THE LOCAL R-DOMINATION NUMBER AND ITS PARAMETER

${ }^{1}$ B K Hemalatha ${ }^{2}$ B K Keerthiga Priyatharsini
${ }^{1}$ Assistant Professor, ${ }^{2}$ Assistant Professor
${ }^{1}$ Department Of Mathematics, ${ }^{2}$ Department Of Mathematics
${ }^{1}$ Anna University ,University College Of Engineering Ramanathapuram,Ramanathapuram-623513,TamilNadu,India, ${ }^{2}$ Anna University ,University College Of Engineering Ramanathapuram,Ramanathapuram-623513.

Abstract

$\boldsymbol{A} \boldsymbol{b} \boldsymbol{s t r a c t}$ - Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple , connected and undirected graph . Let r be a positive integer .A subset S of $\mathrm{V}(\mathrm{G})$ is said to be ar-dominating set if for any vertex $u \varepsilon V-S$, there is a veS such that $\mathrm{d}(u, v) \leq r$. The minimum cardinality of all r-dominating set of G is called r -domination number of G and its cardinality is denoted by $\gamma l_{r}(\mathrm{G})$. We define $\gamma l_{r}(\mathrm{G})=\max \left\{\gamma_{\mathrm{r}}\left(<\mathrm{N}_{\mathrm{r}}(\mathrm{x})>\right): \mathrm{x} \mathrm{\varepsilon V}\right\}$. The number γl_{r} is the local r -domination number of G within a distance r . Also we define $\gamma_{l}(\mathrm{G})=\min \left\{\gamma l_{r}(\mathrm{G}): 1 \leq \mathrm{r} \leq \operatorname{diam}(\mathrm{G})\right\}$. The number $\gamma_{l}(\mathrm{G})$ is called the local r-domination number of the graph G .

Keywords:r-domination number ,r-dominating set,local r-dominating set,local r-domination number.

I.INTRODUCTION

By a graph mean a finite, simple ,connected and undirected graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$, where V denotes its vertex set and E its edge set.Unless otherwise stated ,the graph G has p vertices and q edges.Degree of a vertex v is denoted by $\mathrm{d}(\mathrm{v})$,the maximum degree of a graph G is denoted by $\Delta(\mathrm{G})$. We denote a cycle on p vertices by C_{p}, a path on P vertices by P_{p}, and a complete graph on P vertices by K_{p}. A graph G is connected if any two vertices of G are connected by a path.A maximal connected subgraph of a graph G is called a component of G . The number of component of G is denoted by $\omega(G)$.The component \bar{G} of G is the graph with vertex set V in which two vertices are adjacent if and only if they are not adjacent in G.A tree is connected is acyclic graph.A bipartite (or bigraph)is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.A complete bipartite graph is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set .The complete bipartite graph with partitions of order $\left|\mathrm{V}_{1}\right|=\mathrm{m}$ and $\left|\mathrm{V}_{2}\right|=\mathrm{n}$, is denoted by $\mathrm{K}_{\mathrm{m}, \mathrm{n} \text {. }}$ A star , denoted by $\mathrm{K}_{1, \mathrm{p}-1}$ is a tree with one root vertex and p -1 pendent vertices.A bistar ,denoted by $B(m, n)$ is the graph obtained by joining the root vertices of the stars $K_{1, \mathrm{~m}}$ and $K_{1, n}$.

A subset S of V is called a dominating set of G if every vertex in V -S is adjacent to at least one vertex in S.The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets in G.A dominating set S of a connected graph G is said to be a connected dominating set of G if the induced subgraph <S> is connected.The minimum cardinality taken over all connected dominating set is the connected dominating number and is denoted by γ_{c}.

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple undirected graph . Let $\quad \Delta(\mathrm{G})=\max \{\operatorname{deg}(\mathrm{u}): \mathrm{ucV}(\mathrm{G})\}$ for $\mathrm{x}, \mathrm{y} \mathrm{V}$ V.Let $\delta(G)=\min \{\operatorname{deg}(\mathrm{u}): u \varepsilon \mathrm{~V}(\mathrm{G})\}$ for $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{V}$. The distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is the length of a shortest path in G . The diameter of G is the maximum distance between any two vertices of Gand is denoted by diam(G).

