f_{e} -continuous and f_{e} -irresolute Mappings

K. Balasubramaniyan

Department of Mathematics Government Arts and Science College for Women Bargur, Krishnagri, Tamil Nadu-635 104, Mathematics Section, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India.

Abstract

In this paper the concept of \tilde{fe} -continuous, \tilde{fe} -irresolute, \tilde{fe} -open and \tilde{fe} -closed mappings are introduced. Some interesting properties and characterizations of them are investigated. Interrelations among the concepts are introduced are studied.

Keywords and phrases: \tilde{fe} -continuous, \tilde{fe} -irresolute, \tilde{fe} -open, \tilde{fe} -closed and \tilde{feT}_{1} -space.

AMS (2000) subject classification: 54A40, 54A99, 03E72, 03E99.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [11] in his classical paper. Fuzzy sets have applications in many fields such as information [7] and control[9]. In 1985, Sostak [8] established a new form of fuzzy topological structure. The concept of fuzzy e-open set was introduced and studied by Seenivasan [6]. The concept of fuzzy $e - T_1$ -space was introduced and studied by[6]. The concept of g

-border, *g*-frontier were studied in[2]. Balasubramaniyan [1] introduced the concepts of *r*-fuzzy \tilde{e} -border, *r*-fuzzy \tilde{e} -exterior, *r*-fuzzy \tilde{e} -frontier in the sense of Sostak [8] and Ramadan [4] are introduced. In this paper the concept of \tilde{fe} -continuous, \tilde{fe} -irresolute, \tilde{fe} -open and \tilde{fe} -closed mappings are introduced. Some interesting properties and characterizations of them are investigated. Interrelations among the concepts are introduced are studied.

Throughout this paper, let X be a non-empty set, I = [0,1] and $I_0 = (0,1]$.

2. Preliminaries

Definition 2.1 [5]A function $T: I^X \to I$ is called a smooth topology on X if it satisfies the following conditions:

- (i) $T(\overline{0}) = T(\overline{1}) = 1$.
- (ii) $T(\mu_1 \wedge \mu_2) \ge T(\mu_1) \wedge T(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$.
- (iii) $T(\bigvee_{i\in\Gamma}\mu_i) \ge \bigwedge_{i\in\Gamma}T(\mu_i)$ for any $\{\mu_i\}_{i\in\Gamma} \in I^X$.

The pair (X,T) is called a smooth topological space

Remark 2.1 Let (X,T) be a smooth topological space. Then, for each $r \in I_0, T_r = \{\mu \in I^X; T(\mu) \ge r\}$ is Chang's fuzzy topology on X.

Proposition 2.1 [5] Let (X,T) be a smooth topological space. For each $\lambda \in I^X$, $r \in I_0$ an operator $C_{\tau}: I^X \times I_0 \to I^X$ is defined as follows:

 $C_{\tau}(\lambda, r) = \bigwedge \{\mu : \mu \ge \lambda, T(\overline{1} - \mu) \ge r\}$. For $\lambda, \mu \in I^X$ and $r, s \in I_0$ it satisfies the following conditions:

- (1) $C_{\tau}(\bar{0},r) = \bar{0}$.
- (2) $\lambda \leq C_{\tau}(\lambda, r)$.
- (3) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r) = C_{\tau}(\lambda \vee \mu, r).$
- (4) $C_{\tau}(\lambda,r) \leq C_{\tau}(\lambda,s)$ if $r \leq s$.
- (5) $C_{\tau}(C_{\tau}(\lambda,r),r) = C_{\tau}(\lambda,r)$.

Proposition 2.2 [4] Let (X,T) be a smooth topological space. For each $\lambda \in I^X$, $r \in I_0$ an operator $I_{\tau} : I^X \times I_0 \to I^X$ is defined as follows:

 $I_{\tau}(\lambda, r) = \bigvee \{\mu : \mu \leq \lambda, T(\mu) \geq r\}$. For each $\lambda, \mu \in I^{X}$ and $r, s \in I_{0}$ it satisfies the following conditions:

- (1) $I_{\tau}(\bar{1}-\lambda,r) = \bar{1}-C_{\tau}(\lambda,r)$
- (2) $I_{\tau}(\bar{1},r) = \bar{1}$.
- (3) $I_{\tau}(\lambda, r) \leq \lambda$
- (4) $I_{\tau}(\lambda, r) \wedge I_{\tau}(\mu, r) = I_{\tau}(\lambda \wedge \mu, r)$.
- (5) $I_{\tau}(\lambda, r) \ge I_{\tau}(\lambda, s)$ if $r \le s$.
- (6) $I_{\tau}(I_{\tau}(\lambda,r),r) = I_{\tau}(\lambda,r)$.

