝑡) satisfying 
𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼. Then, for any scalar 𝜖 > 0. 

𝐻𝐹(𝑡)𝐸 + (𝐻𝐹(𝑡)𝐸)𝑇 ≤ 𝜖−1𝐻𝐻𝑇 + 𝜖𝐸𝑇 . 

3. Main results 

 This section will focus on the problem of finite-time stability and finite-time robust stability criteria with 

discrete and distributed time-varying delays.  

3.1. Finite-time stability criteria 

 

Theorem 3.1 Assume that the conditions (A1) and (A2) hold. For given scalars 𝜏, 𝜇, 𝑑 𝑎𝑛𝑑 𝛿 then system 

(1) is finite-time stable with respect to 𝑐1, 𝑐2, 𝑇𝑐, 𝐿, if there exists positive definite matrices 

𝑃, 𝑄1, 𝑄2, 𝑅1, 𝑅2, 𝑆, 𝑇, 𝑈 and positive diagonal matrices 𝑈1, 𝑈2  such that the following LMIs hold: 

     Θ =

[
 
 
 
 
 
 
 
 
 
 
Θ(1,1) 0 Θ(1,3)

∗ Θ(2,2) 0

∗ ∗ Θ(3,3)

Θ(1,4) Θ(1,5) Θ(1,6)

0 Θ(2,5) Θ(2,6)

0 0 0

Θ(1,7) Θ(1,8) Θ(1,9)

0 0 0
Θ(3,7) 0 0

∗         ∗           ∗
∗         ∗           ∗
∗         ∗           ∗

Θ(4,4) Θ(4,5) Θ(4,6)

∗ Θ(5,5) 0

∗ ∗ Θ(6,6)

   0          0          Θ(4,9)

0           0           0
0           0         0

∗          ∗           ∗
∗          ∗           ∗
∗          ∗           ∗

∗           ∗           ∗
∗          ∗           ∗
∗         ∗           ∗

Θ(7,7) 0 0

0 Θ(8,8) 0 

0 0 Θ(9,9) ]
 
 
 
 
 
 
 
 
 
 

< 0,                  (4) 

 

𝜆1𝐼 ≤ 𝑃̂ ≤ 𝜆2𝐼, 0 ≤ 𝑄1̂ ≤ 𝜆3𝐼, 0 ≤ 𝑄2̂ ≤ 𝜆4𝐼, 0 ≤ 𝑅1̂ ≤ 𝜆5𝐼, 0 ≤ 𝑅2̂ ≤ 𝜆6𝐼, 

 0 ≤ 𝑆̂ ≤ 𝜆7𝐼, 0 ≤ 𝑇̂ ≤ 𝜆8𝐼, 0 ≤ 𝑈̂ ≤ 𝜆9𝐼 ,     (5) 

 

𝑐1Λ < 𝑐2𝜆1𝑒
−𝛿𝑇𝑐 ,       (6) 

Where 

Θ(1,1) = 𝑄1 + 𝑄2 + 𝜏𝑅2 −
1

𝜏
(𝑅1 +

𝜋2

4
𝑅1) − 𝑆 − 𝑆𝑇 −

3𝜏

2
𝑇 − 𝐹1Λ1 − G1𝐶 − 𝐶𝐺1

𝑇 , 

Θ(1,3) = −
1

𝜏
(−𝑅1 +

𝜋2

4
𝑅1) , Θ(1,4) = 𝑃 − 𝐺1 − 𝐴𝐺2

𝑇 , Θ(1,5) =  𝐹2Λ1 + 𝐹2Λ3 + 𝐺1W0, 

Θ(1,6) =  −𝐹2Λ3 + 𝐺1W1, Θ(1,7) =  
𝜋2

2𝜏2
𝑅1 +

2

𝜏
𝑆, Θ(1,8) =  

3

𝜏
𝑇, Θ(1,9) = 𝐺1𝐵Θ,  

Θ(2,2) = −(1 − 𝜇)𝑄2 − 𝐹1Λ2 − 𝐹1Λ3, Θ(2,5) = −Λ3𝐹2
𝑇 , Θ(2,6) = 𝐹2Λ2 + 𝐹2Λ3, 

Θ(3,3) = −𝑄1 −
1

𝜏
(𝑅1 +

𝜋2

4
𝑅1) , Θ(3,7) =  

𝜋2

2𝜏2
𝑅1, Θ(4,4) = 𝜏𝑅1 +

𝜏2

2
𝑆 +

𝜏3

6
𝑇 − 𝐺2 − 𝐺2

𝑇 ,  

Θ(4,5) = 𝐺2W0, Θ(4,6) = 𝐺2W1, Θ(4,9) = 𝐺2𝐵Θ, Θ(5,5) = −Λ1 − Λ3, Θ(5,6) =  Λ3,   
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Θ(6,6) = −Λ2 − Λ3, Θ(7,7) =  −
𝜋2

