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I. INTRODUCTION 

The weakly commuted mappings introduced by Sessa [12]. In1986 Jungck [5] generalized as compatible mappings of [12]. 

Pant [8] initiated the concept of 𝑅-weakly commuting mappings. Jungck and Rhoades [3] defined the weakly compatible 

mappings. Several mathematician [1, 2, 8 10, 11, 13] generalized weakly contractive mappings in Hilbert space. In 2001 

Rhoades [10] generalized the concept of weakly contractive mappings in complete metric space. 

Park [9] and Khan et. al. [6] proved fixed point theorems to the self mapping by using control function and altering distances 

between the points.  Sastry [11] proved a common fixed point theorem for weakly commuting pairs of self mappings by using 

control function in complete metric space. A result to the fixed point obtained by Dutta and Choudhury [2] and generalized the 

concept of control function and weakly contractive mapping. Jungck [4] proved a common fixed point theorem by generalizing 

Banach’s contraction principle to the commuting mappings. 

The main aim of this paper is to present common fixed point results for weakly compatible mappings satisfying weak 

contractive condition by using control function in complete metric space.  

II. PRELIMINARY NOTES 

 Before proving our theorems we collect some definitions and results:  

Definition: 2.1. A sequence {𝑥𝑛} in a metric space (𝑋, 𝑑) is said to be convergent to a point  𝑥𝜖𝑋,  if  𝑙𝑖𝑚
𝑛→∞

𝑑 (𝑥𝑛 , 𝑥 ) = 0.                                                                                                                                                                                                                                             

Definition: 2.2.  A sequence {𝑥𝑛} in a metric space (𝑋, 𝑑) is said to be Couchy sequence if  𝑙𝑖𝑚
𝑝→∞

𝑑 (𝑥𝑛 , 𝑥𝑚) = 0.   for all  

𝑛, 𝑚 > 𝑝.    

Definition: 2.3.  A metric space (𝑋, 𝑑) is called complete if every Couchy sequence in 𝑋 is convergent. 

Definition:  2.4. Let   𝑆  and   𝑇   be self maps on  𝑋.  maps 𝑆  and  𝑇 are called commuting if 𝑆𝑇𝑥 = 𝑇𝑆𝑥 for all 𝑥 ∈ 𝑋. 

Definition:  2.5. Let 𝑆  and 𝑇   be self maps on  𝑋.  if 𝑆𝑥 = 𝑇𝑥, for some 𝑥 ∈ 𝑋 then 𝑥  is called coincidence point of 𝑆 and  𝑇. 

Definition:  2.6. Let  𝑆  and 𝑇 be self maps defined on a set  𝑋.  Then   𝑆  and 𝑇    are said to be weakly compatible if they 

commute at coincidence points.  𝑖. 𝑒.  If  𝑆𝑢 = 𝑇𝑢 for some 𝑢 ∈ 𝑋, then 𝑆𝑇𝑢 = 𝑇𝑆𝑢. 

Definition:  2.7. Let 𝑆  and 𝑇  be weakly compatible self mappings of a set  𝑋.  If 𝑆  and  𝑇 have a unique point of coincidence,                              

𝑖. 𝑒., If  𝑤 = 𝑆𝑥 = 𝑇𝑥 then  𝑤 is the unique common fixed point of 𝑆 and  𝑇. 

Definition:  2.8. Let 𝑆  and 𝑇  be self mapping of nonempty subset 𝐾 of a metric space  𝑋.  The mapping  𝑆  is called   𝑇 -

contraction mapping, if there exists a real number  0 ≤ 𝑟 < 1  such that 𝑑 (𝑆𝑥, 𝑆𝑦) ≤ 𝑟𝑑 (𝑇𝑥, 𝑇𝑦)  for all 𝑥, 𝑦 ∈ 𝐾.  

Definition:  2.9[6]. A function 𝜑 is defined as 𝜑: 𝑅+ →  𝑅+ which is continuous at zero, monotonically increasing and  𝜑(𝑡) =

0, If and only if 𝑡 = 0. 