Definition 2.2 [3] Let (X, τ) be a fuzzy topological space, $\lambda \in I^X$ and $r \in I_0$. Then

(1) A fuzzy set λ is called *r*-fuzzy regular open (for short, *r*-fro) if $\lambda = I_{\tau}(C_{\tau}(\lambda, r), r)$. (2) A fuzzy set λ is called *r*-fuzzy regular closed (for short, *r*-frc) if $\lambda = C_{\tau}(I_{\tau}(\lambda, r), r)$.

Definition 2.3 [3] Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$.

(1) The *r*-fuzzy δ closure of λ , denoted by $\delta - C_{\tau}(\lambda, r)$, and is defined by $\delta - C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X \mid \mu \ge \lambda, \mu \text{ is } r \text{-frc } \}.$

(2) The *r*-fuzzy δ interior of λ , denoted by $\delta - I_{\tau}(\lambda, r)$, and is defined by $\delta - I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X \mid \mu \leq \lambda, \mu \text{ is } r \text{-feo } \}.$

Definition 2.4 [10] Let (X, τ) be a fuzzy topological space, $\lambda \in I^X$ and $r \in I_0$. Then (1) a fuzzy set λ is called r-fuzzy e open (for short, r-feo) if $\lambda \leq I_r(\delta - C_r(\lambda, r), r) \vee C_r(\delta - I_r(\lambda, r), r)$.

(2) A fuzzy set λ is called r-fuzzy regular closed (for short, r-frc) if $\lambda \geq I_{\tau}(\delta - C_{\tau}(\lambda, r), r) \wedge C_{\tau}(\delta - I_{\tau}(\lambda, r), r)$.

Definition 2.5 [10] Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$.

(1) The *r*-fuzzy *e* closure of λ , denoted by f*e*- $C_{\tau}(\lambda, r)$, and is defined by f*e*- $C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X \mid \mu \ge \lambda, \mu \text{ is } r \text{-fec } \}.$

(2) The *r*-fuzzy *e* interior of λ , denoted by $fe - I_{\tau}(\lambda, r)$, and is defined by $fe - I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X \mid \mu \leq \lambda, \mu \text{ is } r \text{-feo } \}.$

Lemma 2.1 [10] In a fuzzy topological space X,
1. Any union of r-fuzzy e-open sets is a r-fuzzy e-open set.

2. Any intersection of r-fuzzy e-closed sets is a r-fuzzy e-closed set.

Definition 2.6 [1]Let (X,T) be a smooth topological space. For $\lambda, \mu \in I^X$ and $r \in I_0$.

(1) λ is called r-fuzzy $e^{\tilde{e}}$ -open (briefly $r - fe^{\tilde{e}}$ o) if $fe - I_{\tau}(\lambda, r) \ge \mu$, whenever $\lambda \ge \mu$ and $\mu \in I^{X}$ is r - fec.

(2) λ is called r-fuzzy e^{-c} -closed (briefly r-f e^{-c}) if $f e - C_{\tau}(\lambda, r) \le \mu$, whenever $\lambda \le \mu$ and $\mu \in I^{X}$ is r-feo.

(3) The *r*-fuzzy \tilde{e} -interior of λ , denoted by $\tilde{fe} - I_T(\lambda, r)$ is defined as \tilde{fe} -

 $I_{T}(\lambda, r) = \bigvee \{ \mu : \mu \leq \lambda, \mu \text{ is } r - \tilde{feo} \}.$

(4) The *r*-fuzzy \tilde{e} -closure of λ , denoted by $\tilde{fe} - C_T(\lambda, r)$ is defined as $\tilde{fe} - C_T(\lambda, r) = \sqrt{\{\mu : \mu \ge \lambda, \mu \text{ is } r - \tilde{fec}\}}$.

Definition 2.7 [1] Let (X,T) be a smooth topological space. For each $\lambda \in I^X$ and $r \in I_0$, the r - \tilde{fe} -border of λ , denoted by $\tilde{fe} - b_T(\lambda, r)$ is defined as $\tilde{fe} - b_T(\lambda, r) = \lambda - \tilde{fe} - I_T(\lambda, r)$.