𝜏3
𝑅1 −

1

𝜏
𝑅2 −

2

𝜏2
𝑆, Θ(8,8) =  −

6

𝜏3
𝑇, Θ(9,9) = −𝛿𝐼, 

𝜆1 = 𝜆𝑚𝑖𝑛(𝑃̂), 𝜆2 = 𝜆𝑚𝑎𝑥(𝑃̂), 𝜆3 = 𝜆𝑚𝑎𝑥(𝑄1̂), 𝜆4 = 𝜆𝑚𝑎𝑥(𝑄2̂), 𝜆5 = 𝜆𝑚𝑎𝑥(𝑅1̂), 

 𝜆6 = 𝜆𝑚𝑎𝑥(𝑅2̂), 𝜆7 = 𝜆𝑚𝑎𝑥(𝑆̂), 𝜆8 = 𝜆𝑚𝑎𝑥(𝑇̂), 𝜆9 = 𝜆𝑚𝑎𝑥(𝑈̂). 

 

Proof. We choose the following Lyapunov-Krasovskii function: 

𝑉(𝑦(𝑡)) = ∑𝑉𝑖

6

1

(𝑦(𝑡))                                                                                                 (7) 

Where 

𝑉1(𝑦(𝑡)) = 𝑦𝑇𝑃𝑦(𝑡), 

𝑉2(𝑦(𝑡)) = ∫ 𝑦𝑇(𝑠)𝑄1𝑦(𝑠)𝑑𝑠

𝑡

𝑡−𝜏

+ ∫ 𝑦𝑇(𝑠)𝑄2𝑦(𝑠)𝑑𝑠

𝑡

𝑡−𝜏(𝑡)

, 

𝑉3(𝑦(𝑡)) = ∫ ∫ 𝑦̇𝑇

𝑡

𝑡+𝛽

0

−𝜏

(𝑠)𝑅1𝑦̇(𝑠)𝑑𝑢𝑑𝑠 + ∫ ∫ 𝑦𝑇(𝑠)𝑅2𝑦(𝑠)𝑑𝑢𝑑𝑠

𝑡

𝑡+𝛽

0

−𝜏

, 

𝑉4(𝑦(𝑡)) = ∫ ∫ ∫ 𝑦̇𝑇

𝑡

𝑡+𝛽

0

𝜃

(𝑠)𝑆𝑦̇(𝑠)𝑑𝑠𝑑𝛽𝑑𝜃,

0

−𝜏

 

𝑉5(𝑦(𝑡)) = ∫ ∫∫ ∫ 𝑦̇𝑇

𝑡

𝑡+𝛽

0

𝜃

(𝑠)𝑇𝑦̇(𝑠)𝑑𝑠𝑑𝛽𝑑𝜃𝑑𝜆,

0

𝜆

0

−𝜏

 

𝑉6(𝑦(𝑡)) = ∫ ∫ 𝑓𝑇

𝑡

𝑡+𝛽

0

−𝑑(𝑡)

(𝑦(𝑠))𝑈𝑓(𝑦(𝑠))𝑑𝑢𝑑𝑠. 

 

Taking the time-derivative of 𝑉(𝑦(𝑡)) along any trajectory of system (1), it yields that 

 

𝑉̇(𝑦(𝑡)) = ∑𝑉𝑖̇

6

𝑖=1

(𝑦(𝑡)),                                                                                             (8) 

Where 

 

𝑉1̇(𝑦(𝑡)) = 2𝑦𝑇(𝑡)𝑃𝑦̇(𝑡),                                                                                                                      (9) 

𝑉2̇(𝑦(𝑡)) ≤ 𝑦𝑇(𝑡)𝑄1𝑦(𝑡) − 𝑦𝑇(𝑡 − 𝜏)𝑄1𝑦(𝑡 − 𝜏) + 𝑦𝑇(𝑡)𝑄2𝑦(𝑡) 

                          −(1 − 𝜇)𝑦𝑇(𝑡 − 𝜏(𝑡))𝑄1𝑦(𝑡 − 𝜏(𝑡)),                                                                    (10) 

𝑉3̇(𝑦(𝑡)) = 𝜏𝑦̇𝑇(𝑡)𝑅1𝑦̇(𝑡) + 𝜏𝑦𝑇(𝑡)𝑅2𝑦(𝑡) − ∫ 𝑦̇𝑇(𝑠)𝑅1𝑦̇(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠 − ∫ 𝑦𝑇(𝑠)𝑅2𝑦(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠, (11) 

𝑉4̇(𝑦(𝑡)) =
𝜏2

2
𝑦̇𝑇(𝑡)𝑆𝑦̇(𝑡) − ∫ ∫ 𝑦̇𝑇(𝑠)𝑆𝑦̇(𝑠)

𝑡

𝑡+𝜃

0

−𝜏

𝑑𝑠𝑑𝜃,                                                                 (12) 

𝑉5̇(𝑦(𝑡)) =
𝜏2

6
𝑦̇𝑇(𝑡)𝑇𝑦̇(𝑡) − ∫∫ ∫ 𝑦̇𝑇(𝑠)𝑇𝑦̇(𝑠)

𝑡

𝑡+𝜃

0

𝜆

𝑑𝑠𝑑𝜃

0

−𝜏

𝑑𝜆,                                                      (13) 

𝑉6̇(𝑦(𝑡)) = 𝑑𝑓𝑇(𝑦(𝑡))𝑈𝑓(𝑦(𝑡)) − ∫ 𝑓𝑇(𝑦(𝑠))𝑈𝑓(𝑦(𝑠))

𝑡

𝑡−𝑑(𝑡)

.                                                  (14) 

By applying Lemma 2.2, the first integral in (11) we can obtain 
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− ∫ 𝑦̇𝑇(𝑠)𝑅1𝑦̇(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠 ≤ −
1

𝜏
[

𝑦(𝑡)

𝑦(𝑡 − 𝜏)
𝜈1

]

𝑇

𝑊1(𝑅1) [
𝑦(𝑡)

𝑦(𝑡 − 𝜏)
𝜈1

]                                                         (15) 

Where 

𝜈1 =
1

𝜏
∫ 𝑦(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠,𝑊2(𝑅1) = 𝑊0(𝑅1) +
𝜋2

4
[
𝑅1 𝑅1 −2𝑅1

∗ 𝑅1 −2𝑅1

∗ ∗ 4𝑅1

] ,𝑊0(𝑅1) = [
𝑅1 −𝑅1 0
∗ 𝑅1 0
0 0 0

], 

− ∫ 𝑦̇𝑇(𝑠)𝑅1𝑦̇(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠

≤  
1

𝜏
[𝑦𝑇(𝑡) (𝑅1 +

𝜋2

4
𝑅1)𝑦(𝑡) + 2𝑦𝑇(𝑡) (−𝑅1 +

𝜋2

4
𝑅1)𝑦(𝑡 − 𝜏)

+ 𝑦𝑇(𝑡 − 𝜏) (𝑅1 +
𝜋2

4
𝑅1)𝑦(𝑡 − 𝜏) + 2𝑦𝑇(𝑡) (−

𝜋2

2𝜏
𝑅1) ∫ 𝑦(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠

+ 2𝑦𝑇(𝑡 − 𝜏) (−
𝜋2

2𝜏
𝑅1) ∫ 𝑦(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠 + ∫ 𝑦𝑇(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠 (
𝜋2

𝜏2
𝑅1) ∫ 𝑦(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠].   (16)  

 

Applying Lemma 2.1, integral term in equation (11)-(14), as follows 

 

− ∫ 𝑦𝑇(𝑠)𝑅2𝑦(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠 = −
1

𝜏
( ∫ 𝑦𝑇(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠)𝑅2 ( ∫ 𝑦(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠)                                              (17) 

− ∫ ∫ 𝑦̇𝑇(𝑠)𝑆𝑦̇(𝑠)

𝑡

𝑡+𝜃

0

−𝜏

𝑑𝑠𝑑𝜃 ≤ −
2

𝜏2
( ∫ ∫ 𝑦̇𝑇(𝑠)

𝑡

𝑡+𝜃

0

−𝜏

𝑑𝑠𝑑𝜃)𝑆 ( ∫ ∫ 𝑦̇(𝑠)

𝑡

𝑡+𝜃

0

−𝜏

𝑑𝑠𝑑𝜃) 

 

                                   = −
2

𝜏2
[𝜏𝑦𝑇(𝑡) − ∫ 𝑦𝑇(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠] 𝑆 [𝜏𝑦(𝑡) − ∫ 𝑦(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠]                         (18) 

− ∫ ∫ ∫ 𝑦̇𝑇(𝑠)𝑇𝑦̇(𝑠)

𝑡

𝑡+𝜃

0

𝜆

𝑑𝑠𝑑𝜃

0

−𝜏

𝑑𝜆 ≤ −
6

𝜏3
( ∫∫ ∫ 𝑦̇𝑇(𝑠)

𝑡

𝑡+𝜃

0

𝜆

𝑑𝑠𝑑𝜃

0

−𝜏

𝑑𝜆)𝑇 ( ∫∫ ∫ 𝑦̇(𝑠)