Definition:  2.10[1]. A self mapping 𝑆 of a metric space (𝑋, 𝑑)   is said to be weakly contractive with respect to self mapping 

𝑇: 𝑋 → 𝑋,  If for each    𝑥, 𝑦 ∈ 𝑋,      𝑑 (𝑆𝑥, 𝑆𝑦) ≤ 𝑑 (𝑇𝑥, 𝑇𝑦) − 𝜑(𝑑 (𝑇𝑥, 𝑇𝑦)),     

Where 𝜑: [0, ∞) → [0, ∞) is continuous non- decreasing function such that 𝜑   is positive on (0, ∞),  𝜑(0) = 0 and  

𝑙𝑖𝑚
𝑡→∞

 𝜑(𝑡 ) = ∞.                    

Definition:  2.11[2]. Let (𝑋, 𝑑)    be a complete metric space and  𝑇: 𝑋 → 𝑋, be a self mapping satisfying   

  𝜑 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜑(𝑑 (𝑓𝑥, 𝑓𝑦)) − 𝜙(𝑑 (𝑓𝑥, 𝑓𝑦)),     
Where 𝜑, 𝜙: [0, ∞) → [0, ∞),  are both continuous and monotonic increasing functions 

 with 𝜑(𝑥) = 0 = 𝜙(𝑥), if and only if 𝑥 = 0.    
Then  𝑇 has a unique fixed point.   

Theorem 2.12[7]    Let  ( 𝑋, 𝑑 )  be a complete metric space. Suppose that   𝑇   and 𝑓 are self mappings of   𝑋.  
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Satisfies the following conditions: 

(i) 𝑇(𝑋) ⊆ 𝑓(𝑋) . 

(ii) 𝑇(𝑋) is complete subspace of 𝑋. 

(iii)  𝜑 ( 𝑑 (𝑇𝑥, 𝑇𝑦)) ≤  𝜑 (𝑀 (𝑥, 𝑦 ))–   𝜙(𝑀 (𝑥, 𝑦 ))  Where 𝑀 (𝑥, 𝑦 ) =

𝐹[𝑑 (𝑇𝑥, 𝑓𝑦), 𝑑 ( 𝑇𝑦, 𝑓𝑥), 𝑑 (𝑇𝑥, 𝑓𝑥), 𝑑 (𝑇𝑦, 𝑓𝑦)]  and 𝜑: [0,∞ ) →  [0, ∞ )  is continuous and monotonic 

increasing function and 𝜙: [0, ∞) → [0, ∞) is continuous monotonic decreasing function such that 𝜑(𝑥) = 0 =

𝜙(𝑥) if and only if 𝑥 = 0, 𝐹 ∈ 𝐹∗. 

(iv) The pair (𝑇, 𝑓) is weakly compatible. 

 Than 𝑇 and 𝑓 have a unique common fixed point.                                                       

                                                                                        Implicit relations     

Suppose that 𝐹∗ be the set of continuous functions 𝐹(𝑡1, 𝑡2, 𝑡3, 𝑡4): [0,∞ )4 →  [0,∞ )  satisfying the following conditions: 

(𝐹1).  𝐹, is non decreasing in variable 𝑡1. 
(𝐹2).  For 𝑢 ≥ 0,  𝑣 ≥ 0;  𝐹(𝑢, 𝑢 , 𝑣, 0 ) ≤ 𝑢 

          (𝐹3).  𝐹(0, 𝑢 , 0, 𝑢 ) ≤ 𝑢 ;   𝐹(𝑢, 0 , 0, 𝑢 ) ≤ 𝑢; 𝐹(0, 0 , 𝑢, 0 ) ≤ 𝑢;  𝐹(𝑢, 𝑢 , 𝑢, 0 ) ≤ 𝑢, for all 𝑢 > 0. 
 

III. MAIN RESULTS 

In this section presented a common fixed point theorem by using control function and implicit relation 

Theorem: 3.1. Let  ( 𝑋, 𝑑 )  be a complete metric space. Suppose that   𝐴, 𝐵, 𝑆   and 𝑇 are self mappings of  𝑋. 

Satisfying the following conditions:    

1.  𝐴(𝑋) ⊆ 𝑇(𝑋) and 𝐵(𝑋) ⊆ 𝑆(𝑋). 

2. 𝐴(𝑋) and 𝐵(𝑋) are complete subspace of 𝑋. 

