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Abstract :  The aim of the present study is to dispersion of solute undergoing an irreversible fist-order chemical reaction at the 

bounding walls of a parallel channel. Convection coefficient and dispersion coefficient are influenced by the couple stress 

parameter arising due to suspension in the fluid. The exchange coefficient arises mainly due to the interphase mass transfer and it 

is independent of the solvent fluid velocity. The wall catalyzed reaction also influence the convection and dispersion coefficients. 

The study of solute dispersion may be applied to understand the transport of drug(nutrients) in plasma in blood flow through 

porous medium. The boundary absorption plays an important role in cardiovascular flow. Results reveal that transport coefficients 

are enormously affected by wall absorption. 

________________________________________________________________________________________________________ 

 

I Introduction  

Biomagnetic Fluid Dynamics (BFD) is a relatively new area in fluid dynamics and during the last decades an extensive 

research work has been done on the fluid dynamics of biological fluids in the presence of magnetic field. In biological science, the 

investigation for diffusivity of nutrients, metabolic products, drugs and other solutes are of most important. In many situation 

material mixed in the blood reach to different parts of the body by the process of diffusion. There are a lot of applications of this 

research field in bioengineering and medicine and the research work in this subject is rapidly growing(Carlton et al.,(2001), 

Voltairas et al.,(2002) and Ganguly et al.,(2005)). Particularly, interphase mass transfer plays an important role in physiological 

situations. It is necessary to develop a technique for handling such problems, which involve interphase mass transport. 

Investigations on the blood flow characteristics have been done by Bali and Awasthi(2007). Several authors focused on dispersion 

to understand the transport of nutrients in blood and different artificial devices (Middleman(1972), Lightfoot(1974), 

Cooney(1976), Jayaraman et al.,(1981)). Taylor(1953,1954) studied the dispersion process in Newtonian flow and discussed the 

effective dispersion coefficient with respect to the average speed of the flow, the radius of the tube and molecular diffusion 

coefficient.  

 

Dispersion of a non-uniform initial distribution in time-variable isothermal laminar flow in a tube with a first-order rate 

process at the tube wall is analyzed by Sankarasubramanian and Gill (1973). They studied miscible dispersion in laminar flow in a 

tube in the presence of interfacial transport due to an irreversible first-order reaction at the tube wall by an exact procedure. The 

new concept, namely the exchange coefficients and a general expression are derived showing the time-dependent nature of these 

coefficients. The exchange coefficient reflects the interphase process and it enables to determine the average concentration 

distribution in terms of tabulated functions. The analysis conducted was confined to the case of dispersion in a fully developed 

steady flow. Interphase mass transfer can be applied to physiological problems, where a first-order chemical reaction occurs at the 

tube wall. One such situation is transport of oxygen and nutrients to tissue cells and removal of metabolic waste products from 

tissue cells. It also takes place in pulmonary capillaries, where the carbon dioxide is removed from the blood and oxygen is taken 

up by the blood. 

 

During the last decade broad research work has been done on the fluid dynamics of biological fluids under the influence 

of magnetic field. The artificial organs implanted or extracorporeal, designed utilizing metals cause various forms of blood 

damage due to lack of biocompatibility of smooth(rough) surfaces. It is hazardous because they produce stress leading to the 

force. This force eventually damages the erythrocytes (red blood cell) and leads to the loss of hemoglobin which is known as 

haemolysis. One of the most important reason for the blood damages may also be due to physiological and chemical reasons. 

Korchevskii et al.,(1965) studied the influence of magnetic field in human system with a motivation to regulate the movement of 

blood. Rudraiah et al.,(1988) described that self generated electric field reduces the concentration of erythrocytes and hence 

increase dispersion. Higashi et al.,(1993), Haik et al.,(2001) and Tzirtzilakis (2005) investigated the flow of biomagnetic fluid 

under the action of an applied magnetic field. 
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The objective of this paper is to consider the effects of couple stress and magnetic field on the unsteady convective 

diffusion with interphase mass transfer using the generalized dispersion model of Sankarasubramanian and Gill (1973). 