𝑡

𝑡+𝜃

0

𝜆

𝑑𝑠𝑑𝜃

0

−𝜏

𝑑𝜆) 

                    = −
6

𝜏3
[
𝜏2

2
𝑦𝑇(𝑡) − ∫ ∫ 𝑦𝑇(𝑠)

𝑡

𝑡+𝜆

𝑑𝑠𝑑𝜆

0

−𝜏

] 𝑇 [
𝜏2

2
𝑦(𝑡) − ∫ ∫ 𝑦(𝑠)

𝑡

𝑡+𝜆

𝑑𝑠𝑑𝜆

0

−𝜏

]                           (19) 

− ∫ 𝑓𝑇(𝑦(𝑠))𝑈𝑓(𝑦(𝑠))

𝑡

𝑡−𝑑(𝑡)

≤ −
1

𝑑
( ∫ 𝑓𝑇(𝑦(𝑠))

𝑡

𝑡−𝑑(𝑡)

𝑑𝑠)𝑈 ( ∫ 𝑓(𝑦(𝑠))

𝑡

𝑡−𝑑(𝑡)

𝑑𝑠)                             (20) 

From Assumption (A2), we have, 

 

[𝑓𝑝(𝑦(𝑡)) − ℎ𝑝
−(𝑦(𝑡))][ℎ𝑝

+(𝑦(𝑡)) − 𝑓𝑝(𝑦(𝑡))] ≥ 0, 𝑝 = 1,2, … , 𝑛 

which is equivalent to, 

 

[
𝑦𝑇(𝑡)

𝑓𝑇(𝑦(𝑡))
] [

−ℎ𝑝
−ℎ𝑝

+𝑒𝑝𝑒𝑝
𝑇

ℎ𝑝
+ + ℎ𝑝

−

2
𝑒𝑝𝑒𝑝

𝑇

∗ −𝑒𝑝𝑒𝑝
𝑇

] [
𝑦(𝑡)

𝑓(𝑦(𝑡))
] ≥ 0 
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with 𝑒𝑝 denotes the unit column vector with the element 1 on its 𝑝𝑡ℎ row and zero elsewhere. Then, for any 

positive diagonal matrix 𝑈1, it follows that 

 

                                               [
𝑦𝑇(𝑡)

𝑓𝑇(𝑦(𝑡))
] [

−𝐻1𝑈1 𝐻2𝑈1

∗ −𝑈1
] [

𝑦(𝑡)

𝑓(𝑦(𝑡))
] ≥ 0                                    (21) 

 

By similar analysis, we can also get that the following inequality holds for any positive diagonal matrix 𝑈2 

 

                    [
𝑦𝑇(𝑡 − 𝜏(𝑡))

𝑓𝑇(𝑦(𝑡 − 𝜏(𝑡)))
] [

−𝐻1𝑈2 𝐻2𝑈2

∗ −𝑈2
] [

𝑦(𝑡 − 𝜏(𝑡))

𝑓(𝑦(𝑡 − 𝜏(𝑡)))
] ≥ 0                                   (22) 

 

On the other hand, for any matrices 𝐺1and 𝐺2 with appropriate dimensions, it is true that, 

 

0 = 2[𝑦𝑇(𝑡) 𝐺1 + 𝑦̇𝑇(𝑡) 𝐺2] [−𝑦̇(𝑡) − 𝐶𝑦(𝑡) + 𝐴𝑓(𝑦(𝑡)) + 𝐵𝑓 (𝑦(𝑡 − 𝜏(𝑡)))

+ 𝐷 ∫ 𝑓(𝑦(𝑠))

𝑡

𝑡−𝑑(𝑡)

𝑑𝑠]                                                                                          (23) 

 

From (9)-(23) it can be deduced that 

 

𝑉̇(𝑦(𝑡)) − 𝛿𝑉(𝑦(𝑡)) ≤ Ω𝑇(𝑡)ΘΩ(𝑡) 

 

Where 

 

Ω(𝑡) = [𝑦𝑇(𝑡)  𝑦𝑇(𝑡

− 𝜏(𝑡)) 𝑦𝑇(𝑡)  𝑦̇(𝑡) 𝑓𝑇(𝑦(𝑡)) 𝑓𝑇(𝑦(𝑡

− 𝜏(𝑡))) ∫ 𝑦𝑇(𝑠)

𝑡

𝑡−𝜏

𝑑𝑠 ∫ 𝑓𝑇(𝑦(𝑠)

𝑡

𝑡−𝜏

)𝑑𝑠 ∫ ∫ 𝑦𝑇(𝑠)

𝑡

𝑡+𝜆

𝑑𝑠𝑑𝜆

0

−𝜏

]

𝑇

 

 

and Θ is shown in (4). 