3.  𝜑 ( 𝑑 (𝐴𝑥, 𝐵𝑦)) ≤  𝜑 (𝑀 (𝑥, 𝑦 ))–   𝜙(𝑀 (𝑥, 𝑦 )).  Where 𝑀 (𝑥, 𝑦 ) = 𝐹[𝑑 (𝐴𝑥, 𝑆𝑥), 𝑑 (𝑆𝑥, 𝑇𝑦), 𝑑 (𝐵𝑦, 𝑇𝑦), 𝑑 (𝐴𝑥, 𝑇𝑦)]  

and     𝜑: [0,∞ ) →  [0,∞ )  is continuous and monotonic increasing function and 𝜙: [0, ∞) → [0, ∞) is continuous and 

monotonic decreasing function such that 𝜑(𝑥) = 0 = 𝜙(𝑥) if and only if 𝑥 = 0, 𝐹 ∈ 𝐹∗. 

4. (𝐴, 𝑆 ) and (𝐵, 𝑇) are weakly compatible. 

Than 𝐴, 𝐵, 𝑆 and 𝑇 have a unique common fixed point. 

Proof: Let   𝑥0 ∈ X and {𝑦𝑛} is a sequence of  𝑋 such that 

𝑦𝑛 = 𝐴𝑥𝑛 = 𝑇𝑥𝑛+1;  and , 𝑦𝑛+1 = 𝐵𝑥𝑛+1 = 𝑆𝑥𝑛+2 for every 𝑛 ≥ 0. 
By condition (3) we have,  

𝜑(𝑑(𝑦𝑛 , 𝑦𝑛+1 )) = 𝜑 ( 𝑑 (𝐴𝑥𝑛 , 𝐵𝑥𝑛+1))    ≤  𝜑 (𝑀 (𝑥𝑛 , 𝑥𝑛+1 ))–   𝜙(𝑀 (𝑥𝑛 , 𝑥𝑛+1 )).                          (3.1.1) 

 Where 𝑀 (𝑥𝑛 , 𝑥𝑛+1  ) = 𝐹[ 𝑑 (𝐴𝑥𝑛 , 𝑆𝑥𝑛), 𝑑 (𝑆𝑥𝑛 , 𝑇𝑥𝑛+1), 𝑑 (𝐵𝑥𝑛+1, 𝑇𝑥𝑛+1), 𝑑 (𝐴𝑥𝑛 , 𝑇𝑥𝑛+1)] 
= 𝐹[𝑑 (𝐴𝑥𝑛 , 𝐵𝑥𝑛−1), 𝑑 (𝐵𝑥𝑛−1, 𝐴𝑥𝑛), 𝑑 (𝐵𝑥𝑛+1, 𝐴𝑥𝑛), 𝑑 (𝐴𝑥𝑛 , 𝐴𝑥𝑛)] 

= 𝐹[𝑑 (𝑦𝑛 , 𝑦𝑛−1), 𝑑 (𝑦𝑛−1, 𝑦𝑛), 𝑑 (𝑦𝑛+1, 𝑦𝑛), 𝑑 (𝑦𝑛 , 𝑦𝑛)] 
= 𝐹[𝑑 (𝑦𝑛 , 𝑦𝑛−1), 𝑑 (𝑦𝑛, 𝑦𝑛−1 ), 𝑑 (𝑦𝑛 , 𝑦𝑛+1),0 ] 

                ⇒ 𝑀 (𝑥𝑛 , 𝑥𝑛+1  ) ≤ 𝑑 (𝑦𝑛, 𝑦𝑛−1) 
From (3.1.1) we have 

 𝜑(𝑑(𝑦𝑛, 𝑦𝑛+1 ))   ≤  𝜑 (𝑑 (𝑦𝑛 , 𝑦𝑛−1))–   𝜙(𝑑 (𝑦𝑛 , 𝑦𝑛−1)).                                                                  (3.1.2)   ⇒

𝜑(𝑑(𝑦𝑛 , 𝑦𝑛+1 ))   ≤  𝜑 (𝑑 (𝑦𝑛 , 𝑦𝑛−1)) 

 Since 𝜑 is monotonic increasing function. 

Therefore the sequence {𝑑(𝑦𝑛 , 𝑦𝑛+1 )} is monotonic decreasing. 

                    ∴ 𝑙𝑖𝑚
𝑛→∞

𝑑(𝑦𝑛 , 𝑦𝑛+1 ) = 𝑟,   

Where 𝑟 is a non negative real number.  

