$f \tilde{e}$-continuous and $f \tilde{e}$-irresolute Mappings

K. Balasubramaniyan
Department of Mathematics Government Arts and Science College for Women Bargur, Krishnagri, Tamil Nadu-635 104, Mathematics Section, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India.

Abstract

In this paper the concept of $f \tilde{e}$-continuous, $f \tilde{e}$-irresolute, $f \tilde{e}$-open and $f \tilde{e}$-closed mappings are introduced. Some interesting properties and characterizations of them are investigated. Interrelations among the concepts are introduced are studied.

Keywords and phrases: $f \tilde{e}$-continuous, $f \tilde{e}$-irresolute, $f \tilde{e}$-open, $f \tilde{e}$-closed and $\tilde{f} \tilde{T_{1}} T_{\frac{1}{2}}$-space.
AMS (2000) subject classification: 54A40, 54A99, 03E72, 03E99.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [11] in his classical paper. Fuzzy sets have applications in many fields such as information [7] and control[9]. In 1985, Sostak [8] established a new form of fuzzy topological structure. The concept of fuzzy e-open set was introduced and studied by Seenivasan [6]. The concept of fuzzy $e-T_{1}$-space was introduced and studied by[6]. The concept of g -border, g-frontier were studied in[2]. Balasubramaniyan [1] introduced the concepts of r-fuzzy \tilde{e} -border, r-fuzzy \tilde{e}-exterior, r-fuzzy \tilde{e}-frontier in the sense of Sostak [8] and Ramadan [4] are introduced. In this paper the concept of $f \tilde{e}$-continuous, $f \tilde{e}$-irresolute, $f \tilde{e}$-open and $f \tilde{e}$-closed mappings are introduced. Some interesting properties and characterizations of them are investigated. Interrelations among the concepts are introduced are studied.

Throughout this paper, let X be a non-empty set, $I=[0,1]$ and $I_{0}=(0,1]$.

2. Preliminaries

Definition 2.1 [5]A function $T: I^{X} \rightarrow I$ is called a smooth topology on X if it satisfies the following conditions:
(i) $T(\overline{0})=T(\overline{1})=1$.
(ii) $T\left(\mu_{1} \wedge \mu_{2}\right) \geq T\left(\mu_{1}\right) \wedge T\left(\mu_{2}\right)$ for any $\mu_{1}, \mu_{2} \in I^{X}$.
(iii) $T\left(\vee_{i \in \Gamma} \mu_{i}\right) \geq \wedge_{i \in \Gamma} T\left(\mu_{i}\right)$ for any $\left\{\mu_{i}\right\}_{i \in \Gamma} \in I^{X}$.

The pair (X, T) is called a smooth topological space
Remark 2.1 Let (X, T) be a smooth topological space. Then, for each $r \in I_{0}, T_{r}=\left\{\mu \in I^{X} ; T(\mu) \geq r\right\}$ is Chang's fuzzy topology on X.

Proposition 2.1 [5] Let (X, T) be a smooth topological space. For each $\lambda \in I^{X}, r \in I_{0}$ an operator $C_{\tau}: I^{X} \times I_{0} \rightarrow I^{X}$ is defined as follows:
$C_{\tau}(\lambda, r)=\wedge\{\mu: \mu \geq \lambda, T(\overline{1}-\mu) \geq r\}$. For $\lambda, \mu \in I^{X}$ and $r, s \in I_{0}$ it satisfies the following conditions:
(1) $C_{\tau}(\overline{0}, r)=\overline{0}$.
(2) $\lambda \leq C_{\tau}(\lambda, r)$.
(3) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r)=C_{\tau}(\lambda \vee \mu, r)$.
(4) $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, s)$ if $r \leq s$.
(5) $C_{\tau}\left(C_{\tau}(\lambda, r), r\right)=C_{\tau}(\lambda, r)$.