Definition 2.8 [1] Let (X,T) be a smooth topological space. For $\lambda \in I^X$ and $r \in I_0$, the *r*-fuzzy \tilde{e} -frontier of λ , denoted by $\tilde{fe} - Fr_T(\lambda, r)$ is defined as $\tilde{fe} - Fr_T(\lambda, r) = \tilde{fe} - C_T(\lambda, r) - \tilde{fe} - I_T(\lambda, r)$.

Definition 2.9 [1] Let (X,T) be a smooth topological space. For $\lambda, \mu \in I^X$ and $r \in I_0$, the r-fuzzy \tilde{e} -exterior of λ , denoted by $\tilde{fe} - Ext_T(\lambda, r)$ is defined as $\tilde{fe} - Ext_T(\lambda, r) = \tilde{fe} - I_T(\bar{1} - \lambda, r)$.

3. Properties of fuzzy \tilde{e} -continuous and fuzzy \tilde{e} -irresolute mappings

In this section, the properties of fuzzy \tilde{e} -irresolute and fuzzy \tilde{e} -continuous mappings are established.

Definition 3.1 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be any mapping. Then

(1) f is called fuzzy \tilde{e} -open if $f(\mu)$ is a $r - \tilde{fe}$ o set for each $r - \tilde{fe}$ o set $\mu \in I^X$, $r \in I_0$.

(2) f is called fuzzy $e^{-closed}$ if $f(\mu)$ is a $r - fe^{-c}$ set for each $r - fe^{-c}$ set $\mu \in I^{X}$, $r \in I_{0}$.

(3) f is called fuzzy \tilde{e} -continuous if $f^{-1}(\mu)$ is a $r - \tilde{fe}$ c for every $r - \tilde{fe}$ c set

 $\mu \in I^{Y}, r \in I_0.$

(4) f is called fuzzy e^{r} -irresolute if $f^{-1}(\mu)$ is a $r - fe^{r}$ of contrast $r - fe^{r}$ of $r - fe^{r}$ of $\mu \in I^{Y}$, $r \in I_{0}$.

Proposition 3.1 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be a function. Then the following statements are equivalent.

(1) f is a fuzzy e -irresolute function.

- (2) $f(\tilde{fe} C_T(\lambda, r)) \le \tilde{fe} C_S(f(\lambda), r)$, for every $\lambda \in I^X$, $r \in I_0$.
- (3) $\tilde{fe} C_T(f^{-1}(\mu), r) \le f^{-1}(\tilde{fe} C_S(\mu, r))$, for every $\lambda \in I^Y, r \in I_0$.

Proof. (1) \Rightarrow (2): Let f be a fuzzy e-irresolute function and let $\lambda \in I^X$. Then $fe - C_s(f(\lambda), r)$

is a r-f \tilde{e} c set. By (1), $f^{-1}(\tilde{fe} - C_s(f(\lambda), r))$ is a r-f \tilde{e} -closed set. Thus f $\tilde{e} - C_T(f^{-1}(\tilde{fe} - C_s(f(\lambda), r), r)) = (f^{-1}(\tilde{fe} - C_s(f(\lambda), r)))$. Now, $\lambda \leq f^{-1}(f(\lambda))$. Therefore, f $\tilde{e} - C_T(\lambda, r) \leq \tilde{fe} - C_T(f^{-1}(\tilde{fe} - C_s(f(\lambda), r)))$, $r) = f^{-1}(\tilde{fe} - C_s(f(\lambda), r))$. Hence, $f(\tilde{fe} - C_T(\lambda, r)) \leq \tilde{fe} - C_s(f(\lambda), r)$.

(2) \Rightarrow (3): Let $\mu \in I^Y$, then $f^{-1}(\mu) \in I^X$. By (2), $f(\tilde{fe} - C_T(f^{-1}(\mu), r)) \leq \tilde{fe} - C_S(f(f^{-1}(\mu)), r) \leq \tilde{fe} - C_S(\mu, r)$. Hence $\tilde{fe} - C_T(f^{-1}(\mu), r) \leq f^{-1}(\tilde{fe} - C_S(\mu, r))$.