Letting, 𝑛 → ∞, then by equation (3.1.2)   we have 

                                                                        𝜑(𝑟)  ≤  𝜑 (𝑟)–   𝜙(𝑟) 

⇒ 𝜙(𝑟) ≤ 0, 

 which is possible only if 𝑟 = 0. 
Thus  𝑙𝑖𝑚

𝑛→∞
𝑑(𝑦𝑛, 𝑦𝑛+1 ) = 0. 

Now we prove that {𝑦𝑛} is a Cauchy sequence. 

If possible let {𝑦𝑛} is not a Cauchy sequence. 

Then there exist 𝜀 > 0 for which we can find subsequence  {𝑦𝑚𝑘
}  and {𝑦𝑛𝑘

} of {𝑦𝑛} such that 𝑛𝑘 is a smallest index for which 

𝑛𝑘 > 𝑚𝑘 > 𝑘,   
                                 𝑑(𝑦𝑚𝑘

, 𝑦𝑛𝑘
)  ≥ 𝜺  and   𝑑(𝑦𝑚𝑘

, 𝑦𝑛𝑘−1) < 𝜺.                                                   (3.1.3)                                                                                                         

So we have                                      

  𝜺 ≤  𝑑(𝑦𝑚𝑘
, 𝑦𝑛𝑘

)  ≤ 𝑑(𝑦𝑚𝑘
, 𝑦𝑛𝑘−1) + 𝑑(𝑦𝑛𝑘−1, 𝑦𝑛𝑘

) < 𝜺 + 𝑑(𝑦𝑛𝑘−1, 𝑦𝑛𝑘
) 

Taking 𝑘 → ∞ and using 𝑑 (𝑦𝑛,𝑦𝑛+1) → 0 

We have          𝑙𝑖𝑚
𝑛→∞

𝑑(𝑦𝑚𝑘
, 𝑦𝑛𝑘

)  =  𝜺.                                                                                                              (3.1.4)                                                                                                                         

 Now we have 
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𝑑(𝑦𝑚𝑘
, 𝑦𝑛𝑘

)  ≤ 𝑑(𝑦𝑚𝑘
, 𝑦𝑚𝑘−1) + 𝑑(𝑦𝑚𝑘−1, 𝑦𝑛𝑘−1) + 𝑑(𝑦𝑛𝑘−1, 𝑦𝑛𝑘

) 

𝑑(𝑦𝑚𝑘−1, 𝑦𝑛𝑘−1) ≤ 𝑑(𝑦𝑚𝑘−1, 𝑦𝑚𝑘
 ) + 𝑑(𝑦𝑚𝑘

, 𝑦𝑛𝑘
) + 𝑑(𝑦𝑛𝑘

, 𝑦𝑛𝑘−1) 

Taking 𝑘 → ∞, we have 𝑙𝑖𝑚
𝑛→∞

𝑑(𝑦𝑚𝑘−1, 𝑦𝑛𝑘−1)  =  𝜺.                                                                                                              

Now by condition (3) and (3.1.3) we have          

                          𝜑(𝜀) ≤ 𝜑 (𝑑(𝑦𝑚𝑘
, 𝑦𝑛𝑘

) ) ≤ 𝜑 (𝑀(𝑥𝑚𝑘
, 𝑥𝑛𝑘

)) − 𝜙 (𝑀(𝑥𝑚𝑘
, 𝑥𝑛𝑘

)).                          (3.1.5)                                                                                                                                                                             

Where  𝑀(𝑥𝑚𝑘
, 𝑥𝑛𝑘

) = 𝐹[ 𝑑 (𝐴𝑥𝑚𝑘
, 𝑆𝑥𝑚𝑘

), 𝑑 (𝑆𝑥𝑚𝑘
, 𝑇𝑥𝑛𝑘

), 𝑑 (𝐵𝑥𝑛𝑘
, 𝑇𝑥𝑛𝑘

), 𝑑 (𝐴𝑥𝑚𝑘
, 𝑇𝑥𝑛𝑘

)] 

                                                                = 𝐹[ 𝑑 (𝐴𝑥𝑚𝑘
, 𝐵𝑥𝑚𝑘−1), 𝑑 (𝐵𝑥𝑚𝑘−1, 𝐴𝑥𝑛𝑘−1), 𝑑 (𝐵𝑥𝑛𝑘

, 𝐴𝑥𝑛𝑘−1), 𝑑 (𝐴𝑥𝑚𝑘
, 𝐴𝑥𝑛𝑘−1)] 

