On M-projectively ϕ-symmetric (ε)-Lorentzian para Sasakian manifolds

${ }^{1}$ N.V.C. SHUKLA, ${ }^{2}$ ANURAG DIXIT
1,2 DEPARTMENT OF MATHEMATICS AND ASTRONOMY
LUCKNOW UNIVERSITY, LUCKNOW (U.P.) INDIA

Abstract

The object of the present paper is to study the M-projective curvature tensor on ϕ-symmetric (ε)-Lorentzian para Sasakian manifolds globally and Locally. Some results are obtained for a 3-dimensional locally M-projective ϕ-symmetric (ε)-Lorentzian para Sasakian manifolds.

AMS Classification: [2010] 53B05, 53C25, 53C10
Keyword: (ε)-Lorentzian para Sasakian manifolds, M-projective curvature tensor ϕ-symmetric, 3-dimensional LP-Saskain manifolds.

1. INTRODUCTION

In 1969, Takashashi [14] studied Sasakian manifolds equipped with an associated indefinite metric. These indefinite almost contact metric manifolds and indefinite Sasakian manifolds are also called as ε-almost contact metric manifolds and ε-Sasakian manifolds, respectively. The index of a metric plays important roles in differential geometry on it generates variety of vector fields such as space-like, time-like, and light-like fields.

In 1971, Pokhariyal and Mishra [10] defined a tensor field M on a Riemannian manifolds as

$$
\begin{equation*}
M(X, Y) Z=R(X, Y) Z-\frac{1}{2(n-1)}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \tag{1.1}
\end{equation*}
$$

such a tensor field M is known as M -projective curvature tensor [12,13,14]. So that

$$
\begin{equation*}
M(X, Y, Z, U)=g(M(X, Y) Z, U)=M(Z, U, X, Y) \tag{1.2}
\end{equation*}
$$

And Q is the Ricci operator, defined by

$$
\begin{equation*}
S(X, Y)=g(Q X, Y) \tag{1.3}
\end{equation*}
$$

Where S is the Ricci tensor for arbitrary vector fields X, Y, Z. Such a tensor field M is known as M-projective curvature tensor. Ojha[8,9] defined and studied as M-projective curvature tensor in a Kähler as well as in Sasakian manifolds. This curvature tensor bridges the gap between conformal curvature tensor, conharmonic curvature tensor and concirculer curvature tensor on one side and H-projective curvature tensor on the other.
from (1.1),

$$
\begin{array}{r}
\left(\nabla_{W} M\right)(X, Y) Z=\left(\nabla_{W} R\right)(X, Y) Z-\frac{1}{2(n-1)}\left[\left(\nabla_{W} S\right)(Y, Z) X-\left(\nabla_{W} S\right)(X, Z) Y\right. \tag{1.4}\\
\left.+g(Y, Z)\left(\nabla_{W} Q\right)(X)-g(X, Z)\left(\nabla_{W} Q\right)(Y)\right]
\end{array}
$$

The study of Riemannian symmetric manifolds began with the work of Cartan[2]. A Riemannian manifolds $\left(M^{n}, g\right)$ is said to be locally symmetric due to Cartan [2]. if its curvature tensor R satisfies the relation $\nabla R=0$, where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. As a weaker version of local symmetry, the notion of locally ϕ-symmetric Saskian manifolds was introduced by Takahashi[14]. Shaikh and Baishya [11] studied locally ϕ-symmetric LP- Sasakian manifolds in the sense of Takahashi,. The notion of locally ϕ-symmetric manifolds in different structures has been studied by several authors ([5], [11], [12],[13],[2]). An ε-Lorentzian para Sasakian manifolds is said to be ϕ-symmetric if it satisfies;

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0 \tag{1.5}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z and W on M.
In particular, if X, Y, Z, W are horizontal vector fields, i.e., orthogonal to ξ, then it is called locally ϕ-symmetric ε-Lorentzian para Sasakian manifolds.
K.L. Duggle and A. Bejancu [1,6] introduced ε-Sasakian manifolds. Also Xufeng and Xiaoli [17] proved that every ε-Sasakian manifolds must be real hypersurface of some indefinite Kahler manifolds. Recently Rajendra Prasad and Vibha Shrivastava defined and study basic properties of ε-Lorentzian para Sasakian manifolds with indefinite metric which also include usual LP Saskian manifolds. In 2007, R. Kumar, R. Rani and R.K. Nagaich studied some interesting properties of ε-Sasakian manifolds[7]. In 2010, Tripathi et al. studied ε-almost para-contact manifolds and in particular ε-para Sasakian manifolds [16].