(3) \Rightarrow (1): Let $\gamma \in I^{\gamma}$, be a $r - \tilde{fe}$ -closed set. Then $\tilde{fe} - C_{s}(\gamma, r) = \gamma$. By (3) $\tilde{fe} - C_{s}(f^{-1}(\gamma), r) \leq f^{-1}(\tilde{fe} - C_{s}(\gamma, r)) = f^{-1}(\gamma)$. But $f^{-1}(\gamma) \leq \tilde{fe} - C_{T}(f^{-1}(\gamma), r)$. Therefore, $f^{-1}(\gamma) = \tilde{fe} - C_{T}(f^{-1}(\gamma), r)$. Hence $f^{-1}(\gamma)$ is a $r - \tilde{fe}$ -closed set. Thus f is fuzzy \tilde{e} -irresolute function.

Propoition 3.2 Let (X,T) and (Y,S) be any two smooth topological spaces. A mapping $f:(X,T) \to (Y,S)$ is a \tilde{fe} -closed iff $\tilde{fe} - C_s(f(\lambda),r) \le f(\tilde{fe} - C_T(\lambda,r))$ for each $\lambda \in I^X$ and $r \in I_0$.

Proof. Let $\lambda \in I^X$ be a $r - \tilde{fe}$ -closed set. Suppose that $\tilde{fe} - C_s(f(\lambda), r) \leq f(\tilde{fe} - C_T(\lambda, r))$. Now $\tilde{fe} - C_T(\lambda, r) = \lambda$. This implies $\tilde{fe} - C_s(f(\lambda), r) \leq f(\tilde{fe} - C_T(\lambda, r)) \leq f(\lambda)$. But $f(\lambda) \leq \tilde{fe} - C_s(f(\lambda), r)$. Hence, $\tilde{fe} - C_s(f(\lambda), r) = f(\lambda)$. Therefore f is \tilde{fe} -closed.

Conversely, let f be an $f\tilde{e}$ -closed function. Let $\lambda \in I^{X}$. Then $f\tilde{e} - C_{T}(\lambda, r)$ is $r - f\tilde{e}$ -closed. Therefore, $f(\tilde{f}\tilde{e} - C_{T}(\lambda, r))$ is $r - \tilde{f}\tilde{e}$ -closed. Now $\lambda \leq \tilde{f}\tilde{e} - C_{T}(\lambda, r)$. This implies $f(\lambda) \leq f(\tilde{f}\tilde{e} - C_{T}(\lambda, r))$. Hence $\tilde{f}\tilde{e} - C_{S}(f(\lambda), r) \leq \tilde{f}\tilde{e} - C_{S}(f(\tilde{f}\tilde{e} - C_{S}(\lambda, r)), r) = f(\tilde{f}\tilde{e} - C_{T}(\lambda, r))$. Therefore, $\tilde{f}\tilde{e} - C_{S}(f(\lambda), r) \leq f(\tilde{f}\tilde{e} - C_{T}(\lambda, r))$.

Proposition 3.3 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be a bijective function. Then the following statements are equivalent:

- (1) f and f^{-1} are fuzzy \tilde{e} -irresolute functions.
- (2) f is \tilde{fe} -continuous and \tilde{fe} -open.
- (3) f is \tilde{fe} -continuous and \tilde{fe} -closed.
- (4) $\tilde{fe} C_s(f(\lambda), r) = f(\tilde{fe} C_T(\lambda, r))$, for each $\lambda \in I^X$, $r \in I_0$.

Proof. (1) \Rightarrow (2): Let $\lambda \in I^Y$, be a r-fuzzy \tilde{e} -closed set and hence $r - \tilde{fe}$ -closed. Since f is fuzzy \tilde{e} -irresolute, $f^{-1}(\lambda)$ is $r - \tilde{fe}$ -closed. Hence f is \tilde{fe} -continuous. Let $\mu \in I^Y$, be a $r - \tilde{fe}$ -open set. Since f^{-1} is fuzzy \tilde{e} -irresolute, $(f^{-1})^{-1}(\mu) = f(\mu)$ is $r - \tilde{fe}$ -open. Hence f is \tilde{fe} -open.

(2) \Rightarrow (3): Let $\mu \in I^{X}$, be a $r - \tilde{fe}$ -closed set. Then $\bar{1} - \mu$ is $r - \tilde{fe}$ -open. Since f is \tilde{fe} -open, $f(\bar{1} - \mu)$ is $r - \tilde{fe}$ -open. But $f(\bar{1} - \mu) = \bar{1} - f(\mu)$. This implies that $f(\mu)$ is $r - \tilde{fe}$ -closed. Hence f is \tilde{fe} -closed.