 

                                                                 𝑉̇(𝑦(𝑡)) < 𝛿𝑉(𝑦(𝑡)),                                                                 (25) 

 

Multiplying (25) by e−𝛿𝑡, we can obtain 

 

                                                                     
𝑑

𝑑𝑡
(e−𝛿𝑡𝑉) < 0,                                                                      (26) 

 

Integrating the aforementioned inequality between 0 to t, with  𝑡 ∈ [0, 𝑇𝑐] it follows that: 

 

                                                             e−𝛿𝑡𝑉(𝑦(𝑡)) < 𝑉(𝑦(0)),                                                                        (27) 

      

Then 

 

                                                                 𝑉(𝑦(𝑡)) < e𝛿𝑡𝑉(𝑦(0)).                                                                      (28) 

http://www.jetir.org/


© 2019 JETIR May 2019, Volume 6, Issue 5                                            www.jetir.org  (ISSN-2349-5162)  
 

JETIR204965 
Journal of Emerging Technologies and Innovative Research (JETIR) 

www.jetir.org 
318-327 

 

 

Letting 𝑃̂ = 𝐿−
1

2𝑃𝐿−
1

2,    𝑄1̂ = 𝐿−
1

2𝑄1𝐿
−

1

2,     𝑄2̂ = 𝐿−
1

2𝑄2𝐿
−

1

2,     𝑅1̂ = 𝐿−
1

2𝑅1𝐿
−

1

2,     𝑅2̂ = 𝐿−
1

2𝑅2𝐿
−

1

2,    𝑆̂ =

𝐿−
1

2𝑆𝐿−
1

2,    𝑇̂ = 𝐿−
1

2𝑇𝐿−
1

2, 𝑈̂ = 𝐿−
1

2𝑈𝐿−
1

2, 
 

We obtain 

𝑉(𝑦(0)) = e𝛿𝑡 [𝑦𝑇(0)𝐿−
1
2 𝑃̂𝐿−

1
2𝑦(0) + ∫𝑦𝑇(𝑠)

0

−𝜏

𝐿−
1
2 𝑄1̂𝐿

−
1
2𝑦(𝑠)𝑑𝑠 + ∫ 𝑦𝑇(𝑠)

0

−𝜏(𝑡)

𝐿−
1
2 𝑄2̂𝐿

−
1
2𝑦(𝑠)𝑑𝑠

+ ∫ ∫ 𝑦̇𝑇(𝑠)

0

𝛽

𝐿−
1
2 𝑅1̂𝐿

−
1
2𝑦̇(𝑠)𝑑𝑢𝑑𝑠

0

−𝜏

+ ∫ ∫𝑦𝑇(𝑠)

0

𝛽

𝐿−
1
2 𝑅1̂𝐿

−
1
2𝑦(𝑠)𝑑𝑢𝑑𝑠

0

−𝜏

+ ∫ ∫ ∫ 𝑦̇𝑇(𝑠)

0

𝛽

𝐿−
1
2𝑆̂𝐿−

1
2𝑦̇(𝑠)𝑑𝑠

0

𝜃

0

−𝜏

𝑑𝛽𝑑𝜃 + ∫∫∫ ∫ 𝑦̇𝑇(𝑠)

0

𝛽

𝐿−
1
2𝑇̂𝐿−

1
2𝑦̇(𝑠)𝑑𝑠

0

𝜃

0

𝜆

𝑑𝛽𝑑𝜃

0

−𝜏

𝑑𝜆

+ ∫ ∫𝑓𝑇(𝑦(𝑠))

0

𝛽

𝐿−
1
2 𝑈̂𝐿−

1
2𝑓(𝑦(𝑠))𝑑𝑢𝑑𝑠

0

−𝑑

], 

≤ e𝛿𝑡 {𝜆𝑚𝑎𝑥( 𝑃̂)𝑦𝑇(0)𝐿𝑦(0) + 𝜏𝜆𝑚𝑎𝑥( 𝑄1̂) + 𝜏𝜆𝑚𝑎𝑥( 𝑄2̂) +
𝜏2

2
𝜆𝑚𝑎𝑥( 𝑅1̂) +

𝜏2

2
𝜆𝑚𝑎𝑥( 𝑅2̂) +

𝜏3

6
𝜆𝑚𝑎𝑥( 𝑆̂)

+
𝜏4

24
𝜆𝑚𝑎𝑥( 𝑇̂) +

𝑑2

2
𝜆𝑚𝑎𝑥( 𝑈̂)} 𝑠𝑢𝑝−𝜏≤𝜃≤0{𝑦

𝑇(𝜃)𝐿𝑦(𝜃), 𝑦̇𝑇(𝑡)𝐿𝑦̇(𝑡)}, 

 

                                                  𝑉(𝑦(0)) ≤ 𝑐1Λ.                                                                                             (29) 

Where Λ = 𝜆2 + 𝜏[𝜆3 + 𝜆4] +
𝜏2

2
[𝜆5 + 𝜆6] +

𝜏3

6
𝜆7 +

𝜏4

24
𝜆8 +

𝑑2

2
𝜆9. 

