
© 2019 JETIR  May 2019, Volume 6, Issue 5                        www.jetir.org  (ISSN-2349-5162) 

 

JETIR1905D36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 272 

 

Regular Semi Irresolute on Intuitionistic Fuzzy 

Topological Spaces in Ŝostak’s Sense 
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 1.Introduction   

 The concept of fuzzy sets was introduced by Zadeh [13]. Change [2] defined fuzzy topological 
spaces. These spaces and its generalizations are later studied by several authors, one of which, developed 

by Ŝ ostak [12], used the idea of degree of openness. This type of generalization of fuzzy topological 
spaces was later rephrased by Chattopadhyay, Hazra and Samanta [3], and by Ramadan [10]. As a 
generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. 
Recently, Coker and his collegues [4, 6, 7] introduced intuitionistic fuzzy topological spaces using 
intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Coker and 

Demirci [5] defined intuitionistic fuzzy topological spaces in Ŝ ostak’s sense as a generalization of smooth 
fuzzy topological spaces and intuitionistic fuzzy topological spaces. In this paper, we introduce the 

concepts of fuzzy ( , )r s -regular semi irresolute on intuitionistic fuzzy topological spaces in Ŝ ostak’s 

sense and then we investigate some of their characteristic properties. 

 2.Preliminaries   

Let I  be the unit interval [0,1]  of the real line. A member   of XI  is called a fuzzy set of X

. By 0  and 1  we denote constant maps on X  with value 0 and 1, respectively. For any XI , c  

denotes the complement of 1  . All other notations are standard notations of fuzzy set theory. 

Let X  be a nonempty set. An intuitionistic fuzzy set A  is an ordered pair  

 = ( , )A AA     

where the functions :A X I   and :A X I   denote the degree of membership and degree 

of non-membership, respectively, and 1A A   . 

Obviously every fuzzy set   on X  is an intuitionistic fuzzy set of the form ( ,1 )  . 

Definition 2.1 [1] Let = ( , )A AA    and = ( , )B BB    be intuitionistic fuzzy sets on X . Then   

    1.  A B  iff A B   and A B  ,  

    2.  =A B  iff A B  and B A ,  

    3.  = ( , )c

A AA   ,  

    4.  = ( , )A B A BA B         

    5.  = ( , )A B A BA B       ,  
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    6.  0 = (0,1):  and 1 = (1,0): .  

  

Definition 2.2 [1] Let f  be a map from a set X  to a set Y . Let = ( , )A AA    be a intuitionistic 

fuzzy set of X  and = ( , )B BB    an intuitionistic fuzzy set of Y . Then:   

    1.  The image of A  under f , denoted by ( )f A  is an intuitionistic fuzzy set in Y  

defined by  

 ( ) = ( ( ),1 (1 ))A Af A f f   .  

  

    2.  The inverse image of B  under f , denoted by 1( )f B  is an intuitionistic fuzzy set in 

X  defined by  

 1 1 1( ) = ( ( ), ( ))B Bf B f f    .  

  

  

Definition 2.3 [10] A smooth fuzzy topology on X  is a map : XT I I  which satisfies the 
following properties:   

    1.  (0) = (1) =1T T ,  

    2.  1 2 1 2( ) ( ) ( )T T T      ,  

    3.  ( ) ( )i iT T    .  

 The pair ( , )X T  is called a smooth fuzzy topological space.  

Definition 2.4 [5] An intuitionistic fuzzy topology on X  is a family T  of intuitionistic fuzzy sets in 
X  which satisfies the following properties:   

    1.  0 ,1 T: : ,  

    2.  If 1 2,A A T , then 1 2A A T  ,  

    3.  If iA T  for all i , then iA T  .  

 The pair ( , )X T  is called an intuitionistic fuzzy topological space.  

