Some Equivalent Conditions on Secondary J-Normal Matrices

K. Jaikumar and K. Sindhu Department of Mathematics, A.V.C.College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India.

ABSTRACT

In this paper we introduce the concept of secondary J-unitarily equivalent matrices $(J_s$ -unitarily equivalent matrices) and extend the results of [3] in the content of J_s -normal matrices.

AMS Classification: 15B99, 15A24.

Keywords: Secondary transpose, Conjugate Secondary transpose, J_s - normal matrix, J_s - hermitian matrix, eigenvalue, eigenvector.

1. Introduction

The concept of J_s - normal matrices was introduced in [1]. In this paper, our intention is to define J_s - unitarily equivalent matrices and prove some equivalent conditions on J_s - normal matrices.

Definition 1.1 [1].

(i) A matrix $A \in C_{n \times n}$ is said to be Secondary J-normal (J_s -normal) if $A^*A = AA^*$.

(ii) A matrix $A \in C_{n \times n}$ is said to be J_s - hermitian matrix $A^{\#} = A$.

2. Equivalent Conditions on J_s-normal Matrices

Definition 2.1. A matrix $A \in C_{n \times n}$ is said to be Secondary J-unitary (J_s -unitary) if $A^*A = AA^* = I$. For example, $A = \begin{pmatrix} -2i & -i \\ i & 0 \end{pmatrix}$ is an J_s -unitary matrix.

Definition 2.2. Let $A, B \in C_{n \times n}$. The matrix B is said to be Secondary J- unitarily equivalent $(J_s$ -unitarily equivalent) to A if there exists an J_s -unitary matrix U such that $B = U^* A U$.

Example 2.3. Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & -1 \\ 3 & 3 \end{pmatrix}$. Then if we take $U = \begin{pmatrix} -2i & -i \\ i & 0 \end{pmatrix}$, it can be verified that $U^{\#}U = UU^{\#} = I$ and $B = U^{\#}AU$. Hence B is Secondary J- unitarily equivalent to A.

Theorem 2.4. Let $A \in C_{n \times n}$. If A is J_s -unitarily equivalent to a diagonal matrix, then A is J_s -normal.

Proof. Let $A \in C_{n \times n}$. If A is J_s -unitarily equivalent to a diagonal matrix D, then there exists an J_s -unitary matrix P such that $P^{\#}AP = D$ which implies that $A = PDP^{\#}$ as $P^{\#}P = I$. Now $AA^{\#} = PDP^{\#}PD^{\#}P^{\#} = PDD^{\#}P^{\#}$. Also, $A^{\#}A = PD^{\#}P^{\#}PDP^{\#} = PD^{\#}DP^{\#}$. Since D and D[#] are each diagonal, $DD^{\#} = D^{\#}D$ and hence $A^{\#}A = AA^{\#}$ so that A is J_s -normal.

Remark 2.5. It can be shown that A is J_s -normal $\Leftrightarrow A^{-1}A^{\#}$ is J_s -unitary.

Theorem 2.6. Let $H, N \in C_{n \times n}$ be invertible. If B = HNH, where H is J_s - hermitian and N is J_s - normal, then $B^{-1}B^{\#}$ is similar to an J_s - unitary matrix.

Proof. Let $H, N \in C_{n \times n}$ be invertible. If B = HNH, then

 $B^{-1}B^{\#} = H^{-1}N^{-1}H^{-1}H^{\#}N^{\#}H^{\#} = H^{-1}N^{-1}H^{-1}HN^{\#}H$

as $H^{\#} = H$ and hence $B^{-1}B^{\#} = H^{-1}N^{-1}N^{\#}H$. Since N is J_s -normal, from Remark 2.5, $N^{-1}N^{\#}$ is J_s -unitary and hence the result follows.

Theorem 2.7. If A is J_s -normal and AB = 0, then $A^{\#}B = 0$.

Theorem 2.8. If X is an eigenvector of an J_s -normal matrix A corresponding to an eigenvalue λ , then X is also an eigenvector of A^{\dagger} corresponding to the eigenvalue $\overline{\lambda}$.

Proof. Let $A \in C_{n \times n}$ be J_s -normal. Since X is an eigenvector of A corresponding to an eigenvalue λ , $AX = \lambda X$. Since A is normal, it can be easily seen that $A - \lambda I$ and $(A - \lambda I)^{\#}$ commute and hence $A - \lambda I$ is J_s -normal. Now $AX = \lambda X \Rightarrow (A - \lambda I)X = 0$. Since $A - \lambda I$ is J_s -normal, by Theorem 3.4, $(A - \lambda I)^{\#} X = 0$ which implies that $(A^{\#} - \overline{\lambda}I)X = 0$ and hence which leads to the result.

Theorem 2.9. If $A \in C_{n \times n}$ is J_s -unitary and if λ is an eigenvalue of A, then $|\lambda| = 1$.

Proof. Since $A \in C_{n \times n}$ is J_s -unitary, A is J_s -normal. Since λ is an eigenvalue of A, there exists an eigenvector $V \neq 0$ such that $AV = \lambda V$ which implies $A^{\#}V = \overline{\lambda}V$ as A is J_s -normal. Now $V = IV = A^{\#}AV$ which leads to $V(1 - \lambda \overline{\lambda}) = 0$. Since $V \neq 0$, $1 - \lambda \overline{\lambda} = 0$ which implies that $|\lambda| = 1$.