 

On the other hand, if follows from (7) that: 

 

          𝑉(𝑦(𝑡)) ≥ 𝑦𝑇(𝑡)𝑃𝑦(𝑡) ≥ 𝜆𝑚𝑖𝑛( 𝑃̂)𝑦𝑇(𝑡)𝐿𝑦(𝑡) = 𝜆1𝑦
𝑇(𝑡)𝐿𝑦(𝑡),                                           (30) 

 

Combining the inequalities (28)-(30), we get 

 

                                                          𝑐2 ≤
𝑐1Λ

𝜆1
e𝛿𝑇𝑐 .                                                                                          (31) 

 

Then from condition (6), we arrive at 𝑦𝑇(𝑡)𝐿𝑦(𝑡) < 𝑐2.  From definition 2.1, the system (1), is finite-time 

stable with respect to 𝑐1, 𝑐2, 𝑇𝑐 , 𝐿. This completes the proof. 

 

3.2. Finite-time robust stability criteria: 
 

              In this subsection, based on Theorem 3.1, we are now ready to develop stability criterion for the 

neural networks with time-varying parameters uncertainties. Now, we consider the following uncertain 

neural networks as: 

 

𝑦̇𝑇(𝑡) = (𝐶 + ∆𝐶(𝑡))𝑦(𝑡) + (𝐴 + ∆𝐴(𝑡))𝑓(𝑦(𝑡)) + (𝐵 + ∆𝐵(𝑡))𝑓 (𝑦(𝑡 − 𝜏(𝑡)))

+ (𝐷 + ∆𝐷(𝑡)) ∫ 𝑓(𝑦(𝑠)

𝑡

𝑡−𝑑(𝑡)

)𝑑𝑠,                                                                              (32) 

Where ∆𝐶(𝑡), ∆𝐴(𝑡), ∆𝐵(𝑡) and ∆𝐷(𝑡) are the time-varying parameters uncertainties. Which are assumed to 

be of the form ∆𝐶(𝑡), ∆𝐴(𝑡), ∆𝐵(𝑡), ∆𝐷(𝑡) =   𝐻𝐹(𝑡)[𝐸1, 𝐸2, 𝐸3, 𝐸4]. 

http://www.jetir.org/


© 2019 JETIR May 2019, Volume 6, Issue 5                                            www.jetir.org  (ISSN-2349-5162)  
 

JETIR204965 
Journal of Emerging Technologies and Innovative Research (JETIR) 

www.jetir.org 
318-327 

 

 

Theorem 3.2 Assume that the conditions (A1) and (A2) hold. For given scalars τ, μ, d and δ then system (32) 

is finite-time stable with respect to c1, c2, Tc, L, if there exists positive definite matrices P, Q1, Q2, R1, R2, S, T, U 

and positive diagonal matrices U1, U2 such that LMIs (4), (5) and (6). 

 

                                                     [
Θ + 𝜖𝜉2

𝑇𝜉2 𝜉1
𝑇

𝜉1 −𝜖𝐼
] < 0,                                                                  (33) 

Where 

  𝜉1 = [[𝐺1 𝐻 0 0 0 0 0 0 𝐺2𝐻 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]]
𝑇
, 

𝜉2 = [−𝐸1  0 0 0 0 0 0 0 𝐸2 0 0 𝐸3 0 0 0 0 0 0 0 0 0 𝐸4 0 0 0 ]𝑇 . 
 

 and  Θ is defined in Theorem 3.1 

 

Proof: Replacing  𝐶, 𝐴, 𝐵, 𝐷 in LMI (4) with 𝐶 + 𝐻𝐹(𝑡)𝐸1, 𝐴 + 𝐻𝐹(𝑡)𝐸2, 𝐵 + 𝐻𝐹(𝑡)𝐸3, 𝐷 + 𝐻𝐹(𝑡)𝐸4 

yields, 

 

                                    Θ + 𝜉1
𝑇𝐹(𝑡)𝜉2 + 𝜉2

𝑇𝐹(𝑡)𝜉1 < 0,                                                                (34) 

 

Applying Lemma 2.3, it can be deduced that for 𝜖 > 0, 
 

                                  Θ + 𝜖−1𝜉1
𝑇𝜉1 + 𝜖𝜉2

𝑇𝜉2 < 0.                                                                (35) 

 

which is equivalent to (33) in the sense of the Schur complement [16]. The proof is completed. 
 