= 𝐹[ 𝑑 (𝑦𝑚𝑘
, 𝑦𝑚𝑘−1), 𝑑 (𝑦𝑚𝑘−1, 𝑦𝑛𝑘−1), 𝑑 (𝑦𝑛𝑘

, 𝑦𝑛𝑘−1), 𝑑 (𝑦𝑚𝑘
, 𝑦𝑛𝑘−1)] 

Taking  𝑘 → ∞,  𝑙𝑖𝑚
𝑘→∞

𝑀(𝑥𝑚𝑘
, 𝑥𝑛𝑘

)  =  𝐹[0, 𝜺, 0, 𝜺] 

Thus by, (𝐹3) we have     𝑙𝑖𝑚
𝑘→∞

𝑀(𝑥𝑚𝑘
, 𝑥𝑛𝑘

) ≤ 𝜺.                                                                                                (3.1.6)                                                                                        

 Therefore by (3.1.5) and (3.1.6) we get,    𝜑(𝜀) ≤ 𝜑(𝜀) − 𝜙(𝜀  
                                                                     ⟹ 𝜙(𝜀) ≤ 0. 

Which is a contradiction because as  𝜙: [0, ∞) → [0, ∞), 

We get 𝜙(𝜀) ≥ 0 and 𝜙(𝜀) = 0 if and only if, 𝜀 = 0. 

Hence our assumption is wrong. 

Thus  {𝑦𝑛} is a Cauchy sequence in 𝐴(𝑋). 
Since 𝐴(𝑋) is a complete subspace of 𝑋, 
Therefore the sequence {𝑦𝑛}  is converges in 𝑋.  

Therefore there exists   𝑧 ∈ 𝑋 such that 𝑙𝑖𝑚
𝑛→∞

{𝑦𝑛}  = 𝑧. 

Thus 𝑙𝑖𝑚
𝑛→∞

𝐴𝑥𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑇𝑥𝑛+1 = 𝑧 and 𝑙𝑖𝑚
𝑛→∞

𝐵𝑥𝑛+1 = 𝑙𝑖𝑚
𝑛→∞

𝑆𝑥𝑛+2 = 𝑧 

    i.e.,  𝑙𝑖𝑚
𝑛→∞

𝐴𝑥𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑇𝑥𝑛+1 = 𝑙𝑖𝑚
𝑛→∞

𝐵𝑥𝑛+1 = 𝑙𝑖𝑚
𝑛→∞

𝑆𝑥𝑛+2 = 𝑧.                                                                               (3.1.7)                                                                                              

Since 𝐵(𝑋) ⊆ 𝑆(𝑋), there exists a point 𝑢 ∈ 𝑋 such that 𝑧 = 𝑆𝑢. 
From condition (3) we have  𝜑(𝑑(𝐴𝑢, 𝑧 )) ≤ 𝜑(𝑑(𝐴𝑢, 𝐵𝑥𝑛+1 )) + 𝜑(𝑑(𝐵𝑥𝑛+1, 𝑧 )) 

             ⇒  𝜑(𝑑(𝐴𝑢, 𝑧 ))  ≤  𝜑 (𝑀 (𝑢, 𝑥𝑛+1 ))–   𝜙(𝑀 (𝑢, 𝑥𝑛+1 )) + 𝜑(𝑑(𝐵𝑥𝑛+1, 𝑧 )).                     (3.1.8)                                                                    

Where 𝑀 (𝑢, 𝑥𝑛+1 ) = 𝐹[ 𝑑 (𝐴𝑢, 𝑆𝑢), 𝑑 (𝑆𝑢, 𝑇𝑥𝑛+1), 𝑑 (𝐵𝑥𝑛+1, 𝑇𝑥𝑛+1), 𝑑 (𝐴𝑢, 𝑇𝑥𝑛+1)] 
          ⇒ 𝑀 (𝑢, 𝑥𝑛+1 )   = 𝐹[ 𝑑 (𝐴𝑢, 𝑧), 𝑑 (𝑧, 𝑇𝑥𝑛+1), 𝑑 (𝐵𝑥𝑛+1, 𝑇𝑥𝑛+1), 𝑑 (𝐴𝑢, 𝑇𝑥𝑛+1)].         (3.1.9)                                      

