MIND READING: AN EMERGING TECHNOLOGY

¹G Nitin, ²Prof. Madhu B R

¹Student,²Associate professor, Computer Science and Engineering, SET, Jain University, Bengaluru, India.

Abstract - Mind reading is an emerging technology which has the potential to bring humongous changes in various fields. Mind reading, basically, is the technique or the method to identify emotions and responses by taping the signals from the brain. There are a lot of techniques that are already being used to perfect this technology and deploy it in the real world. Mind reading technology has a potential game changing effect in many industries. Few of the applications of this technology in the real world would be neuromarketing, help physically handicapped, especially blind people, to use the computers and other computing devises just like a normal human being. This paper focuses on the study of various applications of this this emerging technology.

Keywords - Mind reading, functional MRI, Electroencephalography.

I. INTRODUCTION

The automated interpretation of human minds has been an emerging research field that enables to characterize underlying cortical processes, the monitoring and automated identification technique of human thoughts may lead to potential applications in the areas of the motor rehabilitation, neurosurgical planning, and brain-computerinterface (BCI) for tetraplegic patients. An increased understanding of the function of the brain, an appreciation of its incredible adaptability, access to powerful inexpensive computer hardware, and intelligent software, allows us to decode brain activity in real time.

A BCI is a system that measures central nervous system (CNS) activity and converts it into artificial output that replaces, restores, enhances, supplements, or improves natural CNS output and thereby changes the ongoing interactions between the CNS and its external or internal environment. Recent developments hint at the significant future role BCIs could play as the control system for devices that can restore function to the disabled or augment the healthy.

From an evolutionary perspective, mindreading in humans have developed for a number of aspects, for example, intention, attention, emotion, knowing. In the first perspective it is assumed that mindreading takes place by using the facilities involving the own cognitive states that are counterparts of the cognitive states attributed to the other person. These days it is expected that the era of human-robot symbiosis is rapidly approaching along with the rapid improvement of robot technology and artificial intelligence (AI). To keep the relationship between human and robot that live close together and depend on each other in particular ways in a certain environment, natural and rational human-robot interaction (HRI) is needed. Thus, the research on HRI is required and it has become one of the fast growing fields in robotics.

II. ADVANTAGES

Few of the advantages of the min reading technology are:

- Help paralytic people
- Help coma patients
- Help blind people
- Help handicapped people
- More effective search results
- Better expression of thoughts

III. DISADVANTAGES

Few of the disadvantages of the mind reading technology are:

- Privacy
- Expensive
- Potential risk of negative usage

IV. APPLICATIONS

There are a lot of applications of this technology. Few among them are:

- Brain-computer interfaces
- Lie detection
- Pain detection
- Neuromarketing
- Psychiatry
 - Search engines

V. METHODS

There are various techniques that are currently being used for reading minds of the human beings. Few among them are:

A. Functional Magnetic Resonance Imaging(fMRI) Functional magnetic resonance imaging or functional MRI (fMRI) measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases. Among the present functional neuroimaging modalities, functional MRI (fMRI) can observe dynamic neuronal activity changes in the human brain with superior spatial resolution based on the bloodoxygenation-level-dependent (BOLD) signal contrast The concept of automatic pattern classification of fMRI data has been successfully addressed by recent studies based on the blockbased paradigm design employing multiple sensory, motor and cognitive tasks. fMRI offers the most comprehensive evaluation of brain processing because it is the only technique that can monitor activity in deep brain structures involved in functions such as memory encoding and reward processing.

B. Electroencephalography (EEG)

EEG is an electrophysiological monitoring method to record electrical activity of the brain. It is typically noninvasive, with the electrodes placed along the scalp. EEG measures voltage fluctuations resulting from ionic current within the neurons of the brain. Clinically, EEG refers to the recording of the brain's spontaneous electrical activity over a period of time, as recorded from multiple electrodes placed on the scalp.

VI. DISCUSSIONS

Paper Title	Summary
Mind Reading: An	This paper presents a
Automated Classification of	method for automated
Thought Processes from	classification of human
Imagery fMRI Data.[1]	thoughts reflected on an
	event-based paradigm using
	functional Magnetic
	Resonance Imaging(fMRI).
	The regions of interest were
	described from the activated
	regions that were
	consistently and exclusively
	activated during the training
	phase. Feature vectors of
	activations extracted were
	recognized by using a
	Support Vector Machine
	(SVM) classifier. This
	classifier had an 80%
	average accuracy.
Reading Minds: Brain	This paper discusses about
Decoding Scientists move	decrypting brain patterns
closer to Discovering the	and decoding brain
Key to Unlock the Brain.[2]	activities. The Functional
	Magnetic Resonance
	Imaging(fMRI) is the
	technology that has been
	explained for decryption of
	brain patterns and decoding
	the brain activities.
Reading the Mind: The	This paper discusses about
Potential of	the potential of
Electroencephalography in	electroencephalography
Brain Computer	(EEG) brain computer
Interfaces.[3]	interface (BCI) to be used in
	the real world. It states that
	EEG based BCIs are the