4. Numerical Examples. 
 

In this section, we will give a example showing the effectiveness of the results given here. 

 

Example Consider system (1) with the following parameters: 

 

𝐶 = [
1.8 0
0 1.3

] , 𝐴 = [
0.9 −0.1
0.2 0.4

] , 𝐵 = [
0.6 0.4

−0.3 −0.2
] ,, 𝐷 = [

0.15 0.3
0.3 0.1

]. 

 

The activation function is described by  ℎ(𝑥) = [tanh(1.3𝑦1)  tanh (1.2𝑦2)]
𝑇, then it is easy to see that, 𝐻1 =

𝑑𝑖𝑎𝑔{0,0} and 𝐻2 = 𝑑𝑖𝑎𝑔{0.70,0.45}. Let the time-varying delay satisfying 𝜏(𝑡) = 2 + 0.3 sin(𝑡), 𝑑(𝑡) =
3 + 0.1 sin (𝑡) and for given scalars 𝜇 = 0.6, 𝑐1 = 0.3, 𝑇𝑐 = 35, 𝛿 = 0.6, and matrix  𝐿 = 𝐼, by by solving 

the LMIs (4)-(6) in Theorem 3.1, using Matlab LMI toolbox, we can obtain the feasible solutions for optimal 

minimum value of 𝑐2 = 4.661, some of the obtained decision variable are 

 

𝑃 = [
1.7730 0.1333
0.1333 1.5546

] , 𝑄1 = [
2.7989 0.1375
0.1375 2.0325

] , 𝑄2 = [
1.2570 0.7673
0.7673 1.1177

], 

 

𝑅1 = [
0.6173 0.1141
0.1141 0.9452

] , 𝑅2 = [
4.9929 1.1368
1.1368 4.4056

] , 𝑆 = [
6.9524 0.9036
0.9036 5.9067

], 

 

𝑇 = [
4.4056 −0.6468

−0.6468 2.8762
] , 𝑈1 = [

4.5428 0
0 3.1345

] , 𝑈2 = [
3.3728 0

0 3.0749
],  

 

𝐺1 = [
1.6686 0.2584
0.2584 1.9764

] , 𝐺2 = [
0.1537 0.9199
0.9199 0.9191

].  

 

The above results shows that all the conditions stated in Theorem 3.1, have been satisfied. Hence, it 

can be concluded that the considered system is finite-time stable with respect to (c1, c2, Tc, L). 
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5. Conclusion. 
 

This paper has investigated the problem of robust finite-time stability analysis for neural networks 

with time-varying delays. Based on a suitable Lyapunov-Krasovskii function with triple and four integral 

terms have been constructed. A novel set of sufficient conditions are derived in terms of linear matrix 

inequalities. Finally, a numerical example is given to demonstrate the usefulness and effectiveness of the 

proposed results. 

 

REFERENCES 

[1] Chua L., Yang, L. (1988). Cellular neural networks: applications, IEEE Transactions on Circuits and 

Systems, 35, 1273-1290. 

[2] Waszczyszyn, Z., Ziemianski, L. (2001). Neural networks in mechanics of structures and materials-new 

results prospects of applications. Computers and Structures, 79, 2261-2276. 

[3] Li, T., Song, A., Fei, S., Wang, T. (2010). Delay-derivative-dependent stability for delayed neural 

networks with unbounded distributed delay. IEEE Transactions on Neural Networks, 21, 1365-1371. 

[4] Zhang, H., Wang, Z., Liu, D. (2014). A comprehensive review of stability analysis of continuous-time 

recurrent neural networks. IEEE Transactions on Neural Networks and Learning Systems, 25(7), 1229-

1261. 

[5] Kwon, O. M., Park, M .J., Lee, S. M., Park, J. H., Cha, E. J. (2013). Stability for neural networks with  

time-varying delays via some new approaches. IEEE Transactions on Neural Networks and Learning 

Systems, 24, 181-193. 

[6] He, Y., Liu, G., Rees, D., Wu, M. (2007). Stability analysis for neural networks with time-varying interval 

delay, IEEE Transactions on Neural Networks, 18, 1850-1854. 

[7] Dorato, P. (1961). Short time stability in linear time-varying systems, Proc. IRE Int. Convention Record, 

Part 4 83-87. 

[8] Weiss, L. Infante, E. (1967). Finite time stability under perturbing forces and on product spaces, IEEE 

Transactions on  Automatic Control 12 (1) 54-59. 

[9] Bhat, S.P. Bernstein, D.S. (2000). Finite-time stability of continuous autonomous systems, SIAM Journal 

on Control and Optimization, 38 751-766. 

[10] Amato, F. Carannante, G. De Tommasi, G. Pironti, A. (2012). Input-output finite- time stability of linear 

systems: necessary and sufficient conditions, IEEE Trans.Autom. Control 57 (12) (2012) 3051-3063. 