(3) \Rightarrow (4): Let $\lambda \in I^{\chi}$, by Proposition Error! Reference source not found.(2), $f(\tilde{fe} - C_T(\lambda, r)) \leq \tilde{fe} - C_S(f(\lambda), r)$. By Proposition 3.2, $\tilde{fe} - C_S(f(\lambda, r)) \leq f(\tilde{fe} - C_T(\lambda, r))$. Hence $\tilde{fe} - C_S(f(\lambda), r) = f(\tilde{fe} - C_T(\lambda, r))$.

(4) \Rightarrow (1): Let $\lambda \in I^X$, by (4), $\tilde{fe} - C_s(f(\lambda), r) = f(\tilde{fe} - C_T(\lambda, r))$. Then $f(\tilde{fe} - C_T(\lambda, r)) \leq \tilde{fe} - C_s(f(\lambda), r)$, implies f is fuzzy \tilde{e} -irresolute function by Proposition 3.1 Let $\mu \in I^X$ be a $r - \tilde{fe}$

-closed. Then $\tilde{fe} - C_s(\mu, r) = \mu$. Then $f(\tilde{fe} - C_T(\mu, r)) = f(\mu)$. By (4), $\tilde{fe} - C_s(f(\mu), r) = f(\tilde{fe} - C_T(\mu, r)) = f(\mu)$. Hence $f(\mu)$ is $r - \tilde{fe}$ -closed. Therefore f^{-1} is fuzzy \tilde{e} -irresolute.

Proposition 3.4 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \to (Y,S)$ be a fuzzy \tilde{e} -irresolute function. Then $f\tilde{e} - b_T(f^{-1}(\lambda,r)) = \bar{0}$, for a $r - f\tilde{e}$ -open set $\lambda \in I^Y$.

Proof. Let $\lambda \in I^{Y}$ be a $r - \tilde{fe}$ -open set. Since f is fuzzy \tilde{e} -irresolute function, $f^{-1}(\lambda)$ is a $r - \tilde{fe}$ -open set. Then $\tilde{fe} - I_{T}(f^{-1}(\lambda, r) = f^{-1}(\lambda))$. Now, $\tilde{fe} - b_{T}(f^{-1}(\lambda), r) = f^{-1}(\lambda) - \tilde{fe} - I_{T}(f^{-1}(\lambda), r) = f^{-1}(\lambda) - f^{-1}(\lambda) = 0$.

4. Interrelations

The interrelations among the concepts of r-fuzzy \tilde{e} -border, r-fuzzy \tilde{e} -exterior, r-fuzzy \tilde{e} -frontier are established and studied with necessary examples.

Definition 4.1 A smooth fuzzy topological space (X,T) is called $\tilde{fe} - T_{\frac{1}{2}}$ space if every $r - \tilde{fe}$ -closed set $\lambda \in I^X$ is $r - \tilde{fe}$ closed.

Proposition 4.1 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \to (Y,S)$ be a \tilde{fe} -continuous mapping. Then for any $r - \tilde{fe}$ -closed set $\lambda \in I^Y$, $\tilde{fe} - b_T(f^{-1}(\lambda),r) = \tilde{fe} - Fr_T(f^{-1}(\lambda),r)$.

Proof. Let $\lambda \in I^{Y}$ be a r-fuzzy \tilde{e} -closed set. Since f is a \tilde{fe} -continuous, $f^{-1}(\lambda)$ is $r - \tilde{fe}$ -closed set. Then $\tilde{fe} - C_{T}(f^{-1}(\lambda), r) = f^{-1}(\lambda)$. Now, $\tilde{fe} - b_{T}(f^{-1}(\lambda), r) = (f^{-1}(\lambda)) - (\tilde{fe} - I_{T}(f^{-1}(\lambda), r)) = \tilde{fe} - C_{T}(f^{-1}(\lambda), r) - (\tilde{fe} - I_{T}(f^{-1}(\lambda), r)) = \tilde{fe} - Fr_{T}(f^{-1}(\lambda), r)$. Hence, $\tilde{fe} - b_{T}(f^{-1}(\lambda), r) = \tilde{fe} - Fr_{T}(f^{-1}(\lambda), r)$.

