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Abstract :In this Paper, introduce the Concept of  (H,1)(C,1) Product Operators and establishes two new theorems on (H,1)(C,1) 

Product Summability of Fourier Series and its Conjugate Series. The result obtained in the Paper further extend Several known 

result on linear operators 
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I. INTRODUCTION 

In this  field of Summability of Fourier Series & its allied a Series, Several researchers like Jadia[1], Singh and Singh[2], 

Pandey[3],Singh[4], Khare[5], Mittal and kumar[6] have Studied (𝑁, 𝑃𝑛), (𝑁, 𝑃, 𝑞), almost (𝑁, 𝑃, 𝑞) and matrix Summability 

methods of Fourier series and its Conjugate series using different conditions. But nothing Seems to have been done so far to study 

(H,1)(C,1) Product Summability of Fourier series and its Conjugate Series . Therefore, in this Paper, two theorems on (H,1)(C,1)  

Summability of Fourier series and its Conjugate Series under a general Condition have been Proved. 

II. DEFINITION AND NOTATION 
                                

Let∑ 𝑢𝑛
∞
𝑛=0  be a given infinite series with Sequence of its 𝑛𝑡ℎPartial sum of {𝑆𝑛}.         The (C,1) transform is defined 

as the  𝑛𝑡ℎPartial sum of The (C,1)  Summability and is given by 

                                    𝑡𝑛 =
𝑆0+𝑆1+𝑆2+_________+𝑆𝑛

𝑛+1
=

1

𝑛+1
∑ 𝑆𝑛 → 𝑆 𝑎𝑠 𝑛 → ∞𝑛

𝑘=0                         (1.1) 

Then the infinite series ∑ 𝑢𝑛
∞
𝑛=0  is summable to the definite number S by (C, 1) method. 

If 

                                        (H, 1) = 𝐻𝑛
1 = 𝑡𝑘(𝑛) =

1

𝑙𝑜𝑔𝑛
∑

𝑆𝑛−𝑘

𝑘+1
𝑛
𝑘=0  as n→ ∞                              (1.2) 

Then the infinite series ∑ 𝑢𝑛
∞
𝑛=0  is said to be Summable (H,1) to a definite number S (Hardy[8]). The (H,1) transform 

of (C,1) transform defines (H,1)(C,1) transform and we denote it by (𝐻𝐶)𝑛
1 .   Thus if  

                                       (𝐻𝐶)𝑛
1 =  

1

𝑙𝑜𝑔𝑛
∑ (

𝑆𝑛−𝑘

𝑘+1
) 𝐶𝑘

1 → 𝑆 𝑎𝑠 𝑛 → ∞𝑛
𝑘=0                                     (1.3) 

Then the series ∑ 𝑢𝑛
∞
𝑛=0  is said to be Summable by (H,1)(C,1) means or Summable  (H,1)(C,1) to a definite number S. 

Therefore, we can write  

(𝐻𝐶)𝑛
1 → 𝑆 𝑎𝑠 𝑛 → ∞ 

The method (H,1)(C,1) is regular and this case is Supposed throughout this Paper. 

Let f(x) be a 2π- periodic function of x and integrable over [-π, π] in the sense of Lebesgue.. The Fourier series 

f(x) is given by  

                                      f(x)~ 
a0

2
+ ∑ (an cos nx∞

n=1 + bn sin nx) ≡ ∑ An(x)∞
n=1                      (1.4) 

The conjugate series of Fourier series (1.4) is given by 

                          ∑ (an cos nx − bnsin nx) ≡ ∑ Bn
∞
n=1

∞
n=1 (x)                                         (1.5) 

We shall use the following notations: 

Φ (t) = f(x+ t) + f(x-t) -2f(x) 

                                                     Ψ (t) = f(x+ t) + f(x-t) 

Kn(t) =
1

2π. log n
∑ {

1

(K + 1)2
∑

sin (v +
1

2
) t

sin
t

2

k

v=0

}

n

k=0

 

Kñ(t) =
1

2π log n
∑ {

1

(K + 1)2
∑

cos (v +
1

2
) t

sin
t

2

k

v=0

}

n

k=0

 

And τ = [
1

t
], where τ denotes the greatest integer not greater than 

1

t
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2. MAIN THEOREMS 

We will prove the following theorems, 

2.1 Theorem 1. Let {pn} be a positive, monotonic, non-increasing sequence of real constants such that 

pn = ∑ pv → ∞ as n → ∞

n

v=0

 

if,  

                                   ∅(t) =  ∫ |∅(u)|du = o [
t

α(
1

t
),pτ

] , as t → +0
t

0
                              (2.1) 

Where α (t) is positive, monotonic and non-increasing function of t and 

                                                       log n = O[{α(n)}. pn], as n → ∞                                         (2.2) 

Then the Fourier series (1.4) is summable (H, 1)(C,1) to f(x). 

