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Abstract :  In this paper, a new class of sets J-closed sets is initiated in topological spaces. The properties and relationships with 

other g-closed sets are analysed. Some important characterizations are obtained.  

IndexTerms - J-closed set, η *-open set, regular*-open set, g-closed set, g-closed set. 

  

I.Introduction 

 
         In 1937, Stone [24] introduced regular open sets and used it to define the semi-regularization of a 

topological space.In 1968, Velicko [28] proposed -open sets which are stronger than open sets. 

Levine[14]has brought generalized closed sets in 1970. Dunham [7] has established a generalized closure 

using Levine’s generalized closed sets as Cl*.In 2016,Annalakshmi [21] has instituted regular*-open sets 

using Cl*.In 2018,I have introduced a class of new sets namely η *-open sets [16]  which is placed 

between the classes of δ-Open set and open set. Its basic properties are procured and the concepts of       

η *-cluster point,η *-adherent point and a η *-derived set are introduced and studied in the same paper. In 

this paper, J-closed sets are introduced using η *-open sets  and their features are studied. 

           For this paper some basic definitions and results in topological spaces are needed which are given in 

section II.Throughout this paper, (Y, ) will always denote the topological space. 

 

II.Preliminaries 

 
Definition 2.1 Let (Y, ) be a topological space. If D is a non-empty subset of (Y, ) then the intersection of 

all closed sets containing D is called closure of D and is denoted by Cl(D).The union of all open sets 

contained in D is called interior of D and is denoted by int(D). 

Definition 2.2 If A is a subset of a space (Y, ),  

(i) The generalized closure of D [7] is defined as the intersection of all g-closed sets in Y containing D and 

is denoted by Cl*(D).  

(ii) The generalized interior of D [7] is defined as the union of all g-open sets in Y contained in D and is 

denoted by int*(D).  

Definition 2.3  Let (Y, ) be a topological space. A subset D of (Y, ) is called  

1) regular closed set [24] if D = Cl(int(D)) 

2) semi-closed set [13] if int(Cl(D))  D 

3) -closed set [19] if Cl(int(Cl(D))  D 

4) pre-closed set [15] if Cl(int(D))  D 

5) semi pre-closed set [1] if int(Cl(int(D)))  D 

6) -closed set [29] if it is the finite union of regular closed sets. 

    The complements of the above mentioned sets are called regular open ,semi-open, -open, pre-open and 

semi pre-open, -open sets respectively. 

 The intersection of all regular closed (resp. semi-closed,-closed, pre-closed and semi pre-closed ) 

subsets of (Y, ) containing D is called the regular closure (resp.semi-closure,   -closure, pre-closure 

and semi pre-closure, -closure) of D and is denoted by rCl(D)(resp.sCl(D),Cl(D), pCl(D) and 

spCl(D), Cl(D)). A subset D of (Y, ) is called clopen if it is both open and closed in (Y, ). 
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Definition 2.4 [28]  The -interior of a subset D of Y is the union of all regular open sets of Y contained in 

D and is denoted by The subset D is called -open if i.e. a set is -open if it is the 

union of regular open sets, the complement of -open is called -closed. Alternatively, a set D  Y is      

-closed if D = Cl , where Cl  is the intersection of all regular closed sets of (Y, )containing D. 

Definition 2.5 [21]   Let (Y, ) be a topological space. A subset D of (Y, ) is called regular*-open            

(or r*-open) if D = int(Cl*(D)).The complement of regular*-open set is called regular*-closed set. The 

union of all regular*-open sets of Y contained in D is called regular*-interior and is denoted by  

r*int(D). The intersection of all regular*-closed sets of Y containing D is called  regular*-closure is 

denoted by r*Cl(D). 

Definition 2.6 [16]  A subset D of a topological space (Y, )is called η *-open set if it is a union of 

regular*-open sets (r*-open sets).The complement of a  η *-open set is called a η *-closed set. A subset D of 

a topological space (Y, ) is called η *-Interior of  D is the union of all η *-open sets of Y contained in 

D.We denote the symbol by η *-Int(D).The intersection of all η *-closed sets of  Y  containing D is 

called as the η *-closure of D and  denoted by η *-Cl(D). 