[11] Wu, Y. Cao, J. Alofi, A. Al-Mazrooei, A. Elaiw, A. (2015). Finite-time boundedness and stabilization of 

uncertain switched neural networks with timevarying delay, Neural Networks, 69 135-143. 

[12] Rajavel, S. Samidurai, R. Cao, J. Alsaedi, A. Ahmad, B. (2017). Finite-time non-fragile passivity control 

for neural networks with time-varying delay, Applied Mathematics Computation, 297 145-158. 

[13] Kwon, O.M. Park, J.H. Lee, S.M. Cha, E.J. (2014). New augmented Lyapunov-Krasovskii functional 

approach to stability analysis of neural networks with time-varying delays, Nonlinear Dynam. 76 221-236. 

[14] Seuret, A. Gouaisbaut, F. (2012). On the use of the Wirtinger inequalities for time-delay systems, 10th 

IFAC Workshop on Time Delay Systems, Boston, Etats Unis. 

[15] Xie, L. (1996). Output feedback H1 control of systems with parameter uncertainty, Int. J. Control, 63 

741-750. 

[16] Boyd, S. Ghaoui, L. Feron, E. Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control 

Theory, SIAM, Philadelphia. 

[17] Shao, H. Han,Q. L. (2011). New delay-dependent stability criteria for neural networks with two additive 

time-varying delay, IEEE Trans. Neural Netw. 22 812-818. 

[18] Zhang,C. He,Y. Jiang,L. Wu,Q. H. and Wu,M. (2014). Delay-dependent stability criteria for generalized 

neural networks with two delay components, IEEE Trans. Neural Netw. Learn. Syst. 25 1263-1276. 

[19] Liu,Y. Lee,S. M. Lee,H. G. Robust delay-dependent stability criteria for uncertain neural networks with 

two additive time-varying delay components, Neurocomputing 151 (2015) 770-775. 

[20] Samidurai,R. Rajavel,S. Sriraman,R. Cao,J. Alsaedi,A. and Alsaadi,F. E. Novel results on stability 

analysis of neutral-type neural networks with additive time-varying delay components and leakage delay, 

Int. J. Control Autom. 15 (2017) 1-13. 

http://www.jetir.org/


© 2019 JETIR May 2019, Volume 6, Issue 5                                            www.jetir.org  (ISSN-2349-5162)  
 

JETIR204965 
Journal of Emerging Technologies and Innovative Research (JETIR) 

www.jetir.org 
318-327 

 

[21] Tian,J. Zhong,S. Improved delay-dependent stability criteria for neural networks with two additive time-

varying delay components, Neurocomputing 77 (2012) 114-119. 

[22] Wu,H. Liao,X. Feng,W. Guo,S. Zhang,W. Robust stability analysis of uncertain systems with two 

additive time-varying delay components, Appl. Math. Model. 33 (2009) 4345-4353. 

[23] Wang,X. She,K. Zhong,S. Yang,H. Improved delay-dependent criteria for uncertain neural networks 

with two additive time-varying delay components, Proceedings of the 35th Chinese Control Conference      

      DOI:10.1109/ChiCC.2016.7553891. 
  

 

 

 

 

 

http://www.jetir.org/

	I. Introduction
	𝐻𝐹,𝑡.𝐸+,,𝐻𝐹,𝑡.𝐸.-𝑇.≤,𝜖-−1.𝐻,𝐻-𝑇.+𝜖,𝐸-𝑇..
	3. Main results
	This section will focus on the problem of finite-time stability and finite-time robust stability criteria with discrete and distributed time-varying delays.
	3.1. Finite-time stability criteria
	Theorem 3.1 Assume that the conditions (A1) and (A2) hold. For given scalars 𝜏,𝜇,𝑑 𝑎𝑛𝑑 𝛿 then system (1) is finite-time stable with respect to ,𝑐-1.,,𝑐-2.,,𝑇-𝑐.,𝐿, if there exists positive definite matrices 𝑃,,𝑄-1.,,𝑄-2.,,𝑅-1.,,𝑅-2.,...
	Θ=,,,,Θ-(1,1).-0-,Θ-(1,3).-∗-,Θ-(2,2).-0-∗-∗-,Θ-(3,3)..-,,Θ-(1,4).-,Θ-(1,5).-,Θ-(1,6).-0-,Θ-(2,5).-,Θ-(2,6).-0-0-0.-,,Θ-(1,7).-,Θ-(1,8).-,Θ-(1,9).-0-0-0-,Θ-(3,7).-0-0.-,∗         -∗-          ∗-∗         -∗-          ∗-∗         -∗-          ∗.-,...
	References

