# Some Equivalent Conditions on Secondary JNormal Matrices 

K. Jaikumar and K. Sindhu<br>Department of Mathematics, A.V.C.College (Autonomous),<br>Mannampandal, Mayiladuthurai, Tamilnadu, India.


#### Abstract

In this paper we introduce the concept of secondary J-unitarily equivalent matrices ( $J_{S}$-unitarily equivalent matrices) and extend the results of [3] in the content of $J_{S}$-normal matrices.


AMS Classification: 15B99, 15A24.
Keywords: Secondary transpose, Conjugate Secondary transpose, $J_{S}$ - normal matrix,
$J_{S}$-hermitian matrix, eigenvalue, eigenvector.

## 1. Introduction

The concept of $J_{S}$ - normal matrices was introduced in [1]. In this paper, our intention is to define $J_{S}$ unitarily equivalent matrices and prove some equivalent conditions on $J_{S}$ - normal matrices.

Definition 1.1 [1].
(i) A matrix $A \in C_{n \times n}$ is said to be Secondary J - normal ( $J_{s}$-normal) if $A^{\#} A=A A^{\#}$.
(ii) A matrix ${ }^{A \in C_{n \times n}}$ is said to be ${ }^{J_{S}}$ - hermitian matrix $A^{\#}=A$.

## 2. Equivalent Conditions on $J_{s}$-normal Matrices

Definition 2.1. A matrix $A \in C_{n \times n}$ is said to be Secondary J-unitary ( $J_{s}$-unitary) if $A^{\#} A=A A^{\#}=I$. For example, $\mathrm{A}=\left(\begin{array}{cc}-2 i & -i \\ i & 0\end{array}\right)$ is an $J_{s}$-unitary matrix.

Definition 2.2. Let $A, B \in C_{n \times n}$. The matrix B is said to be Secondary J - unitarily equivalent ( $J_{S}$-unitarily equivalent) to A if there exists an $J_{S}$-unitary matrix U such that $B=U^{*} A U$.

Example 2.3. Let $\mathrm{A}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{cc}-1 & -1 \\ 3 & 3\end{array}\right)$. Then if we take $\mathrm{U}=\left(\begin{array}{cc}-2 i & -i \\ i & 0\end{array}\right)$, it can be verified that $U^{*} U=U U^{\#}=I$ and $B=U^{\#} A U$. Hence B is Secondary J- unitarily equivalent to A.
Theorem 2.4. Let $A \in C_{n \times n}$. If A is $J_{s}$-unitarily equivalent to a diagonal matrix, then A is $J_{s}$-normal.
Proof. Let $A \in C_{n \times n}$. If A is $J_{S}$-unitarily equivalent to a diagonal matrix D , then there exists an $J_{S}$-unitary matrix P such that $P^{\#} A P=D$ which implies that $A=P D P^{\#}$ as $P^{\#} P=I$. Now $A A^{\#}=P D P^{\#} P D^{\#} P^{\#}=P D D^{\#} P^{\#}$. Also, $A^{*} A=P D^{\#} P^{\#} P D P^{\#}=P D^{\#} D P^{\#}$. Since D and $\mathrm{D}^{\#}$ are each diagonal, $D D^{*}=D^{\#} D$ and hence $A^{*} A=A A^{*}$ so that A is $J_{S}$-normal.

Remark 2.5. It can be shown that A is $J_{S}$-normal $\Leftrightarrow A^{-1} A^{\#}$ is $J_{S}$-unitary.
Theorem 2.6. Let $H, N \in C_{n \times n}$ be invertible. If $B=H N H$, where H is $J_{S}$ - hermitian and N is $J_{S}$ - normal, then $B^{-1} B^{\#}$ is similar to an $J_{s}$-unitary matrix.