Let r be a positive integer .Let $\mathrm{N}_{\mathrm{r}}(\mathrm{x})=\{y \in V: d(x, y) \leq r\}$ denote the open neighbourhood of $\mathrm{x} \in V$ and its closed neighbourhood is $\mathrm{N}_{\mathrm{r}}[\mathrm{x}]=\mathrm{N}_{\mathrm{r}}(\mathrm{x}) \cup\{x\}$. The r -degree $\operatorname{deg}_{\mathrm{r}}(\mathrm{u})$ of u inG is given by $|N r(u)|$, while $\Delta_{r}(\mathrm{G})$ and $\delta_{r}(\mathrm{G})$ denote the maximum and minimum r - degree among all the vertices of G respectively.
$\Delta_{r}(\mathrm{G})=\max \left\{\operatorname{deg}_{\mathrm{r}}(\mathrm{u}): \mathrm{u} \in \mathrm{V}(\mathrm{G})\right\}$ and $\delta_{r}(\mathrm{G})=\min \left\{\operatorname{deg}_{\mathrm{r}}(\mathrm{u}): \mathrm{u} \in \mathrm{V}(\mathrm{G})\right\}$.A subset S of $\mathrm{V}(\mathrm{G})$ is said to be a rdominating set if for any vertex $u \in \mathrm{~V}-\mathrm{S}$, there is a vertex $\mathrm{v} \in \mathrm{S}$ such that $u v \in E(G)$.The minimum cardinality of all dominating set is called the r -domination number of G and is denoted by $\gamma_{r}(\mathrm{G})$.

DEFINITION

The concept of r-domination was introduced in [1,2].A subset S of $V(G)$ is called a r-dominating set if every vertex $u \in V-S$,there is some vertex v in S which are at a distance $\leq r$.

The minimum cardinality of r -dominating set of G is called as r -domination number of G and is denoted by $\delta_{r}(\mathrm{G})$. We define $\gamma_{l r}(\mathrm{G})=\max \left\{\gamma_{r}<\mathrm{N}_{\mathrm{r}}(\mathrm{x})>: \mathrm{x} \in V\right\}$ where $\mathrm{N}_{\mathrm{r}}(\mathrm{x})=\{\mathrm{y} \in V: \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq r\}$.
The number $\gamma_{l r}(\mathrm{G})$ is called the local r -domination number of a graph G within a distance r . It is clear that local r-domination number is defined for any graph except totally disconnected graph.
$\boldsymbol{E X A M P L E}$:consider the following Butterfly graph.

Therefore

$$
\gamma_{l r}(\mathrm{G})=\left\{\begin{array}{l}
2 \quad \text { if } \quad r=1,2 \\
1 \quad \text { if } \quad r=3
\end{array}\right.
$$

$\boldsymbol{E X A M P L E}$: Consider the Wagner graph.

5
$\mathrm{r}=1$
$\mathrm{N}_{1}(1)=\{2,5,8\}$
$\gamma_{1}\left(\left\langle\mathrm{~N}_{1}(1)\right\rangle\right)=3$
$\mathrm{N}_{1}(2)=\{1,3,6\}$
$\gamma_{1}\left(\left\langle\mathrm{~N}_{1}(2)\right\rangle\right)=3$
$\mathrm{N}_{1}(3)=\{2,4,7\}$
$\gamma_{1}\left(\left\langle\mathrm{~N}_{1}(3)\right\rangle\right)=3$
$\mathrm{N}_{1}(4)=\{3,5,8\}$
$\gamma_{1}\left(<\mathrm{N}_{1}(4)>\right)=3$
$\mathrm{N}_{1}(5)=\{4,6,1\}$
$\gamma_{1}\left(\left\langle\mathrm{~N}_{1}(5)\right\rangle\right)=3$
$\mathrm{N}_{1}(6)=\{2,5,7\}$
$\gamma_{1}\left(\left\langle\mathrm{~N}_{1}(6)\right\rangle\right)=3$
$\mathrm{N}_{1}(7)=\{3,6,8\}$
$\gamma_{1}\left(\left\langle\mathrm{~N}_{1}(7)\right\rangle\right)=3$
$\mathrm{N}_{1}(8)=\{1,7,4\}$
$\gamma_{1}\left(\left\langle\mathrm{~N}_{1}(8)\right\rangle\right)=3$
$\gamma_{l 1}(\mathrm{G})=3$
In wagner graph,
$\gamma_{l r}(\mathrm{G})=\left\{\begin{array}{l}3 \text { if } r=1 \\ 1 \text { if } r=2\end{array}\right.$

DEFINITION

A spanning tree is a subset of a graph G, which has all the vertices covered with minimum possible number of edges .