The present paper is organized as follows:
After introduction in section 2, we introduce the notion of ε-Lorentzian para Sasakian manifold. In section 3, we study globally ϕ-symmetric ε-Lorentzian para Sasakian manifolds. In this section we see that a globally ϕ-symmetric ε-Lorentzian para Sasakian manifolds is an indefinite space form. In section 4, we study the necessary and sufficient condition for 3-dimensional ε-Lorentzian para Sasakian manifolds to be locally symmetric. In section 5, we have some results on globally M-projectively ϕ-symmetric ε-Lorentzian para Sasakian manifolds; In section 6, we obtain, if an ε-Lorentzian para Sasakian manifold is globally M-projectively ϕ-symmetric, then the manifold is an Einstein manifold.

2. ε-LORENTZIAN PARA SASAKIAN MANIFOLDS

A differentiable M manifold of dimension $n=2 m+1$ is called almost contact manifold, if it admit a $(1,1)$ tensor field ϕ, a contravariant vector field ξ, a 1 -form η and Riemannian metric g which satisfy:

$$
\begin{equation*}
\phi^{2} X=X+\eta(X) \xi ; \quad \quad \eta(\xi)=-1, \quad \forall X \in \chi(M) \tag{2.1}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\eta(\phi X)=0 ; \quad \phi(\xi)=0 ; \quad \operatorname{rank} \phi=n-1 \tag{2.2}
\end{equation*}
$$

the M is called an almost contact manifold. If there exists a semi-Riemannian metric g satisfying

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\varepsilon \eta(X) \eta(Y) \quad \forall X, Y \in \chi(M) \tag{2.3}
\end{equation*}
$$

with $\varepsilon= \pm 1$ then (ϕ, η, ξ, g) is called an (ε)-almost contact metric structure and M is known an (ε)-almost contact manifold. For an (ε)-almost contact manifold, we also have

$$
\begin{equation*}
\eta(X)=\varepsilon g(X, \xi), \quad \forall X \in \chi(M) \tag{2.4}
\end{equation*}
$$

Thus ξ is never a light like vector field on M. Here ε is 1 or -1 according as ξ is space like or time like vector field on M, and according to the casual character of ξ, we have two classes of ε-Lorentzian para Sasakian manifold. When $\varepsilon=-1$ and the index of g is an odd number $(v=2 s+1)$, then M is time-like ε-Lorentzian para Sasakian manifold and M is a space-like ε-Lorentzian para Sasakian manifold when $\varepsilon=-1$ and $v=2 s$. For $\varepsilon=1$ and $v=0$, we obtain usual ε-Lorentzian para Sasakian manifold manifold and for $\varepsilon=1$ and $v=1, M$ is a Lorentzian para Sasakian manifold.

If

$$
d \eta(X, Y)=g(X, \phi Y)
$$

for every $X, Y \in \chi(M)$, then M is said to have (ε)-contact metric structure (ϕ, ξ, η, g). An (ε)-almost contact metric structure (ϕ, η, ζ, g) is ε-Lorentzian para Sasakian manifold if only if

$$
\begin{align*}
\left(\nabla_{X} \phi\right) Y & =-g(X, \phi Y) \xi-\varepsilon \eta(Y) \phi X, \tag{2.6}
\end{align*} \quad \forall X, Y \in \chi(X)
$$

Where ∇ denotes the Levi-Citiva connection with respect to g . Also one has

$$
\begin{equation*}
\nabla_{X} \xi=\varepsilon(X-\eta(X) \xi \quad \forall X \in \chi(X) \tag{2.7}
\end{equation*}
$$

Then for an ε-Lorentzian para Sasakian manifold, we have following relations

$$
\begin{gather*}
\left(\nabla_{X} \eta\right)(Y)=g(\phi X, Y) \tag{2.8}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.9}\\
S(X, \xi)=\varepsilon(n-1) \eta(X) \tag{2.10}\\
Q(X, \xi)=-\varepsilon(n-1) \xi \tag{2.11}
\end{gather*}
$$

If an ε-Lorentzian para Sasakian manifold is a space of constant curvature then it is an indefinite space form.

