Some fixed point theorems in compact 2-Metric spaces

Rajesh Shrivastava, Swati Khare*
Professor \& Head, Department of Mathematics, Govt. Dr. Shyma Prasad Mukharjee Science \& Commerce College Bhopal
*Research Scholar(Mathematics)Govt. Dr. Shyma Prasad Mukharjee Science \& Commerce College Bhopal

Abstract

In the present paper some fixed point theorems are obtained for compact -2 metric spaces, which are generalizations of well-known results

Keywords: Fixed point, compact 2-metric spaces

I. Introduction

There are several genralizations of classical contraction mapping theroem of Banach.In 1961 Edelstein [5] established the existence of a unique fixed point of a self map T of a compact metric space satisfying the inequality $d(T(x), T(y))<d$ (x, y) which is genralization of Banach. In the past few years a number of authers worked on this spaces.Applying the same concept and using the basic definition of 2-metric spaces some results are obtained in compact 2-metric space
Before starting the main results first we are giving some basic concepts.
Definition (2.1): A class $\{\mathrm{Gi}\}$ of open subset of X is said to be an open cover of X , if each point in X belongs to one Gi that is Ui $\mathrm{Gi}=\mathrm{X}$. A subclass of an open cover which has at least an open cover is called a sub cover.
Definition (2.2) A compact space is that space in which every open cover has finite sub cover.
THEOREM (2. 3): In 1961 Edelstein [5] established the existence of a unique fixed point of a self map T of a compact metric space satisfying the inequality
$\mathrm{d}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y}))<\mathrm{d}(\mathrm{x}, \mathrm{y})$, which is genralization of Banach
2.4 Main Results:

THEOREM (6.4.1): Let T be a continuous mapping of a compact 2-metric space X into it self satisfying the conditions:
(6.4.1a)

$$
\begin{aligned}
& d(T(x), T(y), a) \prec \alpha \frac{d(x, T(x), a) d(y, T(x), a)+d(y, T(y), a)}{d(x, T(x), a)+d(y, T(x), a)+d(y, T(y), a) d(x, T(y), a)} \\
&+\gamma \frac{d(x, T(x), a) d(x, T(y), a)+d(y, T(x), a) d(y, T(y), a)}{d(x, T(x), a)+d(x, T(y), a)+d(y, T(x), a)+d(y, T(y)), a)} \\
&+ \delta d(x, y, a)
\end{aligned}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$ and $\alpha+\gamma+2 \delta \leq 2$, where α, γ, δ are non negative real then T has a unique fixed point.
PROOF: First we define a function F on X as follows:
$F(x)=d(x, T(x), a)$, for all $x \in X$. Since d and T are continuous on X, F is also continuous on X. From compactness of X, there exists a point $P \in X$, such that
$F(P)=\inf \{F(x): x \in X\}$
If $\mathrm{F}(\mathrm{P}) \neq 0$, it follows that $\mathrm{P} \neq \mathrm{T}(\mathrm{P})$
And so F (T (P)) =d (T (P), T2 (P), a)

$$
\begin{aligned}
& d(T(p), T(T(p)), a) \prec \\
& \qquad \begin{array}{l}
\alpha \frac{d(p, T(p), a) d(T(p), T(p), a)+d(T(p), T(T(p), a) d(p, T(T(p))), a)}{d(p, T(p), a)+d(T(p), T(p), a)+d(T(p), T(T(p), a)+d(p, T(T(p))), a)} \\
\quad+\delta d(p, T(p), a) \\
\quad+\gamma \frac{d(p, T(p), a) d((p), T(T(p)), a)+d(T(p), T(T(p)), a) d(T(p), T(p), a)}{d(p, T(p), a)+d((p), T(T(p)), a)+d(T(p), T(T(p)), a)+d(T(p), T T(p), a)}
\end{array}
\end{aligned}
$$

so $\mathrm{d}(\mathrm{T}(\mathrm{P}), \mathrm{T} 2(\mathrm{P}), \mathrm{a})<\alpha / 2 \mathrm{~d}(\mathrm{~T}(\mathrm{P}), \mathrm{T} 2(\mathrm{P}), \mathrm{a})+(\gamma / 2+\delta) \mathrm{d}(\mathrm{P}, \mathrm{T}(\mathrm{P}), \mathrm{a})$
That is
$\mathrm{d}(\mathrm{T}(\mathrm{P}), \mathrm{T} 2(\mathrm{P}), \mathrm{a})[1-\alpha / 2]<(\gamma / 2+\delta) \mathrm{d}(\mathrm{P}, \mathrm{T}(\mathrm{P}), \mathrm{a})$
$\mathrm{d}(\mathrm{T}(\mathrm{P}), \mathrm{T} 2(\mathrm{P}), \mathrm{a})<(\gamma / 2+\delta) /[1-\alpha / 2] \mathrm{d}(\mathrm{P}, \mathrm{T}(\mathrm{P}), \mathrm{a})$

