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Abstract: 

 Analysis of ecological data is complex because the data structure in any ecological set up is in itself 

complex. In many cases, the normality assumption is often violated and as such fitting the normal linear 

models to ecological data is not at all the usual way. There are variety of other models which are 

conflicting in themselves and so choosing an appropriate one is another point of discussion. In this paper, 

the abundance of earthworm species is modelled through various soil and environmental characteristics in 

three subtropical forest ecosystems of Manipur, India. Earthworm count is observed in Mixed reserved 

forest, Disturbed forest and Plantation forest ecosystems in six different locations of each observation site 

at a soil depth of ten cm. The count of species of a particular type of earthworm observed during the twelve 

months of the year is regressed on 9 soil characteristics. One of the crucial challenges which ecologists 

often encounter in dealing with species count data is its inherent complexity arising out of sampling 

procedure which is further complicated by the presence of excess number of zeroes in the dataset.  When the 

frequency of zeroes is very large and do not readily fit into any of standard distributions mainly because of 

skewness and over-dispersion, the dataset is referred to as zero inflated. Starting with the Standard Poisson 

model, we fitted four other different models viz. quasi-Poisson, Zero-inflated Poisson, Negative Binomial 

and Zero-inflated Negative binomial models. The appropriateness of the models are checked using AIC, 

BIC and Vuong test. The appropriateness of the models depends on the particular species type and type of 

forest.  
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1. Introduction: 

 

The field of ecological data modelling has grown amazingly complex over the years. One of the greatest challenges in 

modelling ecological data by way of learning statistics is to figure out how the various methods relate to each other and 

determining which method is most appropriate for any particular problem. There are a number of statistical methods available to 

ecologists which are derived and available in the literature as a consequence of the fact that ecological data is complex. However, 

no single method can accommodate the myriad problems we encounter with ecological data. Thus, we have to look for various 

methods available and derive a meaningful model to choose, while seeking for an appropriate analysis. 

 

 
In most ecosystems, both in natural and plantation forest grasslands and agro-ecosystem, earthworms represent a major 

portion (>80%) of the soil invertebrate biomass and involve in the process of soil formation and maintenance of soil fertility. Soil 

earthworm abundance is a concern for the ecologists in activities such as agriculture, forestry and environmental monitoring. 

However, the complexity and diversity of soil animals and the habitats in which they live pose unique challenges. Distribution 

and abundance of earthworm species like other soil animals are governed by several environmental factors such as temperature, 

moisture, soil pH, soil porosity, soil bulk density and available organic matter etc. The number of species in a given earthworm 

community, which is the simplest measure of species diversity range from 1 to 15 species (Edwards and Bohlen, 1996). Apart 

from the various soil and environmental factors, the diversity of soil animals depends on the organic resources of the locality as 

well as its history of land use and soil disturbance. Earthworms perform several beneficial functions which include decomposition 

of organic matters that helps in increasing soil nutrients, increase air water filtration, soil aggregation, increase the availability of 

plant nutrients, worn cast as biofertilizers etc.  
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Recent studies have revealed that soil animal counts exhibit two features: a substantial proportion of the values are zero’s 

and the remainder have a skewed distribution (Sileshi and Mafongoya, 2006a; Sileshi and Mafongoya, 2007). When the 

frequency of zeroes is very large and do not readily fit to any of standard distributions, the dataset is referred to as zero inflated 

(Lambert, 1992; Martin et al.,2005). In earthworm count data, some species which are rare in different soil types shows a large 

number of zero counts during the unfavourable seasons. These zeros are referred to as structural 0’s which are true zeroes. 
Sampling zeroes, often referred to as false zeroes (Mackenzie et al. 2002) occur when the species count present at the time of 

sampling is not detected by the observer. Another issue in count of species data occur when some sampling points show very 

large counts. This happens when a nest or foraging party is encountered (Jones et al. 2005). Density estimates can therefore have 

high variance, making it difficult to compare statistically significant differences among sites, seasons, species types etc. Zero 

inflated datasets are often accompanied with the problem of overdispersion, a case where the variance is larger than the mean 

beyond the expected limit. Overdispersion creates problem with ordinary statistical inference by violating basic assumption 

implicit in standard distribution (Martin et, al., 2005). Overdispersion leads to underestimation of std. error of regression 

parameters, Confidence Intervals and p-values. 