Proposition 2.2 [4] Let (X, T) be a smooth topological space. For each $\lambda \in I^{X}, r \in I_{0}$ an operator $I_{\tau}: I^{X} \times I_{0} \rightarrow I^{X}$ is defined as follows:
$I_{\tau}(\lambda, r)=\vee\{\mu: \mu \leq \lambda, T(\mu) \geq r\}$. For each $\lambda, \mu \in I^{X}$ and $r, s \in I_{0}$ it satisfies the following conditions:
(1) $I_{\tau}(\overline{1}-\lambda, r)=\overline{1}-C_{\tau}(\lambda, r)$
(2) $I_{\tau}(\overline{1}, r)=\overline{1}$.
(3) $I_{\tau}(\lambda, r) \leq \lambda$
(4) $I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r)=I_{\tau}(\lambda \wedge \mu, r)$.
(5) $I_{\tau}(\lambda, r) \geq I_{\tau}(\lambda, s)$ if $r \leq s$.
(6) $I_{\tau}\left(I_{\tau}(\lambda, r), r\right)=I_{\tau}(\lambda, r)$.

Definition 2.2 [3] Let (X, τ) be a fuzzy topological space, $\lambda \in I^{X}$ and $r \in I_{0}$. Then
(1) A fuzzy set λ is called r-fuzzy regular open (for short, r-fro) if $\lambda=I_{\tau}\left(C_{\tau}(\lambda, r), r\right)$.
(2) A fuzzy set λ is called r-fuzzy regular closed (for short, $r-\mathrm{frc}$) if $\lambda=C_{\tau}\left(I_{\tau}(\lambda, r), r\right)$.

Definition 2.3 [3] Let (X, τ) be a fts. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(1) The r-fuzzy δ closure of λ, denoted by $\delta-C_{\tau}(\lambda, r)$, and is defined by $\delta-C_{\tau}(\lambda, r)=\wedge\left\{\mu \in I^{X} \mid \mu \geq \lambda, \mu\right.$ is $\left.r-\mathrm{frc}\right\}$.
(2) The r-fuzzy δ interior of λ, denoted by $\delta-I_{\tau}(\lambda, r)$, and is defined by $\delta-I_{\tau}(\lambda, r)=\vee\left\{\mu \in I^{X} \mid \mu \leq \lambda, \mu\right.$ is r-feo $\}$.

Definition 2.4 [10] Let (X, τ) be a fuzzy topological space, $\lambda \in I^{X}$ and $r \in I_{0}$. Then
(1) a fuzzy set λ is called r-fuzzy e open (for short, r-feo) if $\lambda \leq I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right) \vee C_{\tau}\left(\delta-I_{\tau}(\lambda, r), r\right)$.
(2) A fuzzy set λ is called r-fuzzy regular closed (for short, r-frc) if $\lambda \geq I_{\tau}\left(\delta-C_{\tau}(\lambda, r), r\right) \wedge C_{\tau}\left(\delta-I_{\tau}(\lambda, r), r\right)$.

Definition 2.5 [10] Let (X, τ) be afts. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(1) The r-fuzzy e closure of λ, denoted by $\mathrm{f} e-C_{\tau}(\lambda, r)$, and is defined by $\mathrm{f} e$ $C_{\tau}(\lambda, r)=\wedge\left\{\mu \in I^{X} \mid \mu \geq \lambda, \mu\right.$ is r-fec $\}$.
(2) The r-fuzzy e interior of λ, denoted by $\mathrm{f} e-I_{\tau}(\lambda, r)$, and is defined by $\mathrm{f} e$ $I_{\tau}(\lambda, r)=\bigvee\left\{\mu \in I^{X} \mid \mu \leq \lambda, \mu\right.$ is r-feo $\}$.

Lemma 2.1 [10] In a fuzzy topological space X,

1. Any union of r-fuzzy e-open sets is a r-fuzzy e-open set.
2. Any intersection of r-fuzzy e-closed sets is a r-fuzzy e-closed set.