2.2 Theorem 2. Let {pn} be a positive, monotonic, non-increasing sequence of real constants such that 

pn = ∑ pv → ∞ as n → ∞

n

v=0

 

If,  

                                         ψ(t) =  ∫ |ψ(u)|du = o [
t

α(
1

t
),pτ

] , as t → +0
t

0
                                    (2.3) 

where α(t) is a positive, monotonic and non-increasing function of t and condition (2.2), then the conjugate series (1.5) 
is summable to (H,1)(C,1) to  

f̃(x) =
−1

2π
∫ ψ(t) cot (

t

2
)

2π

0
dt 

At any point where this integral exists. 

3. LEMMAS 

For the Proof of our theorems, following Lemmas are required. 

Lemma 1. |kn(t)| = O(n),    for 0 ≤ t ≤
1

n
 

Proof:    For 0 ≤ t ≤
1

n
; sin nt ≤ n sin t ; | cos nt | ≤ 1 

|kn(t)| ≤
1

2π . log n
|∑ [

1

(K + 1)2
∑

sin (v +
1

2
) t

sin
t

2

k

v=0

]

n

k=0

| 

≤
1

2π. log  n
|∑ [

1

(K + 1)2
∑

(2v + 1)sin
t

2

sin
t

2

k

v=0

]

n

k=0

| 

≤
1

2π. log n
|∑ [

1

(K + 1)2
(2k + 1)]

n

k=0

| 

=
1

2π. log n
(2n + 1) ∑

1

(K + 1)2

n

k=0

 

                                                                        =
2𝑛+1

2π.log n
 

= O(n) 

Lemma 2. |Kn(t)| = o (
1

tn
) , for

1

n
≤ t ≤ π 

 Proof:- For
1

n
≤ t ≤ π; sin(t

2⁄ ) ≥ t
π⁄ and sin nt ≤ 1 

|𝐤𝐧(𝐭)| ≤
𝟏

2π. log n
|∑ [

1

(K + 1)2
∑

sin (v +
1

2
) t

sin
t

2

k

v=0

]

𝐧

𝐤=𝟎

| 

≤
𝟏

2π. log n
|∑ [

1

(K + 1)2
∑.

𝟏

(
𝐭

𝛑
)

𝐤

𝐯=𝟎

]

𝐧

𝐤=𝟎

| 

=
𝟏

2t. log n
|∑ [

1

(K + 1)2
∑(𝟏)

𝐤

𝐯=𝟎

]

𝐧

𝐤=𝟎

| 

=
𝟏

2t. log n
[∑

1

(K + 1)2

𝐧

𝐤=𝟎

] 

=
𝟏

2t. log n
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= O (
1

tn
) 

Lemma 3. kñ(t) = O (
1

tn
) , for 0 ≤ t ≤

1

n
 

Proof:- For 0 ≤ t ≤
1

n
;  sin(t

2⁄ ) ≥ t
π⁄  and |cos nt| ≤ 1  

|kñ(t)| ≤
1

2π. log n
|∑ [

1

(K + 1)2
∑

cos (v +
1

2
) t

sin
t

2

k

v=0

]

n

k=0

| 

≤
1

2π. log n
∑ [

1

(K + 1)2
∑ |

cos (v +
1

2
) t

sin t
2⁄

|

k

v=0

]

n

k=0

 

= 

=
1

2t. log n
[∑

1

(K + 1)2

n

k=0

] 

=
1

2t. log n
 

= O (
1

tn
) 

Lemmas 4.  For 0≤ 𝑎 ≤ 𝑏 ≤ ∞, 0 ≤ 𝑡 ≤ 𝜋  and any n, we have 

|kñ(t)| = O (
1

tn
) 

Proof:- For
1

n
≤ t ≤ π, sin(t

2⁄ ) ≥ t
π⁄  

|kñ(t)| ≤
1

2π. log n
|∑ {

1

(K + 1)2
∑

cos (v +
1

2
) t

sin
t

2

k

v=0

}

n

k=0

| 

≤
1

2t. log n
|∑ [

1

(K + 1)2
Re {∑ ei(v+

1

2
)t

k

v=0

}]

n

k=0

| 

≤
1

2t. log n
|∑ [

1

(K + 1)2
Re {∑ eivt

k

v=0

}]

n

k=0

| |e
it

2⁄ | 

≤
1

2t. log n
|∑ [

1

(K + 1)2
Re {∑ eivt

k

v=0

}]

n

k=0

| 

≤
1

2t. log n
|∑ [

1

(K + 1)2
Re {∑ eivt

k

v=0

}]