The most common analysis used for soil animal counts are non-parametric tests or log-normal least-square regression, 

e.g. ANOVA. Both the methods do not take care of the problem of overdispersion arising out due to excess zeros in the dataset. 

Thus, the analysis of ecological data are in general of a complex nature as the data is very complex in itself and often data do not 
support only one model as clearly best (Dayton, 2003; Johnson and Omland, 2004). When testing differences among sites, or 

other treatment effects, the assumptions made on the response variable can lead to biased inferences. This arises the issue of 

comparing models to assess which ones are adequate for the data and which ones could be chosen for interpretation and 

prediction or subsequent use. The present study aims at developing models for soil earthworm counts and examine their adequacy 

by comparing among themselves and suggest appropriate methods for abundance estimation. 

2. Methods and Materials 

The data used in this study were collected from three sub-tropical forest ecosystems of Manipur, India (Sharon Haokip, 

2014), to study abundance of different earthworm species and their diversity. We designate site 1: as Mixed reserved protected 

forest ecosystem which are protected from various biotic interference; site 2: Disturbed forest ecosystem dominated by oak and 

sustained to frequent biotic interference, and site 3: Oak dominated plantation forest ecosystems developed by men. The three 

forest ecosystem are (1) Mix reserve sub-tropical forest ecosystem located at Koirengei (240 52′51.36′′ North latitude and 

93054′ 49 ⋅ 75′′ East longitude and altitude 800 – 917 m above MSL); (2) Oak dominated Langol Hills 

(24052151.6𝑁 𝑎𝑛𝑑 93055′26.59′′𝐸 𝑎𝑛𝑑 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 797 −  848 𝑚  𝑎𝑏𝑜𝑣𝑒 𝑀𝑆𝐿 (3) Managed oak plantation Forest (valley 

area) at Mantripukhri (24052′ 52 ⋅ 9′′𝑁, 93056′0 ⋅ 16′′𝐸 and altitude of 786m above MSL). In all the three sites, 6 locations were 

identified at least 6 feet apart between the locations for sampling counts. At each location, 3 different soil depths 10, 20 and 30 

cm are observed for earthworm counts. Sampling was done during January to December in 2013-14; once in every month. The 

sampling period constitutes three seasons viz. Rainy season from May to August, Dry Season from September to October and 

March to April whereas winter season covers from November to February. Altogether, there are 12×6×3×3=648 sampling points. 

In site 1, 12 different species were detected, whereas in site 2 only 5 different species are detected and in site 3, only 4 different 

species are detected. During sampling, data on soil characteristics such as soil temperature, Soil Moisture, soil pH, Porosity, bulk 

density, Carbon(C), N (Nitrogen) , P(Phosphorous)  are recorded at each sampling points. 

2.1 Modelling Strategies 

To begin with we generally think of a normal linear regression model to any given dataset. The ordinary least square 

regression (OLS) assumes that the probabilistic model of the original data, suitably transformed could well be assumed to be 

normal.  However, soil animal count data generally do not follow a normal distribution thereby the use of OLS regression is 

prohibited. We have tested our data on different species type using the Shapiro-Wiik’s normality test as well as graphical test and 
no evidence of normality is observed. The log transformed data also do not improve to qualify for normality assumption. 

   An alternative and more appropriate model when the response variable is a count data would be Poisson regression 

model which is generalisation of general linear model. The response variable Y in a Poisson regression takes the non- negative 

integer values 0,1,2,3,….. thereby it resembles the logistic regression except for the error component (Mc Culdagh P and J. 

Nelder,1989). 

Theoretically, the parameter µ of Poisson distribution which is often referred to as incidence rate is expressed as 

 

µ= t exp (β0+β1x1+…+βkxk)   = t exp∑βijxij                                           (1) 

Where X1,X2,..Xk are the regressors and regression coefficient β1… βk are to be estimated using the data and t is specified 

constant indicating the time of exposure, and t is time. 