Definition 2.6 [1]Let (X, T) be a smooth topological space. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}$.
(1) λ is called r-fuzzy \tilde{e}-open (briefly r-f \tilde{e} o) if $f e-I_{\tau}(\lambda, r) \geq \mu$, whenever $\lambda \geq \mu$ and $\mu \in I^{X}$ is r-fec.
(2) λ is called r-fuzzy \tilde{e}-closed (briefly r-fe $\tilde{e} \mathrm{c}$) if $\mathrm{f} e-C_{\tau}(\lambda, r) \leq \mu$, whenever $\lambda \leq \mu$ and $\mu \in I^{X}$ is $r-f e o$.
(3) The r-fuzzy \tilde{e}-interior of λ, denoted by $\mathrm{f} \tilde{e}-I_{T}(\lambda, r)$ is defined as $\mathrm{f} \tilde{e}$ -
$I_{T}(\lambda, r)=\vee\{\mu: \mu \leq \lambda, \mu$ is $r-f \tilde{e} o\}$.
(4) The r-fuzzy \tilde{e}-closure of λ, denoted by $\mathrm{f} \tilde{e}-C_{T}(\lambda, r)$ is defined as $\mathrm{f} \tilde{e}$ $C_{T}(\lambda, r)=\wedge\{\mu: \mu \geq \lambda, \mu$ is $r-f \tilde{e} c\}$.

Definition 2.7 [1] Let (X, T) be a smooth topological space. For each $\lambda \in I^{X}$ and $r \in I_{0}$, the r $-f \tilde{e}$-border of λ, denoted by $f \tilde{e}-b_{T}(\lambda, r)$ is defined as $f \tilde{e}-b_{T}(\lambda, r)=\lambda-f \tilde{e}-I_{T}(\lambda, r)$.

Definition 2.8 [1] Let (X, T) be a smooth topological space. For $\lambda \in I^{X}$ and $r \in I_{0}$, the r-fuzzy \tilde{e}-frontier of λ, denoted by $f \tilde{e}-F r_{T}(\lambda, r)$ is defined as $f \tilde{e}-F r_{T}(\lambda, r)=f \tilde{e}-C_{T}(\lambda, r)-f \tilde{e}-I_{T}(\lambda, r)$.

Definition 2.9 [1] Let (X, T) be a smooth topological space. For $\lambda, \mu \in I^{X}$ and $r \in I_{0}$, the r -fuzzy \tilde{e}-exterior of λ, denoted by $f \tilde{e}-\operatorname{Ext}_{T}(\lambda, r)$ is defined as $f \tilde{e}-E x t_{T}(\lambda, r)=f \tilde{e}-I_{T}(\overline{1}-\lambda, r)$.

3. Properties of fuzzy \tilde{e}-continuous and fuzzy \tilde{e}-irresolute mappings

In this section, the properties of fuzzy \tilde{e}-irresolute and fuzzy \tilde{e}-continuous mappings are established.

Definition 3.1 Let (X, T) and (Y, S) be any two smooth topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ be any mapping. Then
(1) f is called fuzzy \tilde{e}-open if $f(\mu)$ is a $r-f \tilde{e}$ o set for each $r-f \tilde{e}$ o set $\mu \in I^{X}, r \in I_{0}$.
(2) f is called fuzzy \tilde{e}-closed if $f(\mu)$ is a r-f \tilde{e} c set for each r-f $\tilde{e} c$ set $\mu \in I^{X}, r \in I_{0}$.
(3) f is called fuzzy \tilde{e}-continuous if $f^{-1}(\mu)$ is a $r-f \tilde{e} c$ for every r-f \tilde{e} c set $\mu \in I^{Y}, r \in I_{0}$.
(4) f is called fuzzy \tilde{e}-irresolute if $f^{-1}(\mu)$ is a $r-f \tilde{e} \mathrm{c}$ for each r - $\tilde{e} \mathrm{c}$ set $\mu \in I^{Y}, r \in I_{0}$.

Proposition 3.1 Let (X, T) and (Y, S) be any two smooth topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ be a function. Then the following statements are equivalent.
(1) f is a fuzzy \tilde{e}-irresolute function.
(2) $f\left(f \tilde{e}-C_{T}(\lambda, r)\right) \leq f \tilde{e}-C_{S}(f(\lambda), r)$, for every $\lambda \in I^{X}, r \in I_{0}$.
(3) $f \tilde{e}-C_{T}\left(f^{-1}(\mu), r\right) \leq f^{-1}\left(f \tilde{e}-C_{S}(\mu, r)\right)$, for every $\lambda \in I^{Y}, r \in I_{0}$.