Taking 𝑛 → ∞,     we have  

𝑀 (𝑢, 𝑥𝑛+1 ) =  𝐹[ 𝑑 (𝐴𝑢, 𝑧), 𝑑 (𝑧, 𝑧), 𝑑 (𝑧, 𝑧), 𝑑 (𝐴𝑢, 𝑧))] 
                                                                               =  𝐹[ 𝑑 (𝐴𝑢, 𝑧), 0, 0, 𝑑 (𝐴𝑢, 𝑧))] 
   By using, (𝐹3) , we get         𝑀 (𝑢, 𝑥𝑛+1 )   ≤ 𝑑 (𝐴𝑢, 𝑧).                                                                                      (3.1.10)                                                               

From (3.1.8) and (3.1.10), we have  

                                           𝜑(𝑑(𝐴𝑢, 𝑧 ))  ≤  𝜑 (𝑑 (𝐴𝑢, 𝑧))–   𝜙(𝑑 (𝐴𝑢, 𝑧)) + 𝜑(𝑑(𝑧, 𝑧 )) 

                                           ⇒ 𝜙(𝑑 (𝐴𝑢, 𝑧)) ≤ 0. 

Which is possible only if 𝐴𝑢 = 𝑧. 
Thus, 𝑆𝑢 = 𝐴𝑢 = 𝑧, so 𝑢 is a coincidence point of 𝐴 and 𝑆. 
But the pair 𝐴 and 𝑆 are weakly compatible,  𝐴𝑆𝑢 = 𝑆𝐴𝑢, i.e., 𝐴𝑧 = 𝑆𝑧. 

 Again since 𝐴(𝑋) ⊆ 𝑇(𝑋), there exists a point 𝑣 ∈ 𝑋 such that 𝑧 = 𝑇𝑣. 
From condition (3) we have  

                                           𝜑(𝑑(𝑧, 𝐵𝑣 )) = 𝜑(𝑑(𝐴𝑢, 𝐵𝑣 )) 

                                              ≤  𝜑 (𝑀 (𝑢, 𝑣 ))–   𝜙(𝑀 (𝑢, 𝑣 )).                                                            (3.1.11)                                                                                                             

Where                   𝑀 (𝑢, 𝑣 ) = 𝐹[ 𝑑 (𝐴𝑢, 𝑆𝑢), 𝑑 (𝑆𝑢, 𝑇𝑣), 𝑑 (𝐵𝑣, 𝑇𝑥𝑛+1), 𝑑 (𝐴𝑢, 𝑇𝑣)] 
                                            = 𝐹[ 𝑑 (𝑧, 𝑧), 𝑑 (𝑧, 𝑇𝑣), 𝑑 (𝐵𝑣, 𝑇𝑣), 𝑑 (𝐴𝑢, 𝑇𝑣)]   
                                             = 𝐹[ 0, 0, 𝑑 (𝐵𝑣, 𝑧), 0)] 
By using,(𝐹3), we get       𝑀 (𝑢, 𝑣 ) ≤ 𝑑 (𝐵𝑣, 𝑧).                                                                                                     (3.1.12)                                                 

From (3.1.11) and (3.1.12), we have 

                                                       𝜑(𝑑(𝑧, 𝐵𝑣 ))  ≤  𝜑 (𝑑 ( 𝑧, 𝐵𝑣))–   𝜙(𝑑 (𝑧, 𝐵𝑣)) 

                                                        ⇒ 𝜙(𝑑 ( 𝑧, 𝐵𝑣)) ≤ 0.           

Which is possible only if  𝐵𝑣 = 𝑧. 

Hence  𝑇𝑣 = 𝐵𝑣 = 𝑧, so 𝑣 is a coincidence point of 𝐵 and 𝑇. 
But the pair 𝐵 and 𝑇 are weakly compatible, 𝐵𝑇𝑣 = 𝑇𝐵𝑣, i.e., 𝐵𝑧 = 𝑇𝑧. 