Proposition 4.2 Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be a mapping. Then for $\lambda \in I^Y$

$$\tilde{fe} - Ext_T(f^{-1}(\lambda), r) \leq \tilde{fe} - C_T(1 - f^{-1}(\lambda), r)$$

Proof. Let $\lambda \in I^{Y}$. Now, $\tilde{fe} - Ext_{T}(f^{-1}(\lambda), r) = \tilde{fe} - I_{T}(1 - f^{-1}(\lambda), r) \leq \tilde{fe} - C_{T}(1 - f^{-1}(\lambda), r)$.

Proposition 4.3 Let (X,T) be a $\tilde{fe} - T_{\frac{1}{2}}$ space. Let $\lambda \in I^X$ be a $r - \tilde{fe}$ -closed set. Then the

following statements hold:

(1)
$$fe - b_T(\lambda, r) = fe - Fr_T(\lambda, r)$$
.

(2)
$$f e - Ext_T(f(\lambda), r) = 1 - \lambda$$
.

Proof. Let $\lambda \in I^X$ be a $r - \tilde{fe}$ -closed set. Since (X,T) is a $\tilde{fe} - T_1$ space, λ is $r - \tilde{fe}$ closed. This implies $\lambda = \tilde{fe} - C_T(\lambda, r)$. Now, $\tilde{fe} - b_T(\lambda, r) = \lambda - \tilde{fe} - I_T(\lambda, r) = \tilde{fe} - C_T(\lambda, r) - \tilde{fe} - I_T(\lambda, r) = \tilde{fe} - Fr_T(\lambda, r)$. $\tilde{fe} - Ext_T(\lambda, r) = \tilde{fe} - I_T(1 - \lambda, r) = 1 - \tilde{fe} - C_T(\lambda, r) = 1 - \lambda$.

Proposition 4.4 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be a \tilde{fe} -irresolute function and (X,T) is a $\tilde{feT_{\underline{1}}}$ space. Then for a $r - \tilde{fe}$ -closed

set $\lambda \in I^{Y}$ and $r \in I_{0}$, the following statements hold:

(1) $\tilde{fe} - b_T(f^{-1}(\lambda), r) = \tilde{fe} - Fr_T(f^{-1}(\lambda), r).$ (2) $\tilde{fe} - Ext_T(f^{-1}(\lambda), r) = \bar{1} - f^{-1}(\lambda).$

Proof. Let $\lambda \in I^Y$ be a $r - \tilde{fe}$ -closed set. Since f is a \tilde{fe} -irresolute, $f^{-1}(\lambda)$ is a $r - \tilde{fe}$ -closed. Since (X,T) is a $\tilde{fe} - T_{1,r}$, $f^{-1}(\lambda)$ is a $r - \tilde{fe}$ -closed. This implies $\tilde{fe} - C_T(f^{-1}(\lambda), r) = f^{-1}(\lambda)$. Now $\tilde{fe} - b_T(f^{-1}(\lambda), r) = f^{-1}(\lambda) - \tilde{fe} - I_T(f^{-1}(\lambda), r) = \tilde{fe} - C_T(f^{-1}(\lambda), r) - \tilde{fe} - I_T(f^{-1}(\lambda), r) = \tilde{fe} - Fr_T(f^{-1}(\lambda), r)$ and $\tilde{fe} - Ext_T(f^{-1}(\lambda), r) = \tilde{fe} - I_T(1 - f^{-1}(\lambda), r) = 1 - \tilde{fe} - C_T(f^{-1}(\lambda), r) = 1 - f^{-1}(\lambda)$.

Proposition 4.5 Let (X,T) and (Y,S) be any two smooth topological spaces. Let $f:(X,T) \to (Y,S)$ be a $f\tilde{e}$ -closed mapping and (Y,S) be a $f\tilde{e} - T_{\frac{1}{2}}$ space. Then for a $r - f\tilde{e}$ -closed set $\lambda \in I^X$ and $r \in I_0$ the following statements hold:

- (1) $\tilde{fe} b_s(f(\lambda), r) = \tilde{fe} Fr_s(f(\lambda), r)$.
- (2) $\tilde{fe} Ext_s(f(\lambda), r) = \bar{1} f(\lambda)$.