3. Globally ϕ-symmetric (ε)-Lorentzian para Sasakian manifolds

Now we suppose that an (ε)-Lorentzian para Sasakian manifolds is globally ϕ-symmetric. Then by virtue of (2.1) and (1.5) we have

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z+\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \xi=0 \tag{3.1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z+\varepsilon g\left(\left(\nabla_{W} R\right)(X, Y) Z, \xi\right) \xi=0 \tag{3.2}
\end{equation*}
$$

Now, by using the property of curvature tensor we have

$$
\begin{align*}
g\left(\left(\nabla_{W} R\right)(X, Y) Z, \xi\right)= & \left.g\left(\nabla_{W} R\right)(X, Y) Z, \xi\right)+g\left(R(X, Y) \xi, \nabla_{W} Z\right) \tag{3.3}\\
& +g\left(R\left(\nabla_{W} X, Y\right) \xi, Z\right)+g\left(R\left(X, \nabla_{W} Y\right) \xi, Z\right)
\end{align*}
$$

Since ∇ is a metric connection, it follows that

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)(X, Y) Z, \xi\right)=g\left(R(X, Y) \nabla_{W} \xi, Z\right)-\nabla_{W} g(R(X, Y) \xi, Z) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\nabla_{W} g(R(X, Y) \xi, Z)=g\left(\nabla_{W} R\right)(X, Y) \xi, Z\right)+g\left(R(X, Y) \xi, \nabla_{W} Z\right) \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5), we get

$$
\begin{aligned}
g\left(\nabla_{W} R(X, Y) Z, \xi\right)= & \left.-g\left(\nabla_{W} R\right)(X, Y) \xi, Z\right)-g\left(R(X, Y) \xi, \nabla_{W} Z\right) \\
& +g\left(R(X, Y) \nabla_{W} \xi, Z\right) .
\end{aligned}
$$

Using (3.6) in (3.3), we get

$$
\begin{equation*}
\left.g\left(\left(\nabla_{W} R\right)(X, Y) Z, \xi\right)=-g\left(\nabla_{W} R\right)(X, Y) \xi, Z\right) \tag{3.7}
\end{equation*}
$$

Using (3.1) we obtain from (3.2) that

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z=\varepsilon g\left(\left(\nabla_{W} R\right)(X, Y) \xi, Z\right) \xi \tag{3.8}
\end{equation*}
$$

Using (2.6) and (2.8) in (3.8)

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) \xi=-g(X, W) Y+g(Y, W) X-\varepsilon R(X, Y) W \tag{3.9}
\end{equation*}
$$

Taking (3.9) in (3.8), we get

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z=\{\varepsilon(g(Y, W) g(X, Z)-g(X, W) g(Y, Z))-g(R(X, Y) W, Z)\} \xi \tag{3.10}
\end{equation*}
$$

Again, if (3.10) holds, then (3.7) and (3.9) implies that the manifold is globally ϕ-symmetric. Thus we can state the following.
Theorem 1 An ε-Lorentzian para Sasakian manifold globally ϕ-symmetric if and only if the relation (3.10) holds for any vector fields X, Y, Z, W tangent to M.

Next putting $Z=\xi$ in (3.8) and using (3.7) we have

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) \xi=0 \tag{3.11}
\end{equation*}
$$

for any vector fields X, Y, Z, W on M.From (3.11) and (3.8) it follows that

$$
R(X, Y) W=\varepsilon\{g(Y, W) X-g(X, W) Y\}
$$

Thus the manifold is of constant curvature. This leads us to the following:
Theorem 2 A globally ϕ-symmetric ε-Lorentzian para Sasakian manifold is an indefinite space form.