Definition 2.7 A subset A of a topological space (Y, )is called 

1) generalized closed (briefly g-closed) [14] if  Cl(D)  M whenever D  M and M is open in (Y, ). 

2) generalized semi-closed (briefly gs-closed) [2] if sCl(D) M whenever D  M and U is open in (Y, ). 

3) -generalized closed (briefly g-closed) [5] if   whenever  D  M and M is open in      

(Y, ). 

4) generalized pre regular -closed (briefly gpr-closed) [8] if pCl(D)  M whenever D  M and M is 

regular open in (Y, ). 

5) π-generalized closed (briefly πg-closed) [6] if Cl(D)  M whenever D  M and M is π-open in (Y, ). 

6) ĝ -closed [26] if Cl(D)  M whenever D  M and M is semi-open in (Y, ). 

7) generalized -closed (briefly g-closed) [4] if Cl(D)  M  whenever D  M and M is -open in (Y, ). 

8) -closed  [4] if Cl(D)  M  whenever  D  M and M is -open in (Y, ). 

9) #gs –closed [27] if sCl(D)  M whenever D  M and U is *g-open in (Y, ). 

10) π-generalized semi-closed (briefly πgs-closed) [3] if sCl(D)  M whenever D  M and M is π-open in 

(Y, ). 

11) π-generalized pre-closed (briefly πgp-closed) [20] if pCl(D)  M whenever  

D  M and M is π-open in (Y, ). 

12) *g -closed [9] if Cl(D)  M whenever D  M and M is ĝ-open in (Y, ). 

13) regular weakly generalized -closed (briefly rwg-closed) [17] if Cl(int(D))  M whenever D  M and 

M is regular open in (Y, ). 

14) π-generalized α -closed (briefly πgα-closed) [10] if αCl(D)  M whenever D  M and M is π-open in 

(Y, ). 

15) π-generalized semi pre-closed (briefly πgsp-closed) [23] if spCl(D)  M whenever D  M and M is 

π-open in (Y, ). 

16) generalized semi pre regular -closed (briefly gspr-closed) [18] if spCl(D)  M whenever D  M and 

M is regular open in (Y, ). 

17) -closed [22] if sCl(D)  M whenever D  M and M is  gs-open in (Y, ). 

18) δg* -closed [25] if δCl(D)  M whenever D  M and M is g-open in (Y, ). 

19) The complements of the above mentioned sets are called their respective open sets.  

Remark 2.8 [16] (i)  π-closed (open) →regular closed (open) → δ-closed (open) → η*-closed (open) → 

closed (open) → semi-closed (open) → semi pre-closed(open). 

 (ii)  π-closed (open) →regular closed (open) → δ-closed (open) → η *-closed (open) → closed (open) → 

closed (open) → -closed (open). 

 (iii)  π-closed (open) → regular closed (open) → δ-closed (open) → η *-closed (open) → closed (open) 

→g-closed (open). 

 (iv)  π-closed (open) →regular closed (open) → δ-closed (open) → η *-closed (open) → closed (open) 

→pre-closed (open). 
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Remark 2.9 [16] For every subset D of Y, 

(i) spCl(D)sCl(D)Cl(D) η *-Cl(D) Cl(D)  rCl(D)  πCl(D). 

(ii) Cl(D)Cl(D) ) η *-Cl(D) Cl(D) )rCl(D)  πCl(D). 

(iii) gCl(D)Cl(D)) η *-Cl(D) Cl(D)  rCl(D)  πCl(D). 

(iv) pCl(D)Cl(D)) η *-Cl(D) Cl(D)  rCl(D)  πCl(D). 

Remark 2.10  A topological space (Y ) is said to be a 

1. T1/2 -space [14] if every g-closed subset of (Y ) is closed in (Y ). 

2. Semi regular space [24] if = s .In a semi regular space every  δ-open sets coincides with  open sets. 

3. Definition 2.11 A subset D of a topological space (Y ) is called clopen if it is both open and closed in 

(Y ). 