Proof. Let $H, N \in C_{n \times n}$ be invertible. If $B=H N H$, then

$$
B^{-1} B^{\#}=H^{-1} N^{-1} H^{-1} H^{\#} N^{\#} H^{\#}=H^{-1} N^{-1} H^{-1} H N^{\#} H
$$

as $H^{\#}=H$ and hence $B^{-1} B^{\#}=H^{-1} N^{-1} N^{\#} H$. Since N is $J_{S}$-normal, from Remark 2.5, $N^{-1} N^{\#}$ is $J_{S}$-unitary and hence the result follows.

Theorem 2.7. If A is $J_{S}$-normal and $A B=0$, then $A^{\#} B=0$.
Theorem 2.8. If X is an eigenvector of an $J_{S}$-normal matrix A corresponding to an eigenvalue $\lambda$, then X is also an eigenvector of $A^{*}$ corresponding to the eigenvalue $\bar{\lambda}$.

Proof. Let $A \in C_{n \times n}$ be $J_{S}$-normal. Since X is an eigenvector of A corresponding to an eigenvalue $\lambda$, $A X=\lambda X$. Since A is normal, it can be easily seen that $A-\lambda I$ and $(A-\lambda I)^{*}$ commute and hence $A-\lambda I$ is $J_{S}-$ normal. Now $A X=\lambda X \Rightarrow(A-\lambda I) X=0$. Since $A-\lambda I$ is $\quad J_{S}$ - normal, by Theorem 3.4, $(A-\lambda I)^{*} X=0$ which implies that $\left(A^{*}-\bar{\lambda} I\right) X=0$ and hence which leads to the result.

Theorem 2.9. If $A \in C_{n \times n}$ is $J_{S}$-unitary and if $\lambda$ is an eigenvalue of A , then $|\lambda|=1$.
Proof. Since $A \in C_{n \times n}$ is $J_{s}$-unitary, A is $J_{S}$-normal. Since $\lambda$ is an eigenvalue of A, there exists an eigenvector $V \neq 0$ such that $A V=\lambda V$ which implies $A^{*} V=\bar{\lambda} V$ as A is $J_{s}$ - normal. Now $V=I V=A^{*} A V$ which leads to $V(1-\lambda \bar{\lambda})=0$. Since $V \neq 0,1-\lambda \bar{\lambda}=0$ which implies that $|\lambda|=1$.

Theorem 2.10. Let $A \in C_{n \times n}$. Assume that $A V=V P$, where V is $J_{S}$ - unitary and P is nonsingular and $J_{S}-$ hermitian such that if $\mathrm{P}^{2}$ commutes with V , then P also commutes with V . Then the following conditions are equivalent.
i. A is $J_{s}$-normal
ii. $\quad V P=P V$
iii. $\quad A V=V A$
iv. $\quad A P=P A$

Proof. Let $A V=V P$. Since V is $J_{S}$-unitary $V V^{\#}=V^{\#} V=I$ and since P is $J_{S}$ - hermitian, $P^{\#}=P$.
$(i) \Leftrightarrow(i i)$ : If A is $J_{S}$ - normal, then $A^{*} A=A A^{\#}$. Since $\mathrm{A}=\mathrm{VP},(V P)^{*}(V P)=(V P)(V P)^{*}$ which implies that $V P^{2} V^{\theta}=P$. Post multiply by V, we have $V P^{2}=P^{2} V$ and hence $V P=P V$ by our assumption.

Conversely, if $V P=P V$, then $P^{\#} V^{\#}=V^{\#} P^{\#}$. Now $A A^{\#}=V P P^{\#} V^{\#}=V P V^{\#} P^{\#}=V P^{\#} V^{\#} P$ as $P^{\#}=P$. Therefore

$$
A A^{\#}=V V^{*} P^{\#} P=V^{*} V P P=V^{\#} P V P=V^{\#} P^{*} V P=(P V)^{*}(V P)=(V P)^{*}(V P)=A^{*} A
$$

and hence A is $J_{s}$ - normal.
$(i) \Leftrightarrow(i i i)$ : If A is $J_{S}$-normal, then by (ii), $V P=P V$. Now $A V=(V P) V=V(V P)=V A$. Conversely, if $A V=V A$, then $(V P) V=V(V P)$, pre multiply by $V^{\#}, V^{*} V(P V)=V^{\#} V(V P)$ which implies $P V=V P$ and hence A is $J_{S}$ normal.
$(i) \Leftrightarrow(i v)$ : If A is $J_{S}$ - normal, then $A P=(V P) P=P V P=P A$. Conversely, if $A P=P A$, then $(V P) P=P(V P)$. Post multiply by $P^{-1}$, we have $V P=P V$ and so A is $J_{S}$ - normal.