Convection coefficient 1K  and dispersion coefficient 2K  are influenced by the couple stress parameter arising due to suspension 

in the fluid, magnetic field and porous parameter. The exchange coefficient 0K  arises mainly due to the interphase mass transfer 

and it is independent of the solvent fluid velocity. The wall catalyzed reaction also influence the convection and dispersion 

coefficients. The study of solute dispersion may be applied to understand the transport of drug(nutrients) in blood flow through 

the porous medium. The boundary absorption plays an important role in cardiovascular flow. Interphase mass transfer occurs at 

the wall of permeable blood vessels. 

 

II Mathematical Formulation 

The blood flow is considered to be a steady, fully developed (unidirectional), incompressible and homogeneous fluid. 

The fluid is bounded by porous layers separated by a distance 2ℎ. Flow region may be classified into two sub-regions: fluid film 

and porous tissue (Figure 1). 

 
 

Figure 1: Physical configuration 

In deriving the governing equations and the corresponding boundary conditions, the following assumptions are made: 

(i) The induced magnetic field and the electric field produced by the motion of blood are negligible (since blood has low magnetic 

Reynolds number) 

(ii) A uniform magnetic field B0 is applied in the y−direction to the flow of blood. 

(iii) The solute diffuses in a fully developed flow through the porous medium in channel bounded by porous beds. 

(iv) A slug is introduced for concentration C which is a function of time (t) and coordinates x and y . 

Using above assumption the governing equations for incompressible flow of non-Newtonian fluid in cartesian coordinates are: 

Region 1: Fluid Film Region 
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Region 2:Porous Tissue Region 
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The boundary conditions on the velocity are, 
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The couple stress conditions, 
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The initial and boundary conditions on concentration 

With interphase mass transfer 

The initial distribution assumed to be in a variable separable form given by 
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As the amount of solute in the system is finite, 
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where u is the x component of velocity, 
*p  is the pressure,   is the viscosity of the fluid,   is the couple stress parameter, B0 

is the applied magnetic field, _0 is the electrical conductivity, t is the time, D is the molecular diffusivity. Equation (4) is the 

modified Darcy equation, modified in the sense of incompressible couple stress parameter _1 in to the Darcy equation, k is the 

permeability of the porous medium and up is the Darcy velocity, _ is the slip parameter, C0 is the reference concentration and Ks 

is the reaction rate constant catalyzed by the walls. Equations (6) and (7) are Beavers and Joseph(BJ)(1967) slip condition at the 

lower and upper permeable surfaces. Equation (8) specifies the vanishing of the couple stress. 

Introducing the non-dimensional quantities 
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Equations  (1) to  (5) in non-dimensional form are 

Region 1:Fluid Film Region 
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we define the axial coordinate moving with the average velocity of flow as 


 uxx 1 which is in dimensionless form 
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Region 2: Porous Tissue Region 
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The initial and boundary conditions (6) to (11) in dimensionless form
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III Method of solution 

3.1 Velocity distribution 

The solution to equation (12), satisfying the boundary conditions (16) to (18), 

we obtain the velocity of blood as
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where C1 ,C2 ,C3 and C4 are constants given in Appendix 1. 

The normalized axial components of velocity is 
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Generalized Dispersion model 

 

The solution of (14) is obtained using the generalized dispersion model of Gill and Sankarasubramanian(1970) formulated as a 

series expansion in the form 
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 The exchange coefficient )(0 K  accounts for the non-zero solute flux at the channel wall, and negative sign indicates the 

depletion of solute in the system with time caused by the irreversible reaction, which occurs at the channel wall. The presence of 

non-zero solute flux at the walls of the channel, also affects the higher order Ki due to the explicit appearance of  )1,(1 


f
 in 

equation (30). Equation (30) can be truncated after the term involving 2K without causing serious error, because ,43 , KK , etc. 

become negligibly small compared to .2K  

The resulting model for the mean concentration is 
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Substituting (25) in (14) and using the generalized dispersion model of Gill and Sankarasubramanian in the resulting equation, we 

get the equation for kf  from the differential equations of the form
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Since m  is chosen to satisfy the initial and boundary conditions on  from equations (19) to (20) conditions on the kf  
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To evaluate sK i '  , we need to know the  sf k '  ’s which are obtained by solving (32) for sf k '  subject to the boundary 

conditions, 

The function 0f  and the exchange coefficient 0K
 
are independent of the velocity and can be solved easily. Substituting k = 0 in 

equation (32) we get the differential equation for 0f  as 
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For i = 0 in (30) we have 