Thus, in eqn. (1) incidence rate µ is related to regressors by a link function which is the log. 
       Using the notation in eqn. (1), the Poisson regression model for an observation i is written as 

   P(Yi=yi)= = 
ⅇ−𝜇𝑖𝑡𝑖(𝜇𝑖𝑡𝑖)𝑦𝑖

𝑦𝑖!
                       (2) 

Where µi=tiexp (x/β)                               (3) 

The coefficient β’s are estimated using the method of maximum likelihood. 

The Poisson model involves explicitly modelling the distribution of the count assuming that the variance σ2 is 

proportional to the mean (µ) say σ2=Φµ, where Φ is a dispersion parameter (Cameron and Trivedi,1998). Parameter of standard 

Poisson regression model for count of different soil earthworm species are estimated using the glm function in R by setting 

family=Poisson. The glm function with family=Poisson allows the mean of the population (µ) to depend on a linear predictor 

through a nonlinear function and permit the probability distribution to be a member of exponential family. In the present study the 
count of the earthworm species (Yi) is assumed to be distributed as Poisson whose parameter depends on a vector of linear 

predictors (Xi) (such as soil temperature, soil moisture, densities etc.) through a log-linear link function. 
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The earthworm counts (Yi) in the 3 sites are fitted separately with the soil variables. Only the type 1 species (Drawida 

Sp) is being considered in the beginning standard Poisson model. We use the untransformed original observed data. Although 

Poisson regression is recommended for fitting count data, it often does not fit overdispersed data very well. We examine the 

goodness of fit using graphical displays which implies that we should not accept the above fit in a reasonable way. The reason for 

lack of a well fitted model of a Poisson regression arise with overdispersed data. 
The present data contains a good no. of zero counts which may arise from seasonal variation or otherwise sampling 

zeroes. The presence of large proportion of 0’s in the data results in overdispersion. In modelling overdispersed count data, quasi- 

likelihood adjustment are normally done when a reasonable lack of fit to the standard Poisson is found (McCullagh and 

Neider,1989). In the quasi-likelihood method, we introduced a variance inflation factor estimated by Maximum likelihood. 

However, the introduction of the inflation factor does not arise a new probability distribution. It adjusts the standard error and 

provide wider confidence intervals and P- values larger than what is obtained under the standard Poisson model. In the present 

study we call the quasi-Poisson model as Poisson with corrected for overdispersion (PCO). The fitted model for species type 1 

shows reasonably acceptable criteria. 

The PCO produces an appropriate inference only if the overdispersion is moderate. The count data for species type1 

show a reasonably good fit for PCO as the magnitude of overdispersion is moderate. However, for the other types of species viz 

type 2, 3 and 4 the no. of zero counts are very high resulting in heavily overdispersed data. The frequencies of zeroes are shown 
for four types of species in Table 1. Thus to fit data with highly overdispersed data we have to look for other options such as zero-

inflated Poisson, Negative Binomial and Zero inflated Negative Binomial. We have fitted for the present data for all possible 

models mentioned above and are compared using the Akaike Information criteria(AIK) and Bayesian information criteria(BIC). 

Comparison of Generalized Poisson, Poisson corrected for overdispersion (PCO), Zero inflated Poisson (ZIP), Negative 

Binomial distribution (NBD) and Zero inflated negative binomial (ZINB) null model (without covariates) and full models (with 

covariate) for first four earthworm species types in three forest ecosystems using AIC (Akaike Information Criteria) and 

BIC(Bayesian Information Criteria) are shown in Tables 2A – 2C. 

3. Results and Discussion 

 In Table 2A the AIC for null model and full model (With covariates) are compared in Reserved forest. In the null model 

the ZINB provides a better description of the earthworm count data with Species type 1 and type 4 whereas for species type2 and 

type 3 ZIP and NBD respectively give better description of the data. In the full model ZINB is better for species type 1 and type 4 

whereas ZIP is better for Species type2 and type 3. In both the cases the standard Poisson cannot give a better model for all the 
species type.  

In Table 2B the AIC for null model and full model (With covariates) are compared in Disturbed forest. ZINB is better in the null 

model for Species type 1 and type 4 whereas NBD and ZIP respectively give better fit for species type 2 and type 3. As expected 

the standard Poisson GLP model is no good here also. 