 

III.J-CLOSED SETS 

 
 In this section a new class of generalized closed sets, called J-closed sets are introduced. The 

relations between J-closed sets and various existing closed sets are analysed. 

 

Definition 3.1 A subset D of a topological space (Y ) is said to be J-closed set if  

Cl(D)M whenever DM, M is η *-open in (Y ). 

The class of all J-closed sets of (Y ) is denoted by  JC(Y ). 

Proposition 3.2 Every δ-closed set is J-closed but not conversely. 
Proof: Let D be a δ- closed set and M be any  η *-open set containing D. Since D is δ-closed, δCl(D)=D. 

Therefore δCl(D)=DM.As Cl(D)δCl(D)  and hence D is J-closed. 

Counter Example 3.3 Let Y={p,q,r} ={,X, {p}, {p,q}}. In this topology the subset {r} is J-closed but 

not δ-closed. 

Proposition 3.4 Every δg*-closed set is J-closed but not conversely. 
Proof: Let D be a δg*-closed and M  be any  η *-open set containing  M in Y.By Remark 2.8(iii), every       

η *-open set is a g-open set and D is δg*-closed, δCl(D)M. As  Cl(D)δCl(D) [By Remark 2.9(i)].We get 

Cl(D)  M implies D is J-closed. 

Counter Example 3.5 Let Y={p,q,r} ={, Y, {p}, {p,q}, {p,r}}. Then the subset {q} is  J-closed but not 

δg*-closed in (Y ). 

Proposition 3.6 Every δg-closed set is J-closed but not conversely. 
Proof: Let D be a δg-closed and M be any  η *-open set containing  D in Y.By Remark 2.8(i), every            

η *-open set is an open set and D is δg-closed, δCl(D)M. As Cl(D)δCl(D) [By Remark 2.9(i)].We get 

Cl(D)  M implies D is J-closed. 

Counter Example 3.7 Let Y={p,q,r} ={, Y,{p},{p,q},{p,r}}. Then the subset {q} is  J-closed but not   

δg-closed in (Y ). 

Proposition 3.8  Every g-closed set is J-closed but not conversely.  

Proof: Let D be a g-closed set and M be any  η *-open set containing D. By Remark 2.8(i),  η *-open set is 

open and D is g-closed, Cl(D)M. Therefore  D is J-closed. 

Counter Example 3.9 Let Y={p,q,r}  ={, Y, {p},{p,q}}. In this topology the subset {q} is J-closed but 

not g-closed in (Y ). 

Proposition 3.10 Every J-closed set is gδ- closed but not conversely. 
Proof: Let D be J-closed set and M be any δ-open set containing D in Y. By Remark 2.8(i), every δ-open is 

η *-open and D is J-closed, Cl(D)M. Hence D is gδ -closed. 

Counter Example 3.11 Let Y={p,q,r} ={, Y,{p}, {p,q}}. Then the subset {p} is  gδ-closed but not        

J-closed in (Y ). 

Remark 3.12 

δ- closed        δg*-closed        δg-closed          g-closed          J-closed          gδ-closed 

Proposition 3.13 Every J-closed set is rg-closed but not conversely. 
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Proof: Let D be J-closed and U be any regular open set containing D in Y. By Remark 2.8(i), every  regular 

open is η *- open and D is J-closed, Cl(D)U. Hence D is rg-closed. 

Counter Example 3.14 Let  Y={p,q,r} ={, Y, {p},{p,q}}.Then the subset {p} is rg-closed but not          

J-closed in (Y ). 

Proposition 3.15 Every J-closed set is gpr-closed but not conversely. 

Proof: Let D be J-closed set and M be any regular open set containing D in Y. By Remark 2.8(i), every 

regular open set is η *-open and D is J-closed, Cl(D)M. As pCl(D)Cl(D) [By Remark 2.9(iv)].We get 

pCl(D)  M implies D is  gpr- closed. 

Counter Example 3.16 Let Y={p,q,r} ={, Y,{p},{q},{p,q}} Then the subset {p,q} is    gpr-closed but 

not  J-closed in (Y ). 