τ−1

k=0

| + 

                                                  
1

2t.log n
|∑ [

1

(K+1)2 Re{∑ eivtk
v=0 }]n

k=τ |                                        (3.1) 

                                                 = k1 + k2 

Now condition first term of (3.1) 

|k1| ≤
1

2t. log n
|∑ [

1

(K + 1)2
Re {∑ eivt

k

v=0

}]

τ−1

k=0

| 

                                                              ≤
1

2t.log n
|∑ [

1

(K+1)2
∑ 1k

v=0 ]τ−1
k=0 | |eivt| 

≤
1

2t. log n
∑

1

(K + 1)2

τ−1

k=0

 

                                                           =
1

2t.log n
 

                                                                    = O (
1

tn
)                                                                  (3.2) 

And 

|k2| ≤
1

2t. log n
|∑ [

1

(K + 1)2
Re {∑ eivt

k

v=0

}]

n

k=τ

| 
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≤
1

2t. log n
∑

1

(K + 1)2

max

0 ≤ m ≤ k
|∑ eivt

k

v=0

|

n

k=τ

 

≤
1

2t. log n
∑

1

(K + 1)2
(1 + k)

n

k=τ

 

=
1

2t. log n
∑

1

(k + 1)

n

k=τ

 

                                                            = O (
1

tn
)                                                                          (3.3) 

Combining (3.1) (3.2) and (3.3), we get 

|kñ(t)| ≤ O (
1

tn
) 

4. PROOF OF MAIN THEOREMS 

 Proof of theorem 1. 

Following Titchmarsh [9] and using Riemann-Lebesgue theorem, Sn (f; x) of the series (1.4) is given by  

Sn(f; x) − f(x) =
1

2π
∫ ∅(t)

sin (n +
1

2
) t

sin
t

2

dt
π

0

 

Therefore using (1.1), the (C, 1), transform Cn
1  of Sn(f; x) is given by 

Cn
1  − f(x) =

1

2π(n + 1)
∫ ∅(t) {∑

sin (v +
1

2
) t

sin
t

2

k

v=0

} dt
π

0

 

Now, denoting (H, 1)(C,1) transform of Sn(f; x) by (𝐻𝐶)𝑛
1 ,we write 

(𝐻𝐶)𝑛
1 − f(x) =

1

2π. log n
∑ [

1

(K + 1)
∫

∅(t)

sin
t

2

(
1

K + 1
) {∑ sin (v +

1

2
) t

k

v=0

} dt
π

0

]

n

k=0

 

                                              = ∫ ∅(t)kn(t)dt
π

0
                                                                (4.1) 

we have to show that, under the hypothesis of theorem  

∫ ∅(t)kn(t)dt = o(1), as n → ∞

π

0

 

For 0 < δ < π, We have 

∫ ∅(t)kn(t)dt
π

0

= [∫ ∅(t)

1
n⁄

0

+ ∫ ∅(t)
δ

1
n⁄

+ ∫ ∅(t)
π

δ

] kn(t)dt 

                                                        = I1 + I2 + I3 (say)                                                            (4.2) 

We consider, 

|I1| ≤ ∫ |∅(t)||kn(t)|dt

1
n⁄

0

 

                                                       =O(n) [∫ |∅(t)|dt
1

n⁄

0
] (using Lemma 1) 

                                                       = O(n) [o {
1

nα(n).pn
}] by (2.1 

                                                        = o {
1

α(n).pn
} 

                                                        = o {
1

log n
}   using(2.2) 

                                                        = o(1), as n → ∞                                                                (4.3) 

Now we consider 

|I2| ≤ ∫ |∅(t)||kn(t)|dt
δ

1
n⁄

 

                                                     = 𝑂 [∫ |∅(t)| (
1

tn
) dt

δ
1

n⁄
] ( using Lemma 2) 

                                                     = O (
1

n
) [{

1

t
∅(t)}

1
n⁄

δ

+ ∫
1

t2 ∅(t)
δ

1
n⁄ dt] 

                                                     = O (
1

n
) [o {

1

α(
1

t
).pt

}
1

n⁄

δ

+ ∫ o (
1

tα(
1

t
).pt

)
δ

1
n⁄ dt] by (2.1) 

Putting 
1

t
= u in second term, 
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                                                     = O (
1

n
) [o {

1

α(n).pn
} + ∫ o (

1

uα(u).pu
)

n
1

δ⁄
du] 

                                                     = o {
1

α(n).pn
} + o {

1

nα(n).pn
} ∫ 1. du

n
1

δ⁄
 

                                                     = o {
1

log n
} + o {

1

log n
} by (2.2) 

Using second mean value theorem for the integral in the second term as α (n) is monotonic 

= o(1) + o(1) as, n → ∞ 

                                                         = o(1), as n → ∞                                                             (4.4) 

Now by Riemann-Lebesgue theorem and by regularity condition of the method of Summabilty, we have 

|I3| ≤ ∫ |∅(t)||kn(t)|dt
π

δ

 

                                                         = o(1), as n → ∞                                                              (4.5) 

Combining (4.3), (4.4) and (4.5) we have 

(𝐻𝐶)𝑛
1 − f(x) = o(1), as n → ∞ 

This completes the proof of theorem 1. 