In Table 2C the AIC for null model and full model (With covariates) are compared in Plantation forest. In this forest type, ZINB 

is better than all other models for both null and full models in all the species types except species type 1 in null model.  

 While comparing the GLP and ZIP the later is always better in all the sites for all species types in both the null and full 

models. But for NBD and ZINB both the models are competing closely in site 1 and site 2. In the site 1 and 2 ZINB is better for 

species types 1 and 4 and NBD is better for species types 2 and 3 in the null model. In the full model in site 1, ZINB is better than 

NBD for species types 1, 2 and 4 and in site 2, ZINB is always better than NBD for all species types. In site 3 ZINB is better in 

almost all cases except the one in species type 1 null model. The AICs for PCO models are not obtained as the output of the fitted 
models in R and thus are not shown. The BIC data are not shown as the results are almost the same as AIC results. 

 

In our earlier paper we have attempted to model the species count through nine soil characteristics in each of the sites 

regardless of the species type. The soil characteristics that could influence the count of species include soil temperature, moisture, 

porosity, bulk density, pH, carbon, nitrogen, potassium and phosphorous. We pick up those soil variables in each site which are 

significant in the quasi-Poisson model here to accommodate them into different models. AIC and BIC criteria is again used to 

examine the appropriateness of the different models in the three sites for the first four earthworm species. Table 4A, 4B and 4C 

presents the AIC values for four different models viz. GLP, ZIP, NBD and ZINB for comparison among the models. The AIC for 

quasi-Poisson model or PCO cannot be computed in R. The BIC values are not shown. 

The Vuong non-nested test is based on a comparison of the predicted probabilities of two models that do not nest. 

Examples include comparisons of zero-inflated count models with their non-zero-inflated analogs (e.g., zero-inflated Poisson 

versus ordinary Poisson, or zero-inflated negative-binomial versus ordinary negative-binomial). A large, positive test statistic 
provides evidence of the superiority of model 1 over model 2, while a large, negative test statistic is evidence of the superiority of 

model 2 over model 1.  

4. Conclusion 

The present dataset on count of species of earthworm significantly deviated from normal linear regression assumption 

and the logarithmic transformation of the data did not achieve the desired result. Researchers often transform the data or use non-

parametric tests to analyse count data. However, these procedures have their own limitations. Alternative models are being 

employed here and comparisons are made among themselves in order to find appropriate models in specific sites and species. In 

most of the cases, the NBD and ZINB models perform better than the standard Poisson and ZIP models. The PCO model here 

cannot accommodate the excess zeroes in all types of earthworm species as number of zeroes is large. We do not include the PCO 

model here in the comparison.  

We apply the vuong test for comparing goodness fit models for non-nested models (Table 4A, 4B, 4C). We compare 
GLP with ZIP and NBD with ZINB. In that the ZIP is significantly better than the standard Poisson GLP and ZINB is 

significantly better than NBD in both the null and full models in site 1. However, in site 2, though the ZIP model is still better 

than the GLP model in both the models, the NBD and ZINB are equally good in the null model as indicated by insignificant p-

values for raw and AIC. In Site 3, in both the models ZIP is better than GLP and ZINB is better than NBD.  
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TABLES 

Table 1: Frequency of zeroes in counts of earthworm species 

Forest Type Drawida sp 

(Type-1), 

Drawida Japouica 

(Type-2), 

Drawida nepalensis 

(Type-3), 

Eutyphoeus sp. 