Proof. Let $\lambda \in I^Y$ be a $r - \tilde{fe}$ -closed set. Since f is $r - \tilde{fe}$ -closed set, $f(\lambda)$ is $r - \tilde{fe}$ -closed. Since (Y,S) is $\tilde{fe} - T_{1/2}$ -space, $f(\lambda)$ is $r - \tilde{fe}$ -closed. This implies $\tilde{fe} - C_T(f(\lambda), r) = f(\lambda)$. Now $\tilde{fe} - b_S(f(\lambda), r) = f(\lambda) - \tilde{fe} - I_S(f(\lambda), r) = \tilde{fe} - C_S(f(\lambda), r) - \tilde{fe} - I_S(f(\lambda), r) = \tilde{fe} - Fr_S(f(\lambda), r)$ and $\tilde{fe} - Ext_S(f(\lambda), r) = \tilde{fe} - I_S(\tilde{1} - f(\lambda), r) = \tilde{1} - \tilde{fe} - C_S(f(\lambda), r) = \tilde{1} - f(\lambda)$.

Proposition 4.6 Let (X,T), (Y,S) and (Z,R) be any three smooth topological spaces. Let $f:(X,T) \to (Y,S)$ and $g:(Y,S) \to (Z,R)$ be $f\tilde{e}$ -irresolute mappings. If (X,T) is a $f\tilde{e} - T_{\frac{1}{2}}$ space, then

(1) $\tilde{fe} - b_T((g \circ f)^{-1}(\lambda), r) = \tilde{fe} - Fr_T((g \circ f)^{-1}(\lambda), r)$. (2) $\tilde{fe} - Ext_T((g \circ f)^{-1}(\lambda), r) = \bar{1} - (g \circ f)^{-1}(\lambda)$.

Proof. Let $\lambda \in I^Z$ be a $r - \tilde{fe}$ -closed set. Since g is a \tilde{fe} -irresolute, $g^{-1}(\lambda)$ is $r - \tilde{fe}$ -closed. Since (X,T) is $\tilde{fe} - T_{\frac{1}{2}}$ space, $(g \circ f)(\lambda) = f^{-1}(g^{-1}(\lambda))$ is $r - \tilde{fe}$ closed. This implies $\tilde{fe} - C_T((g \circ f)^{-1}(\lambda), r) = (g \circ f)^{-1}(\lambda)$. Now $\tilde{fe} - b_T((g \circ f)^{-1}(\lambda), r) = ((g \circ f)^{-1}(\lambda) - \tilde{fe} - I_T((g \circ f)^{-1}(\lambda), r) = \tilde{fe} - C_T((g \circ f)^{-1}(\lambda), r) - \tilde{fe} - I_T((g \circ f)^{-1}(\lambda), r) = \tilde{fe} - Fr_T((g \circ f)^{-1}(\lambda), r)$ and $\tilde{fe} - Ext_T((g \circ f)^{-1}(\lambda), r) = \tilde{1} - \tilde{fe} - C_T((g \circ f)^{-1}(\lambda), r) = \tilde{1} - ((g \circ f)^{-1}(\lambda), r) = \tilde{1} - (($

References

[1] K. Balasubramaniyan, Notions via r-fuzzy e-open sets, submitted.

[2] M. Caldas, S. Jafari and T. Noiri, *Notions via* g -open sets, Kochi J. Math., **2**, (2007), 43-50.

[3] Y. C. Kim and J. W. Park, *r-fuzzy* δ -*closure and r-fuzzy* θ -*closure sets,* J. Korea Fuzzy Logic and Intelligent systems, **10**(6) (2000), 557-563.

[4] A. A. Ramadan, S.E. Abbas and Yong Chankim, *Fuzzy-irresolute mappings in smooth fuzzy topological spaces*, The Journal of Fuzzy Mathematics, **9**, (2001), 865-877

[5] S. K. Samanta and K. C. Chattaopadhyay, *Fuzzy topology*, Fuzzy Sets and Systems, **54**, (1993), 207-221

[6] V. Seenivasan and K. Kamala, *Fuzzy e -continuity and fuzzy e -open sets,* Annals of Fuzzy Mathematics and Informatics 8(1) (2014), 141--148.

[7] P. Smets, The degree of belief in a fuzzy event, Inform Sci., **25**, (1981), 1-19.

[8] A. P. Sostak, On a fuzzy topological structure, Revid. Cric. Maten Palermo (Ser II), **11**, (1985), 89-103.

[9] M. Sugemo, An introductory survey of fuzzy control, Inform. Sci., **36**, (1985), 59-83.

[10] D. Sobana, V. Chandrasekar and A. vadivel, Fuzzy e-continuity in \hat{S} ostak's fuzzy topological spaces, (submitted).

[11] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.