Read My Mind: What Users	best for practical BCIs due to its relatively low cost, high temporal resolution, and low clinic risk. The paper claims that there would be no physically handicapped people other than the most severely brain damaged. It also claims that the barriers between our brain and the computer would be disappeared and a large amount of possibilities would be created. This paper discusses about
Want From Online Information.[4]	the expectations of the user of the help function offered in numerous programs. It postulates a conversation model rather than a book model.
Cognitive and Biological Agent Models for Emotion Reading.[5] Reading Users' Minds from Their Eyes: A Method for Implicit Image Annotation.[6]	This paper focuses on modelling the capabilities to a participant's emotions and their biological realization. A cognitive and a biological agent model which involve the generation and sensing of body states are introduces. The Simulation Theory approach to mindreading is followed to show emotion reading can be modelled both at a cognitive and at a biological level. This paper aims to explore the possible solutions for image annotations and image retrieval by implicitly monitoring user attention through eye
	tracking. Gaze Inference System, a fuzzy logic-based framework, analyses the gaze- movement of the user and measures the user interest level. In the paper it is showed that the machine's judgement of image content can be improved by employing the existing information in gaze patterns. The chosen gaze features of the framework make it flexible.
A Novel Emotion Recognition based Mind and Soul-relaxing system.[7]	This paper proposes to detect the emotions of a human from the facial expression by using real time embedded system and play audio in accordance to the emotion to comfort the user. The proposed model captures the image of the user, Viola-Jones algorithm is used to detect human face, Local Binary Pattern is used to extract facial features and finally SVM classifier is used to classify the emotion.
Deep Learning Human Mind for Automated Visual Classification.[8]	This paper aims to address the possibility of reading the human mind effectively and transfer human visual www.jetir.org 463

	capabilities to computer vision methods by	
	developing the first visual	
	object classifier that is	
	driven by human brain	
	signals. In the first of the two stages, an RNN- based	
	method is used to learn	
	visual stimuli evoked EEG	
	data and also find compact	
	and meaningful representation of the data.	
	In the second stage, a CNN-	
	based method is used that is	
	aimed at regressing images	
	into the learned EEG	
	representation. This enabled automated visual	
	classification. The RNN-	
	based approach had an	
	accuracy of 83%. In the end,	
	it is claimed that the approach used in this paper	
	obtains competitive	
	performance that is	
	comparable to those	
	achieved by powerful CNN models.	ľ
Human-Robot Interaction	This paper has proposed an	
by Reading Human	effective human-robot	
Intention based on	interaction by reading	
Mirror-Neuron System.[9]	human intention by using cognitive architecture	
	where the intention reading	
	algorithm proposed was	
	inspired by mirror-neuron	
	system and simulation theory which are the	
	theory which are the important parts of human	
	mind reading skill. The	
	cognitive architecture	
	proposed for human intention reading consisted	
	of eight modules. the	
	proposed scheme observed	
	the human behavior and	
	used it identify the human intention and was simulated	
	on the robot's own behavior	
	model. The effectiveness of	
	the proposed scheme was	
	demonstrated through computer simulations	
	where the human-robot was	
	allowed to play with two	
	different objects. The robot	
	could identify human	
	intention and choose the appropriate behavior for	
	natural and effective	
	human-robot interactions	
	without explicit commands	
	and prior knowledge about humans and objects.	
1	manuno una objecto.	

VII. CONCLUSION

After the survey of the aforementioned papers, one can confidently assert that this mind reading technology will bring about major changes in the lifestyle of people, and in various fields wherever applicable. But there is always a threat of negative usage of this technology if it falls in the wrong hands and could prove dangerous consequences.

VIII. ACKNOWLEDGEMENT

I would like to thank my guide, Prof. Madhu B R for his immense support throughout the completion of the paper. I would further like to thank my head of the department and all the faculty members for their help and support in understanding and completing the paper.

REFERENCES

- [1] J. Lee, M. Marzelli, F. A. Jolesz and S. Yoo, "Mind reading: An automated classification of thought processes from imagery fMRI data," 2010 International Conference on Machine Learning and Cybernetics, Qingdao, 2010, pp. 3174-3179.
- [2] L. Mertz, "Reading Minds: Brain-Decoding Scientists Move Closer to Discovering the Keys to Unlock the Brain," in IEEE Pulse, vol. 8, no. 5, pp. 13-18, Sept.-Oct. 2017.
- [3] S. Xing, R. McCardle and S. Xie, "Reading the mind: The potential of electroencephalography in brain computer interfaces," 2012 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, 2012, pp. 275-280.
- [4] L. S. Ridgway, "Read my mind: What users want from online information," in IEEE Transactions on Professional Communication, vol. PC-30, no. 2, pp. 87-90, June 1987.
- [5] Z. Memon and J. Treur, "Cognitive and Biological Agent Models sfor Emotion Reading," 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, NSW, 2008, pp. 308-313.
- [6] S. N. Hajimirza, M. J. Proulx and E. Izquierdo, "Reading Users' Minds From Their Eyes: A Method for Implicit Image Annotation," in IEEE Transactions on Multimedia, vol. 14, no. 3, pp. 805-815, June 2012.
- [7] J. D. R. Vivek, A. Gokilavani, S. Kavitha, S. Lakshmanan and S. Karthik, "A novel emotion recognition based mind and soulrelaxing system," 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, 2017, pp. 1-5.
- [8] C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, N. Souly and M. Shah, "Deep Learning Human Mind for Automated Visual Classification," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 4503-4511.
- [9] J. Han and J. Kim, "Human-robot interaction by reading human intention based on mirror-neuron system," 2010 IEEE International Conference on Robotics and Biomimetics, Tianjin, 2010, pp. 561-566.