4. 3-dimensional locally ϕ-symmetric ε-Lorentzian para Sasakian manifolds

Recall the part of introduction we know 3-dimentional Riemannian manifold, now

$$
\begin{gather*}
R(X, Y) Z=g(Y, Z) Q X-g(X, Z) Q Y=S(Y, Z) X-S(Y, Z) X \tag{4.1}\\
-S(X, Z) Y+\frac{r}{2}[g(X, Z) Y-g(Y, Z) X]
\end{gather*}
$$

where Q is the Ricci operator and r is the scalar curvature of manifold. If we putting $Z=\xi$ in (4.1) and use (2.8) we get

$$
\begin{equation*}
\left(\varepsilon-\frac{r}{2}\right)(\eta(Y) X-\eta(X) Y=\eta(Y) Q X-\eta(X) Q Y \tag{4.2}
\end{equation*}
$$

By putting $Y=\xi$ in (4.2) and using (2.9) for $n=3$, we obtain

$$
\begin{equation*}
Q X=\left(\varepsilon-\frac{r}{2}\right) X-\left(\varepsilon+\frac{r}{2}\right) \eta(X) \xi \tag{4.3}
\end{equation*}
$$

that is,

$$
\begin{equation*}
S(X, Y)=\left(\varepsilon-\frac{r}{2}\right) g(X, Y)-\left(\varepsilon+\frac{r}{2}\right) \varepsilon \eta(X) \eta(Y) . \tag{4.4}
\end{equation*}
$$

thus from (4.4) and (4.3) in (3.12), we obtain

$$
\begin{aligned}
& R(X, Y) Z=\left(2 \varepsilon-\frac{3 r}{2}\right)[g(Y, Z) X-g(X, Z) Y]+\left(\frac{r}{2}+\varepsilon\right)[g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \\
& \quad+\varepsilon \eta(X) \eta(Z) Y-\varepsilon \eta(Y) \eta(Z) X]
\end{aligned}
$$

by taking the covariant differentiation of (4.5) we have

$$
\begin{align*}
& \left(\nabla_{W} R\right)(X, Y) Z=\frac{-3 d r(W)}{2}[g(Y, Z) X-g(X, Z) Y]+\frac{d r(W)}{2}[g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi \\
& +\varepsilon \eta(X) \eta(Z) Y-\varepsilon \eta(Y) \eta(Z) X]+\left(\frac{r}{2}+\varepsilon\right)\left[g(X, Z)\left(\nabla_{W} \eta\right)(Y) \xi\right. \\
& +g(X, Z) \eta(Y) \nabla_{W} \xi-g(Y, Z)\left(\nabla_{W} \eta\right)(X) \xi \\
& -g(Y, Z) \eta(X) \nabla_{W} \xi+\varepsilon\left(\nabla_{W} \eta\right)(X) \eta(Z) Y \\
& +\varepsilon\left(\nabla_{W} \eta\right)(Z) \eta(X) Y-\varepsilon\left(\nabla_{W} \eta\right)(Y) \eta(Z) X \\
& \left.-\varepsilon\left(\nabla_{W} \eta\right)(Z) \eta(Y) X\right] . \tag{4.6}
\end{align*}
$$

it we consider X, Y and Z are horizontal vector fields. then

$$
\begin{gather*}
\left(\nabla_{W} R\right)(X, Y) Z=\frac{-3 d r(W)}{2}[g(Y, Z) X-g(X, Z) Y]+\left(\frac{r}{2}+\varepsilon\right)\left[g(X, Z)\left(\nabla_{W} \eta\right)(Y) \xi\right. \tag{4.7}\\
-g(Y, Z)\left(\nabla_{W} \eta\right)(X) \xi
\end{gather*}
$$

Taking ϕ^{2} on both sides of equation (4.7) then

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=\frac{-3 d r(W)}{2}\left[g(Y, Z) \phi^{2} X-g(X, Z) \phi^{2} Y\right] \tag{4.8}
\end{equation*}
$$

using (2.1) equation (4.8) gives us

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=\frac{d r(W)}{2}[g(Y, Z) X-g(X, Z) Y] \tag{4.9}
\end{equation*}
$$

Let $\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0$ for all horizontal vector fields. Then the equation (3.20) implies $d r(W)=0$. Hence we conclude the following theorem.

Theorem 3 A 3-dimensional ε-Lorentzian para Sasakian manifold is locally ϕ-symmetric if and only if the scalar curvature r is constant for all horizontal vector fields.