That is
$\mathrm{T}(\mathrm{T}(\mathrm{P}))<\mathrm{S} \mathrm{F}(\mathrm{P}) \quad$ where $\mathrm{S}=(\gamma / 2+\delta) /[1-\alpha / 2] \leq 1$
Because $\alpha+\gamma+2 \delta \leq 2$
This is a contradiction to the condition (24.1b)
And hence $\mathrm{P}=\mathrm{T}(\mathrm{P})$ consequently, P is a fixed point of T .
Uniqueness: Now we shall prove the uniqueness of P . Let if possible $\mathrm{Q} \neq \mathrm{P}$ be another fixed point of T .
Now $d(P, Q)=d(T(P), T(Q))$

$$
\begin{aligned}
& d(T(P), T(Q), a) \prec \alpha \frac{d(P, T(P), a) d(Q, T(P), a)+d(Q, T(Q), a) d(P, T(Q), a)}{d(P, T(P), a)+d(Q, T(P), a)+d(Q, T(Q), a)+d(P, T(Q), a)} \\
& +\gamma \frac{d(P, T(P), a) d(P, T(Q), a)+d(Q, T(P), a) d(Q, T(Q), a)}{d(P, T(P), a)+d(P, T(Q), a)+d(Q, T(P), a) d(Q, T(Q), a)} \\
& +\quad \delta d(P, Q, a)
\end{aligned}
$$

That is $\mathrm{d}(\mathrm{P}, \mathrm{Q})<(\delta) \mathrm{d}(\mathrm{P}, \mathrm{Q})$
This is a contradiction because $\eta<2$
Hence P is unique fixed point of F.

REMARK:

If we put $\delta=1, \alpha=\gamma=0$, then we get the result of Edelstein [5] for compact metric form.
Now we are taking another type rational expression for compact 2-metric spaces.
THEOREM (2.4.2): Let T be a continous mapping of a compact 2-metric space X into itself setisfying the conditions ;

$$
\begin{aligned}
& d(T(x), T(y), a) \prec \\
& \qquad \alpha\left[\frac{d(x, T(y), a) d(y, T(x), a) d(x, T(x), a)+d(y, T(y), a)+d(x, y, a)}{1+d(x, T(y), a) d(y, T(x), a) d(x, T(x), a) d(y, T(y), a)+d(y, T(x), a) d(x, y, a)}\right] \\
& \quad+\delta d(x, y, a)
\end{aligned}
$$

for all $x, y \varepsilon X, x \neq y$ where α, δ are non negative reals such that $2 \alpha+\delta \prec 1$,
Then T has unique fixed point.
THEOREM (2.4.3): Let T be a continous mapping of a compact 2-metric space X into itself setisfying the conditions ;

$$
\begin{aligned}
d(T(x), T(y), a) \prec \gamma & {\left[\frac{d(x, T(y), a) d(y, T(x), a) d(y, T(y), a)+d(x, T(x), a)+d(x, y, a)}{1+d(x, T(y), a) d(y, T(x), a) d(y, T(y), a) d(x, T(x), a)+d(y, T(x), a) d(x, y, a)}\right] } \\
& +\delta d(x, y, a)
\end{aligned}
$$

for all $x, y \varepsilon X, x \neq y$ where γ, δ are non negative reals such that $2 \gamma+\delta \prec 1$
Then T has unique fixed point.
THEOREM (2.4.4): Let T be a continuous mapping of a compact 2-metric space to itself satisfying the conditions:

$$
\begin{aligned}
& d(T(x), T(y), a) \prec \\
& \quad \alpha\left[\frac{d(x, T(y), a) d(y, T(x), a) d(x, T(x), a)+d(y, T(y), a)+d(x, y, a)}{1+d(x, T(y), a) d(y, T(x), a) d(x, T(x), a) d(y, T(y), a)+d(y, T(x), a) d(x, y, a)}\right] \\
& \quad+\gamma[d(y, T(x), a)+d(y, T(y), a)]+\delta d(x, y, a),
\end{aligned}
$$

for all α, γ, δ are nonnegative real such that $2 \alpha+\gamma+\delta \prec 1$, then T has fixed point
Note: Above results can be proved for integral type mappings also.

References

1. Banach, S. "Surles operation dans les ensembles abstraits et leur application aux equations integrals" Fund. Math. 3(1922) 133-181.
2. Bhardwaj, R.K., Rajput, S.S. and Yadava, R.N. "Application of fixed point theory in metric spaces" Thai Journal of Mathematics 5 (2007) 253-259.
3. Bhardwaj, R.K., Sharma, A.K., Rajput, S.S., Yadava, R.N. and Dhagat, V.B. "Some fixed point theorems in compact spaces and pseudo compact Tichonov spaces" International Journal of Mathematical Analysis 2 (2008) No 11, 543-550.
4. Bhardwaj, R.K., Choudhary, S., Rajput, S.S. and Yadava, R.N. "Some fixed point theorems in compact spaces" International Journal of Mathematical Analysis 2 (2008) No 11, 551-555.
5. Edelstein, M. "An extension of Banach's contraction principlee" Pro. Amer, Math. Soc. 12 (1961)7-10.
6. Gahlar, S. "2- Metrche raume and ihre topologiscche structure" Math. Nadh. 26 (1963-64) 115-148.
7. Gahler, S. Linear 2-normierte Raume" Math. Nachr. 28 (1964) 1-43.
8. Gahler S.; 1965, "Uber die uniforisierbarket 2-metrisches Raume"; Math.Nachr; 28:235-244.
9. Gahler S.; 1966," Zur geometric 2-metrischer Raume, Revue Roumaine"; Math. Pures; 665-667.
10. Gahler, S. Uber 2-Banach Raume, Math. Nachr. 42 (1969) 335-347.
11. Sharma. P.L., Sharma. B.K. and Iseki, K. "Contractive type mapping on 2-metric spaces" Math. Japonica 21 (1976) 6770.