(type 4) 

Site1 Reserved Forest 39% 66% 56% 47% 

Site 2: Disturbed Forest 53% 68% 69% 69% 

Site 3 Plantation Forest 50% 51% 56% 58% 

 

Table 2A: Comparing Models using AIC in Site 1(Reserved Forest) 

Forest 

type 

Animal 

Species 

Null Model  Full Model (Species count ~ Season 

+ depth) 

Site-1 

Reserved 

Forest 

 GLP ZIP NBD ZINB  GLP ZIP NBD ZINB 

Type-1 5118 2850 1363 1338  2115 1564 1245 1164 

Type-2 455 437 438 439  396 393 399 395 

Type-3 602 565 556 557  488 483 490 492 

 Type-4 4408 2206 1203 1174  1712 1174 1077 963 
GLP: Generalized Poisson, PCO: Poisson corrected for overdispersion, ZIP: Zero inflated Poisson, NBD: Negative binomial, 

ZINB: Zero inflated negative binomial 

Table 2B: Comparing Models using AIC in Site 2(Disturbed Forest) 

Forest 

type 

Animal 

Species 

Null Model  Full Model (Species count ~ 

Season + depth) 

Site-2 

Disturbed 

Forest 

 GLP ZIP NBD ZINB  GLP ZIP NBD ZINB 

Type-1 2834 1493 987 974  829 742 771 748 

Type-2 2225 1196 683 685  1351 666 639 624 

Type-3 409 395 396 397  378 366 384 368 

 Type-4 3352 1156 3353 771  1296 801 703 636 

 

Table 2C: Comparing Models using AIC in Site 3(Plantation Forest) 

 Animal 

Specie 

Null Model  Full Model (Species count ~ Season 

+ depth) 

Site-3 

Plantation 

forest 

 GLP ZIP NBD ZINB  GLP ZIP NBD ZINB 

Type-1 1992 1368 885 887  985 878 752 742 

Type-2 6415 3344 1164 1154  2181 1815 1023 974 

Type-3 2423 1226 941 908  1014 837 790 726 

 Type-4 4033 1479 4034 979  1887 1078 948 837 

 

Table 3: Vuong test for non nested models to compare goodness fit among  

different models for count of earthworm species 

Table 3A 
Site 1: 

Reserved 

Forest 

Null Model Full Model 

p-value p-value 

 

 

Raw AIC 

Corrected 

BIC 

Corrected 

Raw AIC 

Corrected 

BIC 

Corrected 

GLP Vs ZIP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

NBD Vs 

ZINB 

0.008 <0.001 <0.001 <0.001 0.001 0.04 
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Table 3B 

Site 2: 

Disturbed 

Forest 

Null Model Full Model 

p-value p-value 

 

 

Raw AIC 

Corrected 

BIC 

Corrected 

Raw AIC 

Corrected 

BIC 

Corrected 

GLP Vs ZIP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

NBD Vs 

ZINB 

0.38 0.06 <0.001 <0.001 <0.001 0.003 

 

Table 3C 

Site 3: 

Plantation 

Forest 

Null Model Full Model 

p-value p-value 

 

 

Raw AIC 

Corrected 

BIC 

Corrected 

Raw AIC 

Corrected 

BIC 

Corrected 

GLP Vs ZIP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

NBD Vs 

ZINB 

0.0003 0.0007 0.003 <0.001 <0.001 <0.001 

 

 

 

 

 

Table 4A: Comparison of different models in Site1 using AIC 

Forest type Animal 
Species 

Full Model (Species count ~ Temp + 
moist+ pH + carbon + nitrogen) 

Site-1 

Reserved 

forest 

 GLP ZIP NBD ZINB 

Type-1 3309 1709 1337 1214 

Type-2 409 400 407 402 

Type-3 525 497 522 499 

 Type-4 2818 1283 1167 1032 

 

 

 

Table 4B: Comparison of different models in Site2 using AIC 

Forest 

type 

Animal 

Species 

Full Model (Species count ~ Temp + 

moist+ + nitrogen) 

Site-2 
Disturbed 

forest 

 GLP ZIP NBD ZINB 

Type-1 1885 925 946 854 

Type-2 1430 745 649 622 

Type-3 403 389 395 389 

Type-4 1815 726 757 656 

 

Table 4C: Comparison of different models in Site3 using AIC 

Forest 

type 

Animal 

Species 

Full Model (Species count ~ Temp + 

moist+ Soil porosity+ pH+ carbon + p) 

Site-3 
Plantation 

forest 

 GLP ZIP NBD ZINB 

Type-1 1018 841 811 788 

Type-2 3177 1745 1095 980 

Type-3 1283 879 872 776 

Type-4 2612 1156 1045 895 
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