Proposition 3.17  Every J-closed set is rwg-closed but not conversely. 
Proof : Let D be J-closed and M be any regular open set containing D in Y. By Remark 2.8(i), every regular 

open set is η *-open and D is J-closed, Cl(D)M. As int(D)D[By Definition 2.1]. We have 

Cl(int(D))Cl(D)M and hence D is rwg-closed. 

Counter Example 3.18 LetY={p,q,r} ={, Y,{p},{q},{p,q}}. Then the subset {p,q} is   rwg -closed, but 

not J-closed in (Y ). 

Proposition 3.19 Every J-closed set is gspr-closed but not conversely. 

Proof: Let D be J-closed and M be any regular open set containing D in Y. By Remark 2.8(i),every regular 

open set is η *-open and D is J-closed, Cl(D)M. As spCl(D)Cl(D) [By Remark 2.9(i)]. We get 

spCl(D)M implies D is gspr –closed. 

Counter Example 3.20 Let Y={p,q,r} ={, Y,{p},{q},{p,q}}. Then the subset {q} is  gspr-closed but not 

J-closed in (Y ). 

Proposition 3.21 Every J-closed set is πg-closed but not conversely. 
Proof: Let D be J-closed and M be any π-open set containing D in Y. By Remark 2.8(i), every π-open set is 

η *-open and D is J-closed, Cl(D)M and hence D is πg-closed. 

Counter Example 3.22 Let Y={p,q,r} ={, Y,{p}, {p,q}}. Then the subset {p} is πg-closed but not           

J-closed in(Y ). 

Proposition 3.23 Every J-closed set is πgp-closed but not conversely. 

Proof: Let D be J-closed and M be any π-open set containing D in Y. By Remark 2.8(i), every π-open set is 

η *- open and D is J-closed, Cl(D)M. As pCl(D)Cl(D) [By Remark 2.9(iv)].We get pCl(D)  M 

implies D is πgp-closed. 

Counter Example 3.24 Let Y={p,q,r}  ={, Y,{p}, {p,q}}Then the subset {p} is πgp-closed but not         

J-closed in (Y ). 

Proposition 3.25 Every J-closed set is πgsp-closed but not conversely. 
Proof: Let D be J-closed set and M be any π-open set containing D in Y. By Remark 2.8(i),  every π-open 

set is η *-open and D is J-closed, Cl(D)M. As  spCl(D)Cl(D) ) [By Remark 2.9(i)]. We get         

spCl(D) M implies  D is πgsp-closed. 

Counter Example 3.26 Let Y={p,q,r} ={, Y, {p}, {q}, {p,q}}. Then the subset {p} is πgsp-closed but 

not J-closed in (Y ). 

Proposition 3.27 Every J-closed set is πgs-closed but not conversely. 

Proof: Let D be J-closed set and M be any π-open set containing D in Y. By Remark 2.8(i),   every π-open 

set is  η *-open and D is  J-closed, Cl(D)M. As sCl(D)Cl(D) [By Remark 2.9(i)]. We get sCl(D)M 

implies D is πgs-closed. 

Counter Example 3.28 Let Y={p,q,r}  ={, Y, {p}, {q},{p,q}}. Then the subset {p} is   πgs-closed but 

not J-closed in (Y ). 

Proposition 3.29 Every J-closed set is πgα-closed but not conversely. 

Proof: Let D be J-closed set and M be any π-open set containing D in Y. By Remark 2.8(i),    every π-open 

set is η *-open and D is J-closed, Cl(D)M. As αCl(D)Cl(D) [By Remark 2.9(ii)]. We get αCl(D)M 

implies D is πgα-closed. 
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Counter Example 3.30 Let Y={p,q,r} ={, Y, {p},{p,q}}. Then the subset {p} is  πgα-closed but not      

J-closed in (Y ). 

Remark 3.31 The following counter examples show that J-closed set is independent from gs-closed,    

#gs-closed, g*s-closed and -closed  sets. 

Counter Example 3.32 Let Y={p,q,r} ={, Y, {p},{q},{p,q}}. In this topology the subset {p} is gs-

closed, #gs-closed, g*s-closed but not J-closed. 