Now we show that 𝑧 is a fixed point of 𝐴. 
By condition (3) we have 

             𝜑(𝑑(𝐴𝑧, 𝑧 )) = 𝜑(𝑑(𝐴𝑧, 𝐵𝑣 ))  ≤  𝜑(𝑀 ( 𝑧, 𝑣)) − 𝜙(𝑀 ( 𝑧, 𝑣)).                                      (3.1.13)                                                                         

Where                                       𝑀 (𝑧, 𝑣 ) = 𝐹[ 𝑑 (𝐴𝑧, 𝑆𝑧), 𝑑 (𝑆𝑧, 𝑇𝑣), 𝑑 (𝐵𝑣, 𝑇𝑧), 𝑑 (𝐴𝑧, 𝑇𝑣)] 
                                                             = 𝐹[ 𝑑 (𝐴𝑧, 𝑆𝑧), 𝑑 (𝑆𝑧, 𝑧), 𝑑 (𝐴𝑧, 𝑧))]   
                                                             = 𝐹[ 𝑑 (𝐴𝑧, 𝐴𝑧), 𝑑 (𝐴𝑧, 𝑧), 0, 𝑑 (𝐴𝑧, 𝑧)] 
By using  (𝐹3) we get 

                            𝑀 (𝑧, 𝑣 ) ≤ 𝑑 (𝐴𝑧, 𝑧).                                                                                                   (3.1.14)                                                                                                                        

From (3.1.13) and (3.1.14) we have                                                                           

                                                           𝜑(𝑑(𝐴𝑧, 𝑧 ))  ≤  𝜑(𝑑 (𝐴𝑧, 𝑧)) − 𝜙(𝑑 (𝐴𝑧, 𝑧)) 

                                                      ⇒  𝜙(𝑑 (𝐴𝑧, 𝑧)) ≤ 0 

Which is possible only if 𝐴𝑧 = 𝑧 
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Hence 𝐴𝑧 = 𝑆𝑧 = 𝑧 

Now we show that 𝑧 is a fixed point of 𝐵. 
By condition (3) we have  

                     𝜑(𝑑(𝑧, 𝐵𝑧 )) = 𝜑(𝑑(𝐴𝑧, 𝐵𝑧 ))  ≤  𝜑(𝑀 ( 𝑧, 𝑧)) − 𝜙(𝑀 ( 𝑧, 𝑧)).                                         (3.1.15)                                                                    

Where                          𝑀 (𝑧, 𝑧 ) = 𝐹[ 𝑑 (𝐴𝑧, 𝑆𝑧), 𝑑 (𝑆𝑧, 𝑇𝑧), 𝑑 (𝐵𝑧, 𝑇𝑧), 𝑑 (𝐴𝑧, 𝑇𝑧)] 
 = 𝐹[0, 𝑑 (𝑧, 𝐵𝑧), 0, 𝑑 (𝑧, 𝐵𝑧)]  = 𝐹[0, 𝑑 (𝑧, 𝐵𝑧), 0, 𝑑 (𝑧, 𝐵𝑧)] 

By using,(𝐹3) we get 

                               𝑀 (𝑧, 𝑧 ) ≤ 𝑑 (𝑧, 𝐵𝑧).                                                                                                    (3.1.16)                                                                                                                     

From (3.1.15) and (3.1.16)   we have 

                                                        𝜑(𝑑(𝑧, 𝐵𝑧 ))  ≤  𝜑(𝑑 (𝑧, 𝐵𝑧)) − 𝜙(𝑑 (𝑧, 𝐵𝑧)) 

                                                           ⇒  𝜙(𝑑 (𝑧, 𝐵𝑧)) ≤ 0 

Which is possible only if 𝐵𝑧 = 𝑧 

Hence 𝐵𝑧 = 𝑇𝑧 = 𝑧 

Therefore 𝐴𝑧 = 𝑆𝑧 = 𝐵𝑧 = 𝑇𝑧 = 𝑧, 𝑖. 𝑒. , 𝑧 is a common fixed point of 𝐴, 𝐵, 𝑆 and 𝑇. 
 Uniqueness: If possible let 𝑤  be another common fixed point of 𝐴, 𝐵, 𝑆 and 𝑇.  
By condition (3) we have 

                      𝜑 ( 𝑑 (𝑧, 𝑤)) = 𝜑 ( 𝑑 (𝐴𝑧, 𝐵𝑤)) ≤  𝜑 (𝑀 (𝑧, 𝑤 ))–   𝜙(𝑀 (𝑧, 𝑤 )).                         (3.1.17)                                                                                            

 Where                     𝑀 (𝑧, 𝑤 ) = 𝐹[𝑑 (𝐴𝑧, 𝑆𝑧), 𝑑 (𝑆𝑧, 𝑇𝑤), 𝑑 (𝐵𝑤, 𝑇𝑤), 𝑑 (𝑆𝑤, 𝐵𝑤), 𝑑 (𝐴𝑧, 𝑇𝑤)] 
= 𝐹[𝑑 (𝑧, 𝑧), 𝑑 (𝑧, 𝑤), 𝑑 (𝑤, 𝑤), 𝑑 (𝑧, 𝑤)]   