Theorem 2.10. Let $A \in C_{n \times n}$. Assume that AV = VP, where V is J_s - unitary and P is nonsingular and J_s -hermitian such that if P² commutes with V, then P also commutes with V. Then the following conditions are equivalent.

- i. A is J_s -normal
- ii. VP = PV
- iii. AV = VA
- iv. AP = PA

Proof. Let AV = VP. Since V is J_s -unitary $VV^{\#} = V^{\#}V = I$ and since P is J_s -hermitian, $P^{\#} = P$.

 $(i) \Leftrightarrow (ii)$: If A is J_s - normal, then $A^*A = AA^*$. Since A=VP, $(VP)^*(VP) = (VP)(VP)^*$ which implies that $VP^2V^{\theta} = P$. Post multiply by V, we have $VP^2 = P^2V$ and hence VP = PV by our assumption.

Conversely, if VP = PV, then $P^{\#}V^{\#} = V^{\#}P^{\#}$. Now $AA^{\#} = VPP^{\#}V^{\#} = VPV^{\#}P^{\#} = VP^{\#}V^{\#}P$ as $P^{\#} = P$. Therefore

$$AA^{\#} = VV^{\#}P^{\#}P = V^{\#}VPP = V^{\#}PVP = V^{\#}P^{\#}VP = (PV)^{\#}(VP) = (VP)^{\#}(VP) = A^{\#}A$$

and hence A is J_s - normal.

 $(i) \Leftrightarrow (iii)$: If A is J_s - normal, then by (ii), VP = PV. Now AV = (VP)V = V(VP) = VA. Conversely, if AV = VA, then (VP)V = V(VP), pre-multiply by $V^{\#}$, $V^{\#}V(PV) = V^{\#}V(VP)$ which implies PV = VP and hence A is J_s - normal.

 $(i) \Leftrightarrow (iv)$: If A is J_s - normal, then AP = (VP)P = PVP = PA. Conversely, if AP = PA, then (VP)P = P(VP). Post multiply by P^{-1} , we have VP = PV and so A is J_s - normal.

Theorem 2.11. Let $A \in C_{n \times n}$. Assume that A = VP, where V is J_s - unitary and P is nonsingular and J_s -hermitian such that if P² commutes with V, then P also commutes with V. Then the following conditions are equivalent.

- i. A is J_s normal.
- ii. Any eigenvector of V is an eigenvector of P (as long as V has distinct eigen values)
- iii. Any eigenvector of P is an eigenvector of V (as long as P has distinct eigen values)
- iv. Any eigenvector of V is an eigenvector of A (as long as V has distinct eigen values)
- v. Any eigenvector of A is an eigenvector of V (as long as A has distinct eigen values)
- vi. Any eigenvector of P is an eigenvector of A (as long as P has distinct eigen values)
- vii. Any eigenvector of A is an eigenvector of P (as long as A has distinct eigen values)

Proof. $(i) \Leftrightarrow (ii)$: Let V have distinct eigenvalues. If we prove $VP = PV \Leftrightarrow$ any eigenvector of V is an eigenvector of P, then $(i) \Leftrightarrow (ii)$ follows by Theorem 2.10. Assume that any eigenvector of V is an

eigenvector of P. If X is an eigenvector of V, then X is also an eigenvector of P. Therefore there exist eigen values λ and μ such that $VX = \lambda X$ and $PX = \mu X$. Now $VX = \lambda X$ implies $PVX = P\lambda X = \lambda \mu X$. Similarly $PX = \mu X$ implies $VPX = \lambda \mu X$. Therefore $PVX = VPX \Rightarrow (PV - VP)X = 0$ which implies PV = VP as $X \neq 0$.

Conversely, assume that PV = VP. If X is an eigenvector of V, then there exists an eigenvalue λ such that $VX = \lambda X$. Let μ be an eigenvalue of V such that $VX = \mu X$ therefore $\lambda \neq \mu$. Now PV = VP implies (VP - PV)X = 0 which shows that $VPX = \lambda PX$. Similarly $VX = \mu X$ implies $VPX = \mu PX$. Therefore $\lambda PX = \mu PX \Rightarrow (\lambda - \mu)PX = 0 \Rightarrow PX = 0$ as $\lambda - \mu \neq 0$. Therefore PX = 0X and hence X is an eigenvector of P corresponding to the eigenvalue 0. In general, if μ is any eigenvalue of V, then we can prove that X is also an eigenvector of P. Therefore any eigenvector of V is also an eigenvector of P.

Similarly proof holds for other equivalent conditions.

References

[1] K. Jaikumar, K. Sindhu, On Secondary J-Normal Matrices, International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(2)(2019), 65-72.

[2] K. Jaikumar, K. Sindhu, Some Conditions on J_s - Normal Matrices – Accepted (International Journal for Research in Engineering Application & Management).

[3] S. Krishnamoorthy, R. Vijayakumar, Some Equivalent Conditions on s-Normal Matrices, Int.J.Contemp.Math.Sciences, 4(29)(2009), 1449-1454.

[4] S. Krishnamoorthy, R. Vijayakumar, On s-normal matrices, Journal of Analysis and computation, 2(2009).

[5] Anna Lee, Secondary Symmetric, Secondary skew symmetric and Secondary orthogonal matrices, Period math. Hungary 7(1976), 63-76.