Proof. (1) \Rightarrow (2): Let f be a fuzzy \tilde{e}-irresolute function and let $\lambda \in I^{X}$. Then $f \tilde{e}-C_{S}(f(\lambda), r)$
is a $r-f \tilde{e} \mathrm{c}$ set. By (1), $f^{-1}\left(f \tilde{e}-C_{S}(f(\lambda), r)\right)$ is a $r-f \tilde{e}$-closed set. Thus $\mathrm{f} \tilde{e}-C_{T}\left(f^{-1}(f \tilde{e}-\right.$ $\left.\left.C_{S}(f(\lambda), r), r\right)\right)=\left(f^{-1}\left(f \tilde{e}-C_{S}(f(\lambda), r)\right)\right)$. Now, $\lambda \leq f^{-1}(f(\lambda))$. Therefore, f $\tilde{e}-C_{T}(\lambda, r) \leq f \tilde{e}-$ $C_{T}\left(f^{-1}(f(\lambda)), r\right) \leq f \tilde{e}-C_{T}\left(f^{-1}\left(f \tilde{e}-C_{S}(f(\lambda), r)\right), r\right)=f^{-1}\left(f \tilde{e}-C_{S}(f(\lambda), r)\right)$. Hence, $f\left(f \tilde{e}-C_{T}(\lambda, r)\right) \leq f \tilde{e}-$ $C_{S}(f(\lambda), r)$.
(2) \Rightarrow (3): Let $\mu \in I^{Y}$, then $f^{-1}(\mu) \in I^{X}$. By (2), $f\left(f \tilde{e}-C_{T}\left(f^{-1}(\mu), r\right)\right) \leq f \tilde{e}-$ $C_{S}\left(f\left(f^{-1}(\mu)\right), r\right) \leq f \tilde{e}-C_{S}(\mu, r)$. Hence $f \tilde{e}-C_{T}\left(f^{-1}(\mu), r\right) \leq f^{-1}\left(f \tilde{e}-C_{S}(\mu, r)\right)$.
(3) \Rightarrow (1): Let $\gamma \in I^{Y}$, be a $r-f \tilde{e}$-closed set. Then $f \tilde{e}-C_{S}(\gamma, r)=\gamma$. By (3) f $\tilde{e}-$ $C_{S}\left(f^{-1}(\gamma), r\right) \leq f^{-1}\left(f \tilde{e}-C_{S}(\gamma, r)\right)=f^{-1}(\gamma)$. But $f^{-1}(\gamma) \leq f \tilde{e}-C_{T}\left(f^{-1}(\gamma), r\right)$. Therefore, $f^{-1}(\gamma)=f \tilde{e}-$ $C_{T}\left(f^{-1}(\gamma), r\right)$. Hence $f^{-1}(\gamma)$ is a $r-f \tilde{e}$-closed set. Thus f is fuzzy \tilde{e}-irresolute function.

Propoition 3.2 Let (X, T) and (Y, S) be any two smooth topological spaces. A mapping $f:(X, T) \rightarrow(Y, S)$ is a $f \tilde{e}$-closed iff $f \tilde{e}-C_{S}(f(\lambda), r) \leq f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$ for each $\lambda \in I^{X}$ and $r \in I_{0}$.

Proof. Let $\lambda \in I^{X}$ be a r-f f eclosed set. Suppose that $f \tilde{e}-C_{S}(f(\lambda), r) \leq f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$. Now $f \tilde{e}-C_{T}(\lambda, r)=\lambda$. This implies $f \tilde{e}-C_{S}(f(\lambda), r) \leq f\left(f \tilde{e}-C_{T}(\lambda, r)\right) \leq f(\lambda)$. But $f(\lambda) \leq f \tilde{e}-$ $C_{S}(f(\lambda), r)$. Hence, $f \tilde{e}-C_{S}(f(\lambda), r)=f(\lambda)$. Therefore f is $f \tilde{e}$-closed.