THEOREM1

Let G be a simple graph and H be a spanning tree with $\mathrm{n} \geq 3$ and if $1 \leq r \leq \operatorname{diam}(G)$ then $\gamma_{l r}(\mathrm{G}) \leq \gamma_{l r}(\mathrm{H})$.

Proof

Let G be a simple graph and H be a spanning tree.
Spanning tree H has all the vertices of G .
$\therefore \gamma_{l r}(\mathrm{G}) \leq \gamma_{l r}(\mathrm{H})$.

RESULT

For any r-regular graph $\gamma_{l r}(\mathrm{G})=1$ if $1 \leq r \leq \operatorname{diam}(G)$.

THEOREM2

Let G be a Hamiltonian graph with $\mathrm{n} \geq 3$ then $1 \leq \gamma_{l r}(\mathrm{G}) \leq 2$ if $1 \leq r \leq \operatorname{diam}(G)$.

Proof

Let G be a Hamiltonian graph and $n \geq 3$.
The path visit each vertex at exactly once.
Let $r \geq 1$ and D be the local r dominating set of G.
Therefore D is the r -dominating set of G .
Since, it has Hamiltonian cycle.
Therefore $\gamma_{l r}(\mathrm{G})$ lies between 1 and 2 .

THEOREM 3

If G is an Eulerian graph with $\mathrm{n} \geq 3$ then $1 \leq \gamma_{l r}(\mathrm{G}) \leq 2$ when $1 \leq r \leq n$.

Proof

Let G be an Eulerian graph .
Therefore G has an Eulerian cycle
\therefore Starting and ending points are same and the trail visits the edge exactly once.
\therefore The local r domination number lies between 1 and 2 .

RESULT AND DISCUSSION :

In this paper, we have found out the local r-domination number for some standard graphs and special types of graphs.some interesting result and theorems are derived.It would be interesting to check the existence of the local r-domination number for some special types of graphs like banana trees, gracefultrees, honeycomb etc.

ACKNOWLEDGMENT

I would like to express my thanks to my family members, friends and staff members those who gave support and encouragement.

REFERENCE:

1.J. Bean Timothy, Michael A. Henning, Henda C, Swart, On the integrity of distance domination in graphs.Australian Journal of Combinatorics, 10(1994),pp. 29-43.
2. Dipti S. Joshi and Sridhar Radhakrishnan, N.Chandrasekharan. The k-neighbor, r-domination problems on interval graphs, European Journal of Operational Research, 79(1994),352-368.
3. Douglas B.West, Introduction to Graph Theory, Phi Learning ,Vol.2,(2009).
4. J.F.Fink and M.S.Jacobson.On n-domination, n-dependence and forbidden subgraphs. Graph Theory and Its Applications to Algorithms and Computer Science, John Wiley and Sons,Inc.(1985),301-312.
5. F. Harary, Graph Theory, Addison-Wesley, Reading Mass(1969).
6. G.Jothilakshmi, A.P.Pushpalatha, S.Suganthi, V.Swaminathan, (k,r)-domination and (k,r)-independent set of a graph, proceedings of the International Conference on Mathematics and Computer Science, Vol.1, ICMCS 2009, pp.223-225.
7. John Adrian Bondy, Murty U.S.R(2009): Graph Theory. . Mahadevan, Selvam Avadayappan, A.Mydeen bibi, T.Subramanian, Complementary Perfect
Triple Connected Domination Number of a Graph,proceedings of International Journal of Engineering Research and Applications(IJERA) ISSN:2248-9622, Vol.2, Issue 5,2012.
9. Odile Favoron, k-domination and k-independence in graphs. Ars Combinatoria, 25C(1998),159-
167.
10. Teresa W. Haynes, Stephen Hedetniemi, Peter Slater (1998): Fundamentals of domination in graphs, Marcel Dekkar, New York.
11.Sampathkumar,E.; Walikar, HB (1979): The connected domination number of a graph, Advanced Topics, Marcel Dekker, New York.