Proof of Theorem 2. Let sñ(f; x) denotes the partial sum of series (1.5). 

Then following Lal [7] and using Riemann-Lebesgue Theorem , sñ(f; x) of series (1.5) is given by 

sñ(f; x) − f̃(x) =
1

2π
∫ Ψ(t)

cos (n +
1

2
) t

sin
t

2

dt
π

0

 

Therefore, using (1.5), the (C, 1) transform Cn
1  of sñ(f; x) is given by 

C̃n
1 − f̃(x) =

1

2π(n + 1)
∫ ψ(t) {∑

cos (v +
1

2
) t

sin
t

2

k

v=0

} dt
π

0

 

Now denoting (H, 1)(C, 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ transform of sñ(f; x) by (𝐻𝐶̅̅ ̅̅ )𝑛
1  , we write 

(𝐻𝐶̅̅ ̅̅ )𝑛
1 − f̃(x) =

1

2π. log n
∑ [

1

(K + 1)
∫

ψ(t)

sin
t

2

(
1

K + 1
) {∑ cos (v +

1

2
) t

k

v=0

} dt
π

0

]

n

k=0

 

                                                        = ∫ ψ(t)kñ(t)dt
π

0
                                                     (4.6) 

In order to prove the Theorem, we have to show that, under the hypothesis of theorem  

                                                 ∫ ψ(t)kñ(t)
π

0
dt = o(1)    as  n→ ∞ 

For0< δ < π, we have 

∫ ψ(t)kñ(t)dt
π

0

= [∫ ψ(t)

1
n⁄

0

+ ∫ ψ(t)
δ

1
n⁄

+ ∫ ψ(t)
π

δ

] kñ(t)dt 

                                                        = J1 + J2 + J3   (Say)                                                          (4.7) 
 Now We consider, 

|J1 ≤| ∫  |ψ(t)|
1

n⁄

0
|kn(t)̃|dt 

= O[∫ (
1

tn
) |ψ(t)|dt

1
n⁄   

0
](using Lemma 3) 

= 𝑂 (
1

n
) [∫  

1

t
|ψ(t)|

1
n⁄

0

dt] 

= O(n) (
1

n
) [o {

1

nα(n).pn
}] by(2.3) 

= o {
1

α(n). pn
} 

= o {
1

log n
}   using (2.2) 

                                                            = o(1), as n → ∞                                                          (4.8) 

Now,                                                     | J2| ≤ ∫ |ψ(t)|
δ

1
n⁄

|kñ(t)|dt 

                                                            = O[∫ (
1

tn
) |ψ(t)|dt

δ 
1

n⁄
]  by lemma 4 

             =O (
1

n
) [∫

1

t
|ψ(t)|dt

δ 
1

n⁄
] 

= O(
1

𝑛
) [{

1

t
ψ(t)}

1
n⁄

δ

+ ∫
1

t2 ψ
δ

1
n⁄

(t)dt] 

= O (
1

n
) [o {

1

α(
1

t
)pt

}
1

n⁄

δ

+ ∫ o (
1

tα(
1

t
).pt

)
δ

1
n⁄ dt] by (2.3) 
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Putting 
1

t
 = u, in second term, 

                                                    = O (
1

n
) [o {

1

α(n).pn
} + ∫ o (

1

uα(u).pt
)

n
1

δ⁄
du] 

                                         = o {
1

α(n).pn
} + o {

1

nα(n).pn
} ∫ 1. du

n
1

δ⁄
                                                                                                   

                                                     = o {
1

log n
} + o {

1

log n
} by (2.2)    

Using second -mean value theorem for the integral in the second term as α(n)  is  monotonic 

                                                        = o(1) + o(1) , as n→ ∞ 

                                                        = o(1) , as n→ ∞                                                                 (4.9) 

Now by Riemann – Lebesgue theorem and by regularity condition of the method of Summability, we have 

                                                         | J3| ≤ ∫ |ψ(t)|
π

δ
|kñ(t)|dt 

                                                             = o (1) , as  n→ ∞                                                        (4.10) 

Combining (4.8), (4.9) and (4.10)  we get,  

                                                     (𝐻𝐶̅̅ ̅̅ )𝑛
1   - f̃(x) = o (1), as n→ ∞ 

This completes the proof of theorem 2. 
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