Conversely, let f be an $f \tilde{e}$-closed function. Let $\lambda \in I^{X}$. Then $f \tilde{e}-C_{T}(\lambda, r)$ is $r-f \tilde{e}$-closed. Therefore, $f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$ is $r-f \tilde{e}$-closed. Now $\lambda \leq f \tilde{e}-C_{T}(\lambda, r)$. This implies $f(\lambda) \leq f(f \tilde{e}-$ $\left.C_{T}(\lambda, r)\right)$. Hence $f \tilde{e}-C_{S}(f(\lambda), r) \leq f \tilde{e}-C_{S}\left(f\left(f \tilde{e}-C_{S}(\lambda, r)\right), r\right)=f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$. Therefore, $f \tilde{e}-$ $C_{S}(f(\lambda), r) \leq f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$.

Proposition 3.3 Let (X, T) and (Y, S) be any two smooth topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ be a bijective function. Then the following statements are equivalent:
(1) f and f^{-1} are fuzzy \tilde{e}-irresolute functions.
(2) f is $f \tilde{e}$-continuous and $f \tilde{e}$-open.
(3) f is $f \tilde{e}$-continuous and $f \tilde{e}$-closed.
(4) $f \tilde{e}-C_{S}(f(\lambda), r)=f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$, for each $\lambda \in I^{X}, \quad r \in I_{0}$.

Proof. (1) \Rightarrow (2): Let $\lambda \in I^{Y}$, be a r-fuzzy \tilde{e}-closed set and hence r-f $f \tilde{e}$-closed. Since f is fuzzy \tilde{e}-irresolute, $f^{-1}(\lambda)$ is $r-f \tilde{e}$-closed. Hence f is $f \tilde{e}$-continuous. Let $\mu \in I^{Y}$, be a $r-f \tilde{e}$ -open set. Since f^{-1} is fuzzy \tilde{e}-irresolute, $\left(f^{-1}\right)^{-1}(\mu)=f(\mu)$ is r-f \tilde{e}-open. Hence f is $f \tilde{e}$-open.
(2) \Rightarrow (3): Let $\mu \in I^{X}$, be a $r-f \tilde{e}$-closed set. Then $\overline{1}-\mu$ is r-f \tilde{e}-open. Since f is $f \tilde{e}$ -open, $f(\overline{1}-\mu)$ is $r-f \tilde{e}$-open. But $f(\overline{1}-\mu)=\overline{1}-f(\mu)$. This implies that $f(\mu)$ is $r-f \tilde{e}$-closed. Hence f is $f \tilde{e}$-closed.
(3) \Rightarrow (4): Let $\lambda \in I^{X}$, by Proposition Error! Reference source not found.(2), f(fere $\left.C_{T}(\lambda, r)\right) \leq f \tilde{e}-C_{S}(f(\lambda), r)$. By Proposition 3.2, $f \tilde{e}-C_{S}(f(\lambda, r)) \leq f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$. Hence $f \tilde{e}-$ $C_{S}(f(\lambda), r)=f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$.
(4) \Rightarrow (1): Let $\lambda \in I^{X}$, by (4), $f \tilde{e}-C_{S}(f(\lambda), r)=f\left(f \tilde{e}-C_{T}(\lambda, r)\right)$. Then $f\left(f \tilde{e}-C_{T}(\lambda, r)\right) \leq f \tilde{e}-$ $C_{S}(f(\lambda), r)$, implies f is fuzzy \tilde{e}-irresolute function by Proposition 3.1 Let $\mu \in I^{X}$ be a $r-f \tilde{e}$
-closed. Then $f \tilde{e}-C_{S}(\mu, r)=\mu$. Then $f\left(f \tilde{e}-C_{T}(\mu, r)\right)=f(\mu)$. By (4), $f \tilde{e}-C_{S}(f(\mu), r)=f(f \tilde{e}-$ $\left.C_{T}(\mu, r)\right)=f(\mu)$. Hence $f(\mu)$ is $r-f \tilde{e}$-closed. Therefore f^{-1} is fuzzy \tilde{e}-irresolute.

Proposition 3.4 Let (X, T) and (Y, S) be any two smooth topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ be a fuzzy \tilde{e}-irresolute function. Then $f \tilde{e}-b_{T}\left(f^{-1}(\lambda, r)\right)=\overline{0}$, for a r-f $f \tilde{e}$-open set $\lambda \in I^{Y}$.