In particular, by taking $Z=\xi$ in (4.6) we have

$$
\left(\nabla_{W} R\right)(X, Y) \xi=\left(\frac{r}{2}+\varepsilon\right)\left[\varepsilon \eta(X)\left(\nabla_{W} \eta\right)(Y) \xi+\varepsilon \eta(X) \eta(Y) \nabla_{W} \xi\right.
$$

$$
\begin{align*}
& -\varepsilon \eta(Y)\left(\nabla_{W} \eta\right)(X) \xi-\eta(Y) \eta(X) \nabla_{W} \xi \\
& -\varepsilon\left(\nabla_{W} \eta\right)(X) Y+\varepsilon\left(\nabla_{W} \eta\right)(\xi) \eta(X) Y \\
& \left.+\varepsilon\left(\nabla_{W} \eta\right)(Y) X-\varepsilon\left(\nabla_{W} \eta\right)(\xi) \eta(Y) X\right] . \tag{4.10}
\end{align*}
$$

If we assume X, Y, Z are horizontal vector fields, using (2.7) in (4.10) we get

$$
\begin{equation*}
\left.\left(\nabla_{W} R\right)(X, Y) \xi=\left(\frac{r}{2}+\varepsilon\right) \varepsilon g(X, W) Y-g(Y, W) X\right] . \tag{4.11}
\end{equation*}
$$

Applying ϕ^{2} to the both sides of (4.11) we get

$$
\begin{equation*}
\left.\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) \xi\right)=\left(\frac{r}{2}+\varepsilon\right) \varepsilon g(X, W) \phi^{2} Y-g(Y, W) \phi^{2} X\right] . \tag{4.12}
\end{equation*}
$$

If we take X, Y are orthogonal to ξ in (4.11) and (4.12) we have

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} R\right)(X, Y) \xi=\left(\nabla_{W} R\right)(X, Y) \xi \tag{4.13}
\end{equation*}
$$

Now we can state the following:
Theorem 4 Let M be a 3-dimensional ε-Lorentzian para Sasakian manifold such that

$$
\phi^{2}\left(\nabla_{W} R\right)(X, Y) \xi=0
$$

for all horizontal vector fields X, Y, W. Then M is a indefinite space form.

5 Globally M-projectively ϕ-symmetric (ε)-Lorentzian para Sasakian manifolds

An (ε)-Lorentzian para Sasakian manifold M is said to be globally M-projectively ϕ-symmetric if the M-projective curvature tensor M satisfies

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} M\right)(X, Y) Z=0, \tag{5.1}
\end{equation*}
$$

for all vector fields $X, Y, Z, W \in \chi(M)$.
Let us suppose that M is globally M-projectively ϕ-symmetric. Then by virtue of (5.1) and (2.1), we have

$$
\begin{equation*}
\left(\nabla_{W} M\right)(X, Y) Z+\eta\left(\left(\nabla_{W} M\right)(X, Y) Z\right) \xi=0 . \tag{5.2}
\end{equation*}
$$

From (1.4) it follows that

$$
\begin{aligned}
& g\left(\left(\nabla_{W} R\right)(X, Y) Z, U\right)-\frac{1}{2(n-1)}\left[g(X, U)\left(\nabla_{W} S\right)(Y, Z)\right. \\
& -g(Y, U)\left(\nabla_{W} S\right)(X, Z)+g(Y, Z) g\left(\left(\nabla_{W} Q\right) X, U\right) \\
& \left.-g(X, Z) g\left(\left(\nabla_{W} Q\right) Y, U\right)\right]+\varepsilon \eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \eta(U) \\
& -\frac{\varepsilon}{2(n-1)}\left[\left(\nabla_{W} S\right)(Y, Z) \eta(U)-\left(\nabla_{W} S\right)(X, Z) \eta(U)(Y)\right. \\
& +g(Y, Z) \eta\left(\left(\nabla_{W} Q\right) X\right) \eta(U)-g(X, Z) \eta\left(\left(\nabla_{W} Q\right) Y\right) \eta(U) \\
& =0
\end{aligned}
$$

Putting $X=U=e_{i}$, where $\left\{e_{i}\right\}, i=1,2, \ldots ., n$, is an orthonormal basis of the tangent space at the manifold, and taking summation over i, we get

$$
\begin{align*}
& \frac{n}{2(n-1)}\left(\nabla_{W} S\right)(Y, Z)+\varepsilon \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) Z\right) \eta\left(e_{i}\right) \\
& \left.-\frac{1}{2(n-1)}\left[g\left(\left(\nabla_{W} Q\right) e_{i}, e_{i}\right)-\varepsilon \eta\left(\nabla_{W} Q\right) e_{i}\right) \eta\left(e_{i}\right)\right] g(Y, Z) \\
& \left.\left.+\frac{1}{2(n-1)}\left[g\left(\left(\nabla_{W} Q\right) Y, Z\right)+\left(\nabla_{W} S\right)(\xi, Z) \eta(Y)+\varepsilon \eta\left(\nabla_{W} Q\right) Y\right) \eta Z\right)\right]=0 \tag{5.4}
\end{align*}
$$