Counter Example 3.33 Let Y={p,q,r} ={, Y, {p,q}} In this topology the subset {p} is  J-closed but not 

gs-closed, #gs-closed, g*s-closed. 

Counter Example 3.34 Let Y={p,q,r,s} ={, Y, {p}}. In this topology the subset {p} is not  

J-closed but it is -closed.   

Counter Example 3.35 Let Y={p,q,r,s} ={, Y, {p},{r},{p,q},{p,r},{p,q,r},{p,r,s}} In this topology the 

subset {q} is J-closed but not -closed. 

Remark 3.36 From the above discussions, we get  J-closed sets is equivalent with other existing  g-closed 

sets. 

                                                                                                 rwg-closed πg-closed    πgα-closed 

                                                                                      gspr-closed 

δ- closed         δg*-closed        δg-closed                 g-closed                    J-closed       gδ-closed 

 

                                                                               rg-closed    

                                                                                                                        gpr-closed 

                                                                                                         πgs-closed           πgsp-closed 

                                                                                        πgp-closed 

 

In the above diagram, A → B represents A implies B but not reversible. 

 

 

 

Remark 3.37 From the above discussions, we get J-closed sets is  not equivalent with other existing g-

closed sets. (In this diagram, A  B represents A and B are not equivalent). 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV.Properties of J-Closed Sets in Topological Spaces 
 

Theorem 4.1 The finite union of J-closed sets is J-closed. 

Proof:Let {Di / i=1,2,3…….n} be a finite class of J-closed sets of (Y ).Let D = i

n

1 i

D 


 . Let M be a η *-open 

set containing D. This implies DiM for every i. By assumption Cl(Di) M for every i. This 

implies

n

1i

 Cl(Di)M. Then  Cl( i

n

1i

D 


 )M. Thus Cl(D)M. Hence finite union of J-closed sets is             

J-closed in (Y ). 

 

J-closed 

gs-closed #gs-closed 

g*s-closed 
-closed 
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Remark 4.2 The following  counter example shows that the countable union of J-closed sets need not be 

J-closed. 

Counter Example 4.3 Consider R, the real line with the usual topology .  Set 
Nn n

D
 









1

, N being the set 

of all positive integers.  Clearly D is the countable union of J-closed sets but D is not J-closed in (R, , since 

 
Remark 4.4 The following  counter example shows that the difference of any two J-closed sets in Y need 

not be    J-closed. 

Counter Example 4.5 Let Y = {p,q,r,s }  = {Y, ,{p,q}}. Then the set {p,r} and {p,s} are J-closed but 

their difference {p} is not J- closed in (Y, ). 

Theorem 4.6 Let D be a J-closed set of (Y, ). Then Cl(D) – D does not contain a  non- empty η *-closed 

set. 

Proof: Suppose that D is J-closed, let M be a η *-closed set contained in Cl(D) – D.  Now 
c

M is a η *-open 

set in Y such that D .M
c

Since  D is J-closed set of Y,Cl(D)
c

M .Thus M (Cl(D))c
.Also           

MCl(D) − D. Therefore M (Cl(D))c∩  Cl(D) =.Hence M  = . 

Proposition 4.7 If D is a η *-open set and a J-closed set of (Y ),then D is a  closed set of Y. 

Proof: Since D is η *-open  and J-closed, Cl(D)D. Hence D is closed in (Y ). 

Theorem 4.8  If D is J-closed and η *-open and F is closed in (Y ),then FD  is closed. 

Proof: Since D is J-closed and η *-open, D is closed by Proposition 4.7.Since F is closed in Y, FD  is 

closed in Y. 

Theorem 4.9 The intersection of a J-closed set and a δ-closed set is always J-closed. 

Proof: Let D be J-closed and F be δ-closed.  Let V = FD .Let M be η *-open such that  V  M. Then 

FD  M which implies MD 
cF . Here 

cF is δ-open. So 
cF is η *-open. Hence M

cF is                 

η *-open (By Theorem 3i from [16]) and by assumption MD 
cF  which implies Cl(D)M

cF  
which implies  Cl(D)∩FM. Now Cl(V) = Cl(D∩  F)Cl(D)∩Cl(F)Cl(D)∩  δ-Cl(F)= Cl(D)∩  FM. 