Proof. Let $\lambda \in I^{Y}$ be a r-f $f \tilde{e}$-open set. Since f is fuzzy \tilde{e}-irresolute function, $f^{-1}(\lambda)$ is a $r-f \tilde{e}$-open set. Then $f \tilde{e}-I_{T}\left(f^{-1}(\lambda, r)=f^{-1}(\lambda)\right.$. Now, $f \tilde{e}-b_{T}\left(f^{-1}(\lambda), r\right)=f^{-1}(\lambda)-f \tilde{e}-$ $I_{T}\left(f^{-1}(\lambda), r\right)=f^{-1}(\lambda)-f^{-1}(\lambda)=\overline{0}$.

4. Interrelations

The interrelations among the concepts of r-fuzzy \tilde{e}-border, r-fuzzy \tilde{e}-exterior, r-fuzzy \tilde{e} -frontier are established and studied with necessary examples.

Definition 4.1 A smooth fuzzy topological space (X, T) is called $f \tilde{e}-T_{\frac{1}{2}}$ space if every r - $f \tilde{e}$ -closed set $\lambda \in I^{X}$ is $r-f \tilde{e}$ closed.

Proposition 4.1 Let (X, T) and (Y, S) be any two smooth topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ be a $f \tilde{e}$-continuous mapping. Then for any $r-f \tilde{e}$-closed set $\lambda \in I^{Y}, f \tilde{e}-$ $b_{T}\left(f^{-1}(\lambda), r\right)=f \tilde{e}-F r_{T}\left(f^{-1}(\lambda), r\right)$.

Proof. Let $\lambda \in I^{Y}$ be a r-fuzzy \tilde{e}-closed set. Since f is a $f \tilde{e}$-continuous, $f^{-1}(\lambda)$ is $r-f \tilde{e}$ -closed set. Then $f \tilde{e}-C_{T}\left(f^{-1}(\lambda), r\right)=f^{-1}(\lambda)$. Now, $f \tilde{e}-b_{T}\left(f^{-1}(\lambda), r\right)=\left(f^{-1}(\lambda)\right)-(f \tilde{e}-$ $\left.I_{T}\left(f^{-1}(\lambda), r\right)\right)=f \tilde{e}-C_{T}\left(f^{-1}(\lambda), r\right)-\left(f \tilde{e}-I_{T}\left(f^{-1}(\lambda), r\right)\right)=f \tilde{e}-\operatorname{Fr}_{T}\left(f^{-1}(\lambda), r\right)$. Hence, $f \tilde{e}-$ $b_{T}\left(f^{-1}(\lambda), r\right)=f \tilde{e}-F r_{T}\left(f^{-1}(\lambda), r\right)$.

Proposition 4.2 Let (X, T) and (Y, S) be any two smooth fuzzy topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ be a mapping. Then for $\lambda \in I^{Y}$

$$
f \tilde{e}-\operatorname{Ext}_{T}\left(f^{-1}(\lambda), r\right) \leq f \tilde{e}-C_{T}\left(\overline{1}-f^{-1}(\lambda), r\right)
$$

Proof. Let $\lambda \in I^{Y}$. Now, $f \tilde{e}-\operatorname{Ext}_{T}\left(f^{-1}(\lambda), r\right)=f \tilde{e}-I_{T}\left(\overline{1}-f^{-1}(\lambda), r\right) \leq f \tilde{e}-C_{T}\left(\overline{1}-f^{-1}(\lambda), r\right)$.
Proposition 4.3 Let (X, T) be a $f \tilde{e}-T_{\frac{1}{2}}$ space. Let $\lambda \in I^{X}$ be a r-fée-closed set. Then the following statements hold:
(1) $f \tilde{e}-b_{T}(\lambda, r)=f \tilde{e}-F r_{T}(\lambda, r)$.
(2) $f \tilde{e}-E x t_{T}(f(\lambda), r)=\overline{1}-\lambda$.