Putting $Z=\xi$, we obtain

$$
\begin{aligned}
& \frac{n}{2(n-1)}\left(\nabla_{W} S\right)(Y, \xi)+\varepsilon \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi\right) \eta\left(e_{i}\right) \\
& -\frac{\varepsilon}{2(n-1)}\left[d r(W)-\varepsilon \eta\left(\left(\nabla_{W} Q\right) e_{i}\right) \eta\left(e_{i}\right)-\left(\nabla_{W} S\right)(\xi, \xi)\right] \eta(Y) \\
& =0 .
\end{aligned}
$$

Now

$$
\begin{align*}
\eta\left(\left(\nabla_{W} Q\right) e_{i}\right) \eta\left(e_{i}\right) & =g\left(\left(\nabla_{W} Q\right) e_{i}, \xi\right) g\left(e_{i}, \xi\right) \tag{5.6}\\
& =g\left(\left(\nabla_{W} Q\right) \xi, \xi\right) \\
& =-\varepsilon g(Q(W-\eta(W) \xi), \xi) \\
& =-\varepsilon S(W, \xi)+\varepsilon \eta(W) S(\xi, \xi)=0 .
\end{align*}
$$

Which gives

$$
\begin{equation*}
\eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi\right) \eta\left(e_{i}\right)=g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right) g\left(e_{i}, \xi\right) \tag{5.7}
\end{equation*}
$$

and

$$
\begin{gathered}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(\nabla_{W}\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(\nabla_{W} e_{i}, Y\right) \xi, \xi\right) \\
-g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right)
\end{gathered}
$$

Since $\left\{e_{i}\right\}$ is an orthonormal basis $\nabla_{X} e_{i}=0$ and using (2.8) we obtain

$$
\begin{equation*}
g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)=\varepsilon\left\{\eta\left(e_{i}\right) \eta\left(\nabla_{W} Y\right)-\eta\left(e_{i}\right) \eta\left(\nabla_{W} Y\right)\right\}=0 \tag{5.8}
\end{equation*}
$$

As $g\left(R\left(e_{i}, Y\right) \xi, \xi\right)+g\left(R(\xi, \xi) Y, e_{i}\right)=0$, we have

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)+g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)=0 \tag{5.9}
\end{equation*}
$$

Using this we get

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=0 \tag{5.10}
\end{equation*}
$$

using (5.6) to (5.10) in (5.5) we get

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=\frac{1}{n} d r(W) \eta(Y) \tag{5.11}
\end{equation*}
$$

Putting $Y=\xi$ in (5.10), we get $d r(W)=0$. This implies r is constant.
So from (5.10), we have

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=0 \tag{5.12}
\end{equation*}
$$

Using (2.6), this implies

$$
\begin{equation*}
S(Y, W)=-\varepsilon(n-1) g(Y, W) . \tag{5.13}
\end{equation*}
$$

Hence we can state the following theorem:
Theorem 5 A globally M-projectively ϕ-symmetric ε-Lorentzian para Sasakian manifold is an Einstein manifold.
Now let, $S(X, Y)=\lambda g(X, Y)$,i.e. $Q X=\lambda X$. Then from (1.1) we have

$$
\begin{equation*}
M(X, Y) Z=R(X, Y) Z-\frac{\lambda}{(n-1)}[g(Y, Z) X-g(X, Z) Y], \tag{5.14}
\end{equation*}
$$

which gives us

$$
\begin{equation*}
\left(\nabla_{W} M\right)(X, Y) Z=\left(\nabla_{W} R\right)(X, Y) Z \tag{5.15}
\end{equation*}
$$

Applying ϕ^{2} on the both sides of the above equation we have

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} M\right)(X, Y) Z=\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z \tag{5.16}
\end{equation*}
$$

Hence we can state the following theorem:
Theorem 6 A globally M-projectively ϕ-symmetric ε-Lorentzian para Sasakian manifold is globally ϕ-symmetric.