Therefore Cl(V)M. Hence A∩  F is J-closed. 

Proposition 4.10 If D is a J-closed set in a space (Y ),and DBCl(D) then B is also a  J-closed set. 

Proof: Let M be η *-open set of Y such that BM. Then DM. Since D is J-closed set, Cl(D)M. Since 

BCl(D), Cl(B)Cl(Cl(D)) = Cl(D). Hence Cl(B)M. Therefore B is also a J-closed set . 

Theorem 4.11 Let D be a J-closed set of (Y, ). Then D is closed iff Cl(D) – D  is η *-closed. 

Proof: (Necessity): Let D be a closed subset of (Y, ). Then Cl(D) = D and therefore    Cl(D) – D= which is 

η *-closed.         

(Suffficiency): Let Cl(D) −D be  η *-closed set. Since D is J-closed, by Theorem 4.6, Cl(D)−D does not 

contain a non-empty η *-closed set which implies Cl(D)−D=. That is Cl(D)=D. Hence D is closed. 

Definition 4.12 Let B  A  Y.  Then B is J-closed relative to A if ClA(B)M, whenever  B   M, M is  

η *-open in A. 
 

Theorem 4.13 Let B  A  Y and suppose that B is J-closed in Y, then B is J- closed relative to A.  The 

converse is true if A is closed in Y. 

Proof: Suppose that B is J-closed in Y.  Let B   M, M is η *-open in A.  Since M is  η *-open in A,          

M = V∩  A where V is η*-open in Y. Hence BMV. Since B is J-closed in Y,    Cl(B)V. Hence 

Cl(B)∩  AV∩A which in turn implies that ClA(B)V∩  A = M. Therefore B is J-closed relative to A. 

Now to prove the converse, assume that BAY where A is closed in Y and B is J-closed relative to A. 

Let BM, M is η *-open in Y. Then A∩  M is η*-open in A by the definition of subspace topology. Since 

BA and BM, B A∩  M. Since B is J-closed relative to A, ClA(B)A∩M.Since BA,               

Cl(B)Cl(A). Hence Cl(B)A. Therefore  Cl(B)∩  A = Cl(B) which implies ClA(B) = Cl(B). Hence   

Cl(B)A∩  M = M. Thus B is J-closed in Y. 
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 Characterization theorems of J-closed sets 
Proposition 4.14 In T1/2 spaces η *-closed sets coincides with δ -closed sets. 

Proof In T1/2 spaces g-closed sets coincides with closed sets [By Remark 2.10 (1)].Therefore generalized 

closure of a set equals with closure of a set. Hence regular* -open sets are regular open sets   in T1/2 spaces 

and η *-closed sets coincides with δ -closed sets. 

 

Theorem 4.15 Let D be a subset of a 
2

1T -space (Y, ) then  

(a) D is J-closed if and only if D is g δ -closed. 

(b) If, in addition,(Y ) is semi-regular space, then D is J-closed if and only if D is  g-closed. 

Proof:(a) Every J-closed is gδ -closed by Proposition 3.10, Conversely let D be gδ -closed. Let D  M, 

where M is η *-open.In a 
2

1T -space, every η *-open set is δ-open (By Proposition 4.14).  Since D is            

g δ -closed, Cl(D)M.  Therefore D is J-closed.  

 (b)  Every g-closed is J-closed by Proposition 3.8.Conversely let D be J-closed. Let D  M, where M is 

open. In a semi regular space, every open is δ -open [By Remark 2.10 (2)] and (Y ) is 
2

1T  M is η *-open 

[By Proposition 4.14]. Since D is J-closed, Cl(D)M. Hence D is  J -closed.  

      The previous observation leads to the problem of finding the spaces (Y, ) in which the  g-closed sets of 

(Y, are J-closed in (Y ).While we have not been able to completely resolve this problem, we offer partial 

solutions. For that reason we will call the spaces with T1/2 semi-regularization almost-weakly Hausdorff. 