= 𝐹[0, 𝑑 (𝑧, 𝑤), 0, 𝑑 (𝑧, 𝑤)] 
By using,(𝐹3) we get 

                                       𝑀 (𝑧, 𝑤 ) ≤ 𝑑 (𝑧, 𝑤).                                                                                          (3.1.18)                                                                                                                  

From (3.1.17) and (3.1.18) we have,  

                                                              𝜑(𝑑(𝑧, 𝑤 ))  ≤  𝜑(𝑑 (𝑧, 𝑤)) − 𝜙(𝑑 (𝑧, 𝑤)) 

                                                               ⟹ 𝜙(𝑑 (𝑧, 𝑤)) ≤ 0 

Which is possible only if 𝑧 = 𝑤. 
Hence 𝑧 is the unique common fixed point of 𝐴, 𝐵, 𝑆 and 𝑇. 
Corollary: 3.2. Let  ( 𝑋, 𝑑 )  be a complete metric space. Suppose that   𝐴, 𝐵 and 𝑆 are self mappings of  𝑋 

Satisfying the following conditions: 

1. 𝐴(𝑋) ⊆ 𝑆(𝑋) and 𝐵(𝑋) ⊆ 𝑆(𝑋). 

2. 𝐴(𝑋) and 𝐵(𝑋) are complete subspace of 𝑋. 

3.  𝜑 ( 𝑑 (𝐴𝑥, 𝐵𝑦)) ≤  𝜑 (𝑀 (𝑥, 𝑦 ))–   𝜙(𝑀 (𝑥, 𝑦 ))  

 Where 𝑀 (𝑥, 𝑦 ) = 𝐹[𝑑 (𝐴𝑥, 𝑆𝑥), 𝑑 (𝑆𝑥, 𝑆𝑦), 𝑑 (𝐵𝑦, 𝑆𝑦), 𝑑 (𝐴𝑥, 𝑆𝑦)]  and  𝜑: [0, ∞ ) →  [0,∞ )  is continuous and 

monotonic increasing function and 𝜙: [0, ∞) → [0, ∞) is continuous monotonic decreasing function such that 

 𝜑(𝑥) = 0 = 𝜙(𝑥) if and only if 𝑥 = 0, 𝐹 ∈ 𝐹∗. 

4. The pair (𝐴, 𝑆 ) and (𝐵, 𝑆) are weakly compatible. 

 Than 𝐴, 𝐵 and 𝑆 have a unique common fixed point. 

Proof: By taking 𝑇 = 𝑆 in theorem 3.1 we get the proof. 

Corollary: 3.3. Let  ( 𝑋, 𝑑 )  be a complete metric space. Suppose that  𝐴  and  𝑆 are self mappings of  𝑋 

Satisfying the following conditions: 

1. 𝐴(𝑋) ⊆ 𝑆(𝑋).  

2. 𝐴(𝑋) is complete subspace of 𝑋. 

3.  𝜑 ( 𝑑 (𝐴𝑥, 𝐴𝑦)) ≤  𝜑 (𝑀 (𝑥, 𝑦 ))–   𝜙(𝑀 (𝑥, 𝑦 ))   

Where 𝑀 (𝑥, 𝑦 ) = 𝐹[𝑑 (𝐴𝑥, 𝑆𝑥), 𝑑 (𝑆𝑥, 𝑆𝑦), 𝑑 (𝐴𝑦, 𝑆𝑦), 𝑑 (𝐴𝑥, 𝑆𝑦)]  and  𝜑: [0,∞ ) →  [0,∞ )  is continuous and 

monotonic increasing function and 𝜙: [0, ∞) → [0, ∞) is continuous monotonic decreasing function such that 

 𝜑(𝑥) = 0 = 𝜙(𝑥) if and only if 𝑥 = 0, 𝐹 ∈ 𝐹∗. 
4. The pair (𝐴, 𝑆) is weakly compatible. 

 Than 𝐴 and 𝑆 have a unique common fixed point. 

Proof: By taking 𝐵 = 𝐴  and  𝑇 = 𝑆 in theorem 3.1 we get the proof. 
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