)38(
2

1
)( 00

1

1

0

0 Kf
f

K 


















A simultaneous solution has to be obtained from these two equations (37) and (38) with an initial condition for 0f  using (26) by 

taking 0  in that equation to get 
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Left hand side of (40) is a function of   only and the right hand side is a function of both   and  . Thus the initial 

concentration distribution is a separable function of   and  . Substituting equation (34) and (35) into equation (40), 

we get 
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The solution of the reaction diffusion equation (37) with these conditions are formulated as 
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from which it follows that ),(0 g  has to satisfy 
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The solution of (43) subject to conditions (44) to (46) is 
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From(42), it follows that 
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The first ten roots of the transcendental equation (48) are obtained using MATHEMATICA 8.0 and are given in Table 1. These 

ten roots ensure the convergence of the series in the expansions of  0f  and 0K . Having obtained 0f , 

we get 0K  from (43) in the form 
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Here )(0 K  is independent of velocity distribution. 

As ,  we get the asymptotic solution for 0K  from (51) as 

)52()( 2

00 K

 

where 0  is the first root of the equation (48). Physically, this represents first order chemical reaction coefficient to obtain 

)(0 K . We get )(1 K , from (30) (with i = 1 ) knowing ),(0 f  and  ),(1 f  . Likewise, ),....(),( 32  KK , 
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require the knowledge of  ,1010 ,,, ffKK and 2f   . Equation (50) in the limit  ,  reduces to 
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0 
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 Cos

Sin
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Then we find 2211 , KandfKf . For asymptotically long times, i.e., ,  equation (30) and (32) give 

sfandsK ki ''  as 
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The sf k '  must satisfy the conditions (26) and this permits the eigen function expansion in the form of 
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Substituting (56) in (55) and multiplying the resulting equation by )cos(  j  and integrating with respect to   from -1 to 1, 

gives 
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Multiplying by )(  jCos  and integrating with respect to  , we get 
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Where 
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The first expansion coefficient kB ,0  in equation (56) using conditions(33) to (36) can be expressed in terms of kjB , (j = 1 to 9) 

as, (Using the boundary condition )0),( 0
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Further, from (52) and (56) we find that 
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Substituting i = 1 in (54) and using (58), (59) and (61) in the resulting equation, 

we get 
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Substituting i = 2 in (54) and using (57), (58) and (61) in the resulting equation, 

we get 
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Using the asymptotic coefficients )(),(),( 210  KandKK , in (29), we determine the mean concentration distribution 

as a function of  ,  and the parameters a and  . 

The initial condition for solving(29) can be obtained from (19) by taking the cross-sectional average. Making long time 

evaluations of the coefficients, its effect is independent of _m on the initial concentration distribution the solution of (29) with 

asymptotic coefficients can be written as 
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IV Results and Discussion 

Dispersion of solute in a couple stress fluid(blood) flow through a porous medium in rectangular channel bounded by 

porous beds with effects of magnetic field and heterogeneous chemical reaction are discussed. The walls of the channel act as 

catalysts to the reaction.  

The most dominant dispersion coefficient 
2

2 )(  PeK   , convection coefficient 1K  and mean concentration m

are computed for various values of Hartmann number (M = 0.5, 1, 1.5) , couple stress parameter a = (5, 10, 20), and porous 

parameter )300,200,100(  and reaction rate parameter )10,1,10( 22  for fixed values ,1.0,019.0   s

10.0,100  Pe  using MATHEMATICA 8.0 are displayed graphically in Figures 2 to 12 . The expression for absorption 

coefficient )(0  K  are numerically evaluated using equation (52) and absorption coefficient )(0  K  with   is shown in 

Figure 2 . It is evident that the )(0  K  increases with an increase in the wall reaction parameter   but it is without affected 

by Hartmann number, porous parameter and the couple stress parameter. If the absorption parameter takes very large values 

)100(    the reaction at the wall consumes very rapidly than it can be supplied by molecular diffusion. Thus, there is more 

absorption of solutes at the wall in an annulus compared to the tubular flow. 

Figure 3 to 8 illustrates that the variation of convection and dispersion coefficient drop with increasing the range of wall 

reaction parameter  . The expression for convection coefficient )(1 K  are numerically evaluated using equation (62) and are 

shown in Figures 3 and 5 for various values of the Hartmann number(M) and porous parameter   with wall reaction parameter 

 .From both the figures, it is observed that the increase in Hartmann number and porous parameter decreases the convection 

dispersion coefficient. Figure 4 shows that convection coefficient increases with an increase in couple stress parameter. 

