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1. Introduction

The concept of Jg - normal matrices was introduced in [1]. In this paper, our intention is to define Jg -
unitarily equivalent matrices and prove some equivalent conditions on J; - normal matrices.

Definition 1.1 [1].

(i) Amatrix AeC,, issaid to be Secondary J- normal ( J, -normal) if A*A= AA*.

n

(i) A matrix A€Chn is said to be Js - hermitian matrix A" = A.

2. Equivalent Conditions on J,-normal Matrices

Definition 2.1. A matrix AeC, is said to be Secondary J-unitary ( J, -unitary) if A“A= AA" =1 . For example,

n

“2i i) . . :
A:( il olj is an J, -unitary matrix.

Definition 2.2. LetA BeC,, . The matrix B is said to be Secondary J- unitarily equivalent (J -unitarily
equivalent) to A if there exists an J, -unitary matrix U such thatB =uU*AuU .

-1
3
U*u =uu* =1and B=U*AU . Hence B is Secondary J- unitarily equivalent to A.

Example 2.3. Let A:G ﬂ and B:(_; j Then if we take U:(_izl _olj’ it can be verified that
Theorem 2.4. Let AcC, .. If Ais J,-unitarily equivalent to a diagonal matrix, then A is J, -normal.

Proof. Let AecC, . . If Ais J.-unitarily equivalent to a diagonal matrix D, then there exists an J, -unitary

matrix P such that P*AP =D which implies that A=PDP* as P*P=1. Now AA’=PDP*PD*P* = PDD*P*. Also,
A*A=PD*P*PDP* = PD*DP*. Since D and D* are each diagonal, DD* = D*D and hence A*A=AA* so that A is
J, -normal.

Remark 2.5. It can be shown that A is J, -normal < A*A* is J, -unitary.

Theorem 2.6. Let H,N eC,_ be invertible. If B=HNH , where H is J - hermitian and N is J, - normal,
then B™'B* is similar to an J, -unitary matrix.

Proof. Let H,N eC,_, be invertible. If B=HNH , then

JETIR1905537 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 241


http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

B'B* =H 'N'H'H*N*H* =H'N"H 'HN"H
as H"=Hand hence B'B*=H'N"'N*H. Since N is J,-normal, from Remark 2.5, N'N* is Js -unitary
and hence the result follows.
Theorem 2.7. If A'is J, -normal and AB=0, then A"B=0.

Theorem 2.8. If X is an eigenvector of an J, -normal matrix A corresponding to an eigenvalue 4, then X is
also an eigenvector of A*corresponding to the eigenvalue 1 .

Proof. Let AecC,, be J.-normal. Since X is an eigenvector of A corresponding to an eigenvalue 1,
AX =X . Since A is normal, it can be easily seen that A1 and (A-21)" commute and hence A- 41 is J; -
normal. Now AX =1X =(A-41)X =0. Since A-Al is Js - normal, by Theorem 3.4, (A-21)" X =0
which implies that (A*-21)x =0and hence which leads to the result.

Theorem 2.9. If AeC,, is J;-unitary and if 1 is an eigenvalue of A, then |1|=1.

Proof. Since AecC,, IS J.-unitary, A is J,-normal. Since 4 is an eigenvalue of A, there exists an
eigenvector v =0 such that Av =av which implies A" =av as A is J,- normal. Now V = IV = A’Av which
leads to V (1-42)=0. Since v #0, 1-22=0 which implies that || =1,

Theorem 2.10. Let AeC,,. Assume that Av =VvP, where V is J- unitary and P is nonsingular and J; -
hermitian such that if P> commutes with V, then P also commutes with V. Then the following conditions are
equivalent.
i. Ais J,-normal

ii.  VP=PV

iii. AV =VA

iv. AP=PA
Proof. Let Av =vP. Since V is J; -unitary W*=v* =1 and since P is J; - hermitian, P* =P .

(i) (ii): If Ais Jo- normal, then A*A=AA*. Since A=VP, (vP)"(VP)=(vP)(vP)" which implies that
VvPAv/? =P . Post multiply by V, we have vP? =P?/ and hence VP =PV by our assumption.

Conversely, if vP =PV, then PV* =V*P*. Now AA* =VPPV/* =VPV*P* =VP*V*Pas P* = p. Therefore

AA* =W *P*P =V*VPP =V *PVP =V *PVP = (PV )’ (VP) = (VP)" (VP) = A*A

and hence A is J - normal.
(i) < (iii): If Alis J;- normal, then by (ii), VP =PV . Now AV =(VP)V =V (VP)=VA. Conversely, if Av =VA,
then (VP)v =V (VP), pre multiply by v*, Vv (Pv)=V* (VP)which implies pPv =vPand hence A is J;-
normal.
(i)ye(iv): If Alis Jg- normal, then AP =(VP)P =PVP =PA. Conversely, if AP=PA, then (VP)P =P(VP). Post
multiply by P, we have VP =PV and so A is J, - normal.

Theorem 2.11. Let AecC,, . Assume that A=VP, where V is J,- unitary and P is nonsingular and J, -

hermitian such that if P> commutes with V, then P also commutes with V. Then the following conditions are
equivalent.

i. Ais J,-normal.

ii.  Any eigenvector of V is an eigenvector of P (as long as V has distinct eigen values)
iii.  Any eigenvector of P is an eigenvector of V (as long as P has distinct eigen values)
iv.  Any eigenvector of V is an eigenvector of A (as long as V has distinct eigen values)

v.  Any eigenvector of A is an eigenvector of V (as long as A has distinct eigen values)
vi.  Any eigenvector of P is an eigenvector of A (as long as P has distinct eigen values)

vii.  Any eigenvector of A is an eigenvector of P (as long as A has distinct eigen values)

Proof. (i)« (ii): Let V have distinct eigenvalues. If we prove VP=PV < any eigenvector of V is an
eigenvector of P, then (i)« (ii) follows by Theorem 2.10. Assume that any eigenvector of V is an
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eigenvector of P. If X is an eigenvector of V, then X is also an eigenvector of P. Therefore there exist eigen
values A4 and gsuch that vx =ax and PX =uX. Now VX =X implies PVX =PAX =AuX . Similarly

PX = uX implies VPX = uX . Therefore PVX =VPX = (PV —VP) X =0which implies Pv =VP as X =0.

Conversely, assume that Pv =VvP. If X is an eigenvector of V, then there exists an eigenvalue 4 such
that vXx =ax . Let xbe an eigenvalue of V such that vX =uX therefore i=u. Now PV =VPimplies

(VP-PV)X =0 which shows that vPX =iPX . Similarly vX=xX implies VPX =xPX. Therefore
APX = uPX = (A—u)PX =0=PX =0as A-u=0. Therefore PX =0X and hence X is an eigenvector of P
corresponding to the eigenvalue 0. In general, if x is any eigenvalue of V, then we can prove that X is also
an eigenvector of P. Therefore any eigenvector of V is also an eigenvector of P.

Similarly proof holds for other equivalent conditions.
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