Proof. Let $\lambda \in I^{X}$ be a $r-f \tilde{e}$-closed set. Since (X, T) is a $f \tilde{e}-T_{\frac{1}{2}}$ space, λ is $r-f \tilde{e}$ closed. This implies $\lambda=f \tilde{e}-C_{T}(\lambda, r)$. Now, $f \tilde{e}-b_{T}(\lambda, r)=\lambda-f \tilde{e}-I_{T}(\lambda, r)=f \tilde{e}-C_{T}(\lambda, r)-f \tilde{e}-$ $I_{T}(\lambda, r)=f \tilde{e}-F r_{T}(\lambda, r) . f \tilde{e}-E x t_{T}(\lambda, r)=f \tilde{e}-I_{T}(\overline{1}-\lambda, r)=\overline{1}-f \tilde{e}-C_{T}(\lambda, r)=\overline{1}-\lambda$.

Proposition 4.4 Let (X, T) and (Y, S) be any two smooth topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ be a $f \tilde{e}$-irresolute function and (X, T) is a $f \tilde{e} T_{\frac{1}{2}}$ space. Then for a r - $f \tilde{e}$-closed set $\lambda \in I^{Y}$ and $r \in I_{0}$, the following statements hold:
(1) $f \tilde{e}-b_{T}\left(f^{-1}(\lambda), r\right)=f \tilde{e}-F r_{T}\left(f^{-1}(\lambda), r\right)$.
(2) $f \tilde{e}-\operatorname{Ext}_{T}\left(f^{-1}(\lambda), r\right)=\overline{1}-f^{-1}(\lambda)$.

Proof. Let $\lambda \in I^{Y}$ be a r-f \tilde{e}-closed set. Since f is a $f \tilde{e}$-irresolute, $f^{-1}(\lambda)$ is a $r-f \tilde{e}$ -closed. Since (X, T) is a $f \tilde{e}-T_{\frac{1}{2}}, f^{-1}(\lambda)$ is a $r-f \tilde{e}$-closed. This implies $f \tilde{e}-C_{T}\left(f^{-1}(\lambda), r\right)=f^{-1}(\lambda)$. Now $\quad f \tilde{e}-b_{T}\left(f^{-1}(\lambda), r\right)=f^{-1}(\lambda)-f \tilde{e}-I_{T}\left(f^{-1}(\lambda), r\right)=f \tilde{e}-C_{T}\left(f^{-1}(\lambda), r\right)-f \tilde{e}-I_{T}\left(f^{-1}(\lambda), r\right)=f \tilde{e}-$ $F r_{T}\left(f^{-1}(\lambda), r\right)$ and $f \tilde{e}-E x t_{T}\left(f^{-1}(\lambda), r\right)=f \tilde{e}-I_{T}\left(\overline{1}-f^{-1}(\lambda), r\right)=\overline{1}-f \tilde{e}-C_{T}\left(f^{-1}(\lambda), r\right)=\overline{1}-f^{-1}(\lambda)$.

Proposition 4.5 Let (X, T) and (Y, S) be any two smooth topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ be a fée-closed mapping and (Y, S) be a $f \tilde{e}-T_{\frac{1}{2}}$ space. Then for a r-f \tilde{e}-closed set $\lambda \in I^{X}$ and $r \in I_{0}$ the following statements hold:
(1) $f \tilde{e}-b_{S}(f(\lambda), r)=f \tilde{e}-F r_{S}(f(\lambda), r)$.
(2) $f \tilde{e}-\operatorname{Ext}_{S}(f(\lambda), r)=\overline{1}-f(\lambda)$.

Proof. Let $\lambda \in I^{Y}$ be a r - $f \tilde{e}$-closed set. Since f is $r-f \tilde{e}$-closed set, $f(\lambda)$ is $r-f \tilde{e}$ -closed. Since (Y, S) is $f \tilde{e}-T_{\frac{1}{2}}$-space, $f(\lambda)$ is $r-f \tilde{e}$-closed. This implies $f \tilde{e}-C_{T}(f(\lambda), r)=f(\lambda)$. Now $f \tilde{e}-b_{S}(f(\lambda), r)=f(\lambda)-f \tilde{e}-I_{S}(f(\lambda), r)=f \tilde{e}-C_{S}(f(\lambda), r)-f \tilde{e}-I_{S}(f(\lambda), r)=f \tilde{e}-F r_{S}(f(\lambda), r)$ and $f \tilde{e}-E x t_{S}(f(\lambda), r)=f \tilde{e}-I_{S}(\overline{1}-f(\lambda), r)=\overline{1}-f \tilde{e}-C_{S}(f(\lambda), r)=\overline{1}-f(\lambda)$.