The expression for dispersion coefficient 
2

2 )(  PeK   are numerically evaluated using equation (63) and are shown 

in Figures 6 and 7 for different values of the Hartmann number and couple stress parameter with wall reaction parameter. From 

both the figures, it is observed that the increase in Hartmann number and couple stress parameter decreases the axial dispersion 

coefficient. Figure 8 shows that dispersion coefficient increases with an increase in couple stress parameter. This result is useful 

in understanding the causes for haemolysis which in turn useful in the design of an artificial organ. In this figure, the results 

  and a  corresponds to those given by Rudraiah et al.,(1986). This is advantageous in maintaining the laminar 

flow. 

Figures 9 to 11 depict the mean concentration m  with m  for different values of M, a and _ . Figures 9 and 10 observe 

that m  increases with increasing Hartmann number and couple stress parameter. Figure 11 shows that decrease in m  
with 

increasing the value of   for wall catalyzed reaction. This information is also useful in understanding the control of haemolysis. 

In Figure 12, we have plotted the mean concentration distribution m  against   for two values of the reaction rate parameter  . 

The variation clearly show that the peak of the distribution decreases as the wall reaction parameter   increases, which is mainly 

due to the increase of transverse transport of the solute. It is also observed that in all the cases the spread of the distribution 

starts at the same time but ends at an earlier time as   increases. This is because of the decrease in the magnitude of the mean 

concentration with the increased _ (Shashikala and Ranganatha(2008)). 
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The above results are relevant to understand several physiological processes such as dispersion of drugs and nutrients in 

the human circulatory system. This also has applications in artificial blood such as blood oxygenators. It is known that the blood 

flow in the human circulatory system is affected by several complexities that arise due to the elastic properties of the arterial wall, 

branching and curvature pulsatile flow, etc. Besides the influence of these complexities on the transfer of any passive species in 

blood stream, the non Newtonian character of the blood also plays a vital role on the transport (Ramana and Sarojamma(2012b)). 

 

V Conclusion 

In bioengineering problems, particularly in the mechanism of controlling haemolysis , the assumption of capillary 

bounded by rigid walls is unrealistic. There is transport of oxygen, proteins and other nutrients from capillaries to the permeable 

tissue. Therefore, the study involving the control of haemolysis it is important that the effect of couple stress, magnetic field and 

slip at the porous layer with interphase mass transfer have to be considered. Generalized model considering the solute dispersion 

in a non-Newtonian fluid with interphase mass transfer; as interfacial transport tends to zero )0(  , it reduce to that of no wall 

reaction. 

The dispersion coefficient decreases with wall catalyzed. Apart from the above biomechanical applications of this study, certain 

general conclusion of a mathematical nature can also be made. They are 

(i) The couple stresses are valid only for small value of ′a′ and the present results reduce to Newtonian fluid. 

(ii) Taylor’s dispersion model form a particular case of the generalized dispersion model for asymptotic values of  . In other 

words, the generalized dispersion model reduces to Taylor’s dispersion model asymptotically. 

 

 

Figure 2: Variation of absorption coefficient 0K  versus reaction rate parameter   

 

Figure 3: Variation of convection coefficient 1K  versus   for different values of M 
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Figure 4: Variation of convection coefficient 1K  versus   for different values of a 

 

Figure 5: Variation of convection coefficient 1K  versus   for different values of   

 

Figure 6: Variation of 
2

2 )(  PeK   versus   for different values of M 

http://www.jetir.org/


© 2019 JETIR May 2019, Volume 6, Issue 5                                                  www.jetir.org  (ISSN-2349-5162)  
 

JETIR1905958 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 435 
 

 

Figure 7: Variation of 
2

2 )(  PeK   versus   for different values of a 

 

Figure 8: Variation of 
2

2 )(  PeK   versus   for different values of   

 

Figure 9: Variation of mean concentration m  versus   for different values of M 
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Figure 10: Variation of mean concentration m  versus   for different values of a 

 

Figure 11: Variation of mean concentration m  versus   for different values of   

 
 

Figure 12: Variation of mean concentration m  versus   for different values of   

 

 

 

 

 

 

 

 

Table 1 Roots of the equation  nn tan  
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