6. 3-dimensional locally M-projectively ϕ-symmetric
 ε-Lorentzian para Sasakian manifold

In a 3 -dimensional ε-Lorentzian para Sasakian manifold the curvature tensor R, the Ricci tensor S and the Ricci operator Q are as in (4.5),(4.4) and (4.3), respectively. Now putting (4.3),(4.4) and (4.5) into (1.1) we have

$$
\begin{aligned}
& M(X, Y) Z=\frac{1}{2}\left(3 \varepsilon-\frac{5 r}{2}\right)[g(Y, Z) X-g(X, Z) Y]-\left(\frac{r}{2}+\varepsilon\right)[g(Y, Z) \eta(X) \xi \\
& \quad-g(X, Z) \eta(Y) \xi+\varepsilon \eta(Y) \eta(Z) X-\varepsilon \eta(X) \eta(Z) Y] .
\end{aligned}
$$

Taking covariant differentiation of (6.1) we have

$$
\begin{align*}
& \begin{aligned}
&\left(\nabla_{W} M\right)(X, Y) \mathrm{Z}=-\frac{5 d r(W)}{4} {[g(Y, Z) X-g(X, Z) Y]-\frac{d r(W)}{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \xi} \\
&+\varepsilon \eta(Y) \eta(Z) X-\varepsilon \eta(X) \eta(Z) Y]-\left(\frac{r}{2}+\varepsilon\right)\left[g(Y, Z)\left(\nabla_{W} \eta\right)(X) \xi\right. \\
&+g(Y, Z) \eta(X) \nabla_{W} \xi-g(X, Z)\left(\nabla_{W} \eta\right)(Y) \xi-g(X, Z) \eta(Y) \nabla_{W} \xi \\
&+\varepsilon\left(\nabla_{W} \eta\right)(Y) \eta(Z)+\varepsilon\left(\nabla_{W} \eta\right)(Z) \eta(Y) X-\varepsilon\left(\nabla_{W} \eta\right)(X) \eta(Z) \\
&\left.-\varepsilon\left(\nabla_{W} \eta\right)(Z) \eta(X) Y\right] .
\end{aligned}
\end{align*}
$$

If X, Y and Z are horizontal vector fields. then

$$
\begin{align*}
\left(\nabla_{W} M\right)(X, Y) Z=- & \frac{5 d r(W)}{4}[g(Y, Z) X-g(X, Z) Y]-\left(\frac{r}{2}+\varepsilon\right)\left[g(Y, Z)\left(\nabla_{W} \eta\right)(X) \xi\right. \tag{6.3}\\
& \left.-g(X, Z)\left(\nabla_{W} \eta\right)(Y) \xi\right] .
\end{align*}
$$

Applying ϕ^{2} on both sides of the equation, we get

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} M\right)(X, Y) Z\right)=-\frac{5 d r(W)}{2}\left[g(Y, Z) \phi^{2} X-g(X, Z) \phi^{2} Y\right] . \tag{6.4}
\end{equation*}
$$

Since X, Y and Z are horizontal vector fields, using (2.1) in (6.4) we get

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=-\frac{5 d r(W)}{2}[g(Y, Z) X-g(X, Z) Y] . \tag{6.5}
\end{equation*}
$$

Assume that $\phi^{2}\left(\left(\nabla_{W} M\right)(X, Y) Z\right)=0$ with horizontal vector fields. Then the equation (6.5) implies $d r(W)=0$. Hence we have the following theorem:

Theorem 7: A 3-dimensional (ε)-Lorentzian para Sasakian manifolds is locally M-projectively ϕ-symmetric if and only if the scalar curvature r is constant for all horizontal vector fields.

In particular, by taking $Z=\xi$ in (6.2) we have

$$
\begin{align*}
\left(\nabla_{W} M\right)(X, Y) \xi & =-\varepsilon \frac{3 d r(W)}{4}[\eta(Y) X-\eta(X) Y]-\left(\frac{r}{2}+\varepsilon\right)\left[\varepsilon \eta(Y)\left(\nabla_{W} \eta\right)(X) \xi\right. \tag{6.6}\\
& +\varepsilon \eta(Y) \eta(X) \nabla_{W} \xi-\varepsilon \eta(X)\left(\nabla_{W} \eta\right)(Y) \xi-\varepsilon \eta(X) \eta(Y) \nabla_{W} \xi \\
& -\varepsilon\left(\nabla_{w} \eta\right)(Y) X+\varepsilon\left(\nabla_{W} \eta\right)(\xi) \eta(Y) X+\varepsilon\left(\nabla_{W} \eta\right)(X) Y \\
& \left.-\varepsilon\left(\nabla_{W} \eta\right)(\xi) \eta(X) Y\right] .
\end{align*}
$$