Proposition 4.6 Let $(X, T),(Y, S)$ and (Z, R) be any three smooth topological spaces. Let $f:(X, T) \rightarrow(Y, S)$ and $g:(Y, S) \rightarrow(Z, R)$ be fe\tilde{e}-irresolute mappings. If (X, T) is a $f \tilde{e}-T_{\frac{1}{2}}$ space, then
(1) $f \tilde{e}-b_{T}\left((g \circ f)^{-1}(\lambda), r\right)=f \tilde{e}-F r_{T}\left((g \circ f)^{-1}(\lambda), r\right)$.
(2) $f \tilde{e}-\operatorname{Ext}_{T}\left((g \circ f)^{-1}(\lambda), r\right)=\overline{1}-(g \circ f)^{-1}(\lambda)$.

Proof. Let $\lambda \in I^{Z}$ be a $r-f \tilde{e}$-closed set. Since g is a $f \tilde{e}$-irresolute, $g^{-1}(\lambda)$ is $r-f \tilde{e}$ -closed. Since (X, T) is $f \tilde{e}-T_{\frac{1}{2}}$ space, $(g \circ f)(\lambda)=f^{-1}\left(g^{-1}(\lambda)\right)$ is $r-f \tilde{e}$ closed. This implies $f \tilde{e}-$ $C_{T}\left((g \circ f)^{-1}(\lambda), r\right)=(g \circ f)^{-1}(\lambda)$. Now $f \tilde{e}-b_{T}\left((g \circ f)^{-1}(\lambda), r\right)=\left((g \circ f)^{-1}(\lambda)-f \tilde{e}-I_{T}\left((g \circ f)^{-1}(\lambda), r\right)=f \tilde{e}\right.$ - $\quad C_{T}\left((g \circ f)^{-1}(\lambda), r\right)-f \tilde{e} \quad-\quad I_{T}\left((g \circ f)^{-1}(\lambda), r\right)=f \tilde{e} \quad-\quad \operatorname{Fr}_{T}\left((g \circ f)^{-1}(\lambda), r\right) \quad$ and $\quad f \tilde{e} \quad-$ $E x t_{T}\left((g \circ f)^{-1}(\lambda), r\right)=\overline{1}-f \tilde{e}-C_{T}\left((g \circ f)^{-1}(\lambda), r\right)=\overline{1}-\left((g \circ f)^{-1}(\lambda)\right.$.

References

[1] K. Balasubramaniyan, Notions via r-fuzzy \tilde{e}-open sets, submitted.
[2] M. Caldas, S. Jafari and T. Noiri, Notions via g-open sets, Kochi J. Math., 2, (2007), 43-50.
[3] Y. C. Kim and J. W. Park, r-fuzzy δ-closure and r-fuzzy θ-closure sets, J. Korea Fuzzy Logic and Intelligent systems, 10(6) (2000), 557-563.
[4] A. A. Ramadan, S.E. Abbas and Yong Chankim, Fuzzy-irresolute mappings in smooth fuzzy topological spaces, The Journal of Fuzzy Mathematics, 9, (2001), 865-877
[5] S. K. Samanta and K. C. Chattaopadhyay, Fuzzy topology, Fuzzy Sets and Systems, 54, (1993), 207-221
[6] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics 8(1) (2014), 141--148.
[7] P. Smets, The degree of belief in a fuzzy event, Inform Sci., 25, (1981), 1-19.
[8] A. P. Sostak, On a fuzzy topological structure, Revid. Cric. Maten Palermo (Ser II), 11, (1985),
89-103.
[9] M. Sugemo, An introductory survey of fuzzy control, Inform. Sci., 36, (1985), 59-83.
[10] D. Sobana, V. Chandrasekar and A. vadivel, Fuzzy e-continuity in \hat{S} ostak's fuzzy topological spaces, (submitted).
[11] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.