Recall that a space is called weakly Hausdorff if its semi-regularization is T1.The point excluded topology 

on any infinite set gives an example of an almost weakly Hausdorff  space, which is not weakly Hausdorff  

from [5]. 

 

Theorem 4.16 In an almost weakly Hausdorff space (Y ),the g-closed sets of Y, are δ-closed in 

(Y )and thus J- closed in (Y ). 

Proof: Let D  Y be a g-closed subset of Y, . Let x δCl(D).If {x} is  δ-open, then x D.If not, then    

Y \{x} is δ-open, since Y is almost weakly Hausdorff.Assume that  Dx .Since D is g-closed in (Y S). 

then δCl(D)  Y \{x},that is x δCl(D).By contradicition x D.Hence D is δ-closed. Since D is -closed 

and hence by Proposition 3.2, D is  J-closed in (Y ). 

Definition 4.17 A topological space (Y, ) is called 1R -space if every two different points with distinct 

closures have disjoint neighbourhoods. 

Remark 4.18 In general the concepts of J-closed and   -closed are not equivalent. But for a 

compact subset D of an 
2

1T 1R -topological space, they coincides. This can be seen in the following 

Theorem 4.19. 
 

Theorem 4.19 For a compact subset D of a   and -topological space (Y ) the following conditions 

are equivalent. 

(a) D is a J-closed set. 

(b) D is a  -closed set. 

Proof: 

(a)   (b) : Let D  M, where M is δ-open.  In a 
2

1T -space, every δ-open set is η *-open [By Proposition 

4.14].We get M is η *-open.Since D is J-closed,Cl(D)M               (1). Also in 1R -spaces the concepts of 

closure and  -closure coincide for compact sets (By Theorem 3.6 from[11]).  Hence for a compact subset 

D,δCl(D) =Cl(D)                  (2).From (1) &  (2), D is a -closed set [by Definition 2.7(8)]. 

(b)  (a) : Let D  M, where M is η *-open. By Proposition 4.14, M is δ-open and since D is -closed, 

δCl(D)M               (1).Also in 1R -spaces the concepts of closure and  -closure coincide for compact sets 

(By Theorem 3.6 from [11]).Hence  Cl(D) = δCl(D)                (2). From (1) &  (2),D is a J -closed set. 

Corollary 4.20 In Hausdroff spaces, a finite set is J-closed if and only if it is -closed. 
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Theorem 4.21 Let D be a pre-open subset of a topological space (Y ).Then the following conditions are 

equivalent: 

(a) D is δg-closed. 

(b) D is J-closed. 

(c) D is gδ-closed. 

Proof:  

(a)  (b) and (b) (c) are true for any subset D by Proposition 3.6 & 3.10.If D is   pre-open in (Y, ),then by a 

result of [12],Cl(D)  = δCl(D) and so    (c)  (a). 

Definition 4.22 A partition space is a topological space where every open set is closed. 

    Concerning partition spaces, the following characterization via J-closed sets is obtained. 

Corollary 4.23 Let D be a subset of the partition space (Y ). Then the following conditions are 

equivalent: 

(a) D is δg-closed. 

(b) D is J-closed. 

(c) D is gδ-closed. 

Proof: A topological space is a partition space if and only if every subset is pre-open. Thus the claim 

follows straight from Theorem 4.21. 

Theorem 4.24 If  (Y ) is a 
2

1T -space, then the following conditions hold good. 

(a) For a topological space (Y, ),if Y is a partition space, then every subset of  Y is  J-closed. 

(b) The converse is true if Y is a  semi regular space. 

Proof : (a) Let D be an arbitrary subset of Y and M is η *-open containing D.Since η *-open is open and Y 

is a Partition space, M is clopen. Thus Cl(D)   Cl(M) = M.  Hence every subset of (Y ) is J-closed.  

(b) Let D be an open set in (Y ).By criteria ,every subset of Y is J-closed. In a semi regular space J-closed 

set and g-closed set coincide [By Theorem 4.15(b)].In a 
 2

1T -space, every g-closed set is closed [By 

Remark 2.10(1)].Hence D is closed in (Y ). Thus (Y ) is a partition space.  
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