using (2.8) in (6.6) we obtain

$$
\begin{equation*}
\left(\nabla_{W} M\right)(X, Y) \xi=-\left(\frac{r}{2}+\varepsilon\right)[g(Y, W) X-g(X, W) Y] \tag{6.7}
\end{equation*}
$$

Applying ϕ^{2} on the both sides of (6.7) we get

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} M\right)(X, Y) \xi=-\left(\frac{r}{2}+\varepsilon\right)\left[g(Y, W) \phi^{2} X-g(X, W) \phi^{2} Y\right] \tag{6.8}
\end{equation*}
$$

If we take X, Y, W orthogonal to in ξ (6.7) and (6.8) we have

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} M\right)(X, Y) \xi=\left(\nabla_{W} M\right)(X, Y) \xi \tag{6.9}
\end{equation*}
$$

Now we can state the following:

Theorem 8: Let M be a 3-dimensional (ε)-Lorentzian para Sasakian such that

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} M\right)(X, Y) \xi=0 \tag{6.10}
\end{equation*}
$$

for all horizontal vector fields X, Y, W. Then M is an indefinite space form.

References

[1] Bejancu, A. and Duggal, K. L. (1993). Real hypersurfaces of indefinite kaehler manifolds, Int. J. Math. Sci. 16, no 3,545-556.
[2] Carten, E. (1926) Sur une classe remarquable d'espaces de Riemannian. Bull. Soc. Math. France 54, 214-264.
[3] Chaubey, S. K. (2011), Some properties of LP- Sasakian manifolds equipped with M-projective curvature tensor, Bull. of Math. Anal. and Appl., 3(4), 50-58.
[4] Chaubey, S. K. (2012), On weakly M-projectively symmetric manifolds, Novi Sad J. Math., 42, 1,??-??
[5] De, U. C. (2008), On ϕ-symmetric Kenmotsu manifolds. Int. Electronic J. Geom. 1(1) ,33-38.
[6] Duggle, K. L. (1990). Space and time manifold and contact structure, Int. J. Math. Sci.13, no 3,545-553
[7] Kumar, R. R.Rani and Nagaich R.K. (2007). On Sasakian manifolds, IJMMS, , Article ID: 93562, 10 pages.
[8] Ojha R. H. (1975) : A note on the M-projective curvature tensor, Indian J. pure apll Math., 8(12), 1531-1534.
[9] Ojha R. H. (1986),: M-projectively flat Saskian manifolds, Indian J. pure apll Math., 14(4), 481-484
[10] Pokhariyal G. P. and Mishra R. S. (1971) : Curvature tensor and their relativstic significance II, Yokohama Mathematical Journal, 19, 97-103
[11] Shaikh, A. A. and Baishya, K. K. (2006), On ϕ-symmetric LP-Sasakian manifolds. Yokohama Math. J. 52, 97-112.
[12] Shaikh, A. A. Basu, and T. Eyasmin, S. (2007). On locally ϕ-symmetric (LCS) n_{n}-manifolds. Int. J. of Pure and Applied Math. 41(8), 1161-1170.
[13] Shaikh, A. A. and Hui, S. K. (2009). On locally ϕ-symmetric β-Kenmotsu manifolds. Extracta Mathematicae 24(3), 301-316.
[14] Takahashi, T. (1977), Sasakian ϕ-symmetric spaces. Tohoku Math. J.29, 91-113.
[15] Tanno S. (1971): curvature tensors and non-existence of Killing vectors, Tensor, N.S., 22, 387-394
[16] Tripathi, M. M. and Kilic, E. and Perktas S. Y. and Keles, S. (2010). Indefinite almost para-contact metric manifolds, Int. J. Math. Sci. Article ID: 846195, 19 pages.
[17] Xufeng X. and Xiaoli, C. (1998), Two theorem on ε-Sasakian manifolds, Int. J. Math. Sci.21, no 2, 249-254.