Theorem 2.11. Let $A \in C_{n \times n}$. Assume that $A=V P$, where V is $J_{S}$ - unitary and P is nonsingular and $J_{S}$ hermitian such that if $\mathrm{P}^{2}$ commutes with V , then P also commutes with V . Then the following conditions are equivalent.
i. A is $J_{s}$ - normal.
ii. Any eigenvector of V is an eigenvector of P (as long as V has distinct eigen values)
iii. Any eigenvector of P is an eigenvector of V (as long as P has distinct eigen values)
iv. Any eigenvector of V is an eigenvector of A (as long as V has distinct eigen values)
v. Any eigenvector of A is an eigenvector of V (as long as A has distinct eigen values)
vi. Any eigenvector of P is an eigenvector of A (as long as P has distinct eigen values)
vii. Any eigenvector of A is an eigenvector of P (as long as A has distinct eigen values)

Proof. $(i) \Leftrightarrow(i i)$ : Let V have distinct eigenvalues. If we prove $V P=P V \Leftrightarrow$ any eigenvector of V is an eigenvector of P , then $(i) \Leftrightarrow(i i)$ follows by Theorem 2.10. Assume that any eigenvector of V is an
eigenvector of P . If X is an eigenvector of V , then X is also an eigenvector of P . Therefore there exist eigen values $\lambda$ and $\mu$ such that $V X=\lambda X$ and $P X=\mu X$. Now $V X=\lambda X$ implies $P V X=P \lambda X=\lambda \mu X$. Similarly $P X=\mu X$ implies $V P X=\lambda \mu X$. Therefore $P V X=V P X \Rightarrow(P V-V P) X=0$ which implies $P V=V P$ as $X \neq 0$.

Conversely, assume that $P V=V P$. If X is an eigenvector of V , then there exists an eigenvalue $\lambda$ such that $V X=\lambda X$. Let $\mu$ be an eigenvalue of V such that $V X=\mu X$ therefore $\lambda \neq \mu$. Now $P V=V P$ implies $(V P-P V) X=0$ which shows that $V P X=\lambda P X$. Similarly $V X=\mu X$ implies $V P X=\mu P X$. Therefore $\lambda P X=\mu P X \Rightarrow(\lambda-\mu) P X=0 \Rightarrow P X=0$ as $\lambda-\mu \neq 0$. Therefore $P X=0 X$ and hence X is an eigenvector of P corresponding to the eigenvalue 0 . In general, if $\mu$ is any eigenvalue of V , then we can prove that X is also an eigenvector of P . Therefore any eigenvector of V is also an eigenvector of P .
Similarly proof holds for other equivalent conditions.

## References

[1] K. Jaikumar, K. Sindhu, On Secondary J-Normal Matrices, International Journal of Scientific Research in Mathematical and Statistical Sciences, 6(2)(2019), 65-72.
[2] K . Jaikumar, K. Sindhu, Some Conditions on $J_{s}$ - Normal Matrices - Accepted (International Journal for Research in Engineering Application \& Management).
[3] S. Krishnamoorthy, R. Vijayakumar, Some Equivalent Conditions on s-Normal Matrices, Int.J.Contemp.Math.Sciences, 4(29)(2009), 1449-1454.
[4] S. Krishnamoorthy, R. Vijayakumar, On s-normal matrices, Journal of Analysis and computation, 2(2009).
[5] Anna Lee, Secondary Symmetric, Secondary skew symmetric and Secondary orthogonal matrices, Period math. Hungary 7(1976), 63-76.