Let ( )I X  be a family of all intuitionistic fuzzy sets of X  and let I I  be the set of the pair 

( , )r s  such that ,r s I  and 1r s   

Definition 2.5 [6] Let X  be a nonempty set. An intuitionistic fuzzy topology in Ŝ ostak’s sense 
(SoIFT for short) 1 2= ( , )T T T  on X  is a map : ( )T I X I I   which satisfied the following properties:   

    1.  
1 1(0 ) = (1 ) =1T T: :

 and 2 2(0 ) = (1 ) = 1T T: : ,  

    2.  1 1 1( ) ( ) ( )T A B T A T B    and 2 2 2( ) ( ) ( )T A B T A T B   ,  

    3.  1 1( ) ( )i iT A T A    and 2 2( ) ( )i iT A T A     

 The 1 2( , ) = ( , , )X T X T T  is said to be an intuitionistic fuzzy topological space in Ŝ ostak’s sense 

(SoIFTS for short). Also, we call 1( )T A  a gradation of openness of A  and 2 ( )T A  a gradation of 

nonopenness of A   

Definition 2.6 [8] Let A  be an intuitionistic fuzzy set in a SoIFTS 1 2( , , )X T T  and ( , )r s I I  . 

Then A  is said to be   

    1.  fuzzy ( , )r s -open if 1( )T A r  and 2 ( )T A s ,  

    2.  fuzzy ( , )r s -closed if 
1( )cT A r  and 2 ( )cT A s .  

  

Definition 2.7 [8] Let 1 2( , , )X T T  be a SoIFTS. For each ( , )r s I I   and for each ( )A I X , the 

fuzzy ( , )r s -interior is defined by  

 
,

1 2
( , , ) = { ( ) | ,  isfuzzy( , ) open}T Tint A r s B I X A B B r s    .  
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 and the fuzzy ( , )r s -closure is defined by  

 
,

1 2
( , , ) = { ( ) | ,  isfuzzy( , ) closed}T Tcl A r s B I X A B B r s    .  

  

The operators : ( ) ( )int I X I I I X    and : ( ) ( )cl I X I I I X    are callled the fuzzy 

interior operotar and fuzzy closure operator in 
1 2( , , )X T T , respectively. 

Lemma 2.1 [8] For an intuitionistic fuzzy set A  in a SoIFTS 
1 2( , , )X T T  and ( , )r s I I     

    1.  , ,
1 2 1 2

( , , ) = ( , , )c c

T T T Tint A r s cl A r s ,  

    2.  , ,
1 2 1 2

( , , ) = ( , , )c c

T T T Tcl A r s int A r s .  

  

Definition 2.8 [8] Let ( , )X T  be an intuitionistic fuzzy topological space in Ŝ ostak’s sense. Then it 

is easy to see that for each ( , )r s I I  , the family ( , )r sT  defined by  

 
( , ) 1 2={ ( ) | ( )  and ( ) }r sT A I X T A r T A s     

 is an intuitionistic fuzzy topology on .X   

Definition 2.9 [8] Let ( , )X T  be an intuitionistic fuzzy topological space ( , )r s I I  . Then the 

map ( , ) : ( )r sT I X I I   defined by 

( , )

(1,0),      if  = 0,1

                 ( ) = ( , ),      if  {0,1}

(0,1),      otherwise,

r s

A

T A r s A T




 



  

becomes an intuitionistic fuzzy topology in Ŝ ostak’s sense on X .   
Definition 2.10 [9] Let A  be an intuitionistic fuzzy set in a SoIFTS 

1 2( , , )X T T  and ( , )r s I I  . 

Then A  is said to be   

    1.  fuzzy ( , )r s -semi open if there is a fuzzy ( , )r s -open set B  in X  such that 

,
1 2

( , , )T TB A cl B r s  ,  

    2.  fuzzy ( , )r s -semi closed if there is a fuzzy ( , )r s -closed set B  in X  such that 

,
1 2

( , , )T Tint B r s A B  .  

  

Definition 2.11 [11] Let A  be an intuitionistic fuzzy set in a SoIFTS 1 2( , , )X T T  and ( , )r s I I  . 

Then A  is said to be   

    1.  fuzzy ( , )r s -regular open if 
, ,

1 2 1 2
= ( ( , , ), , )T T T TA int cl A r s r s ,  

    2.  fuzzy ( , )r s -regular closed if 
, ,

1 2 1 2
= ( ( , , ), , )T T T TA cl int A r s r s ,  

    3.  fuzzy ( , )r s -  open if 
, , ,

1 2 1 2 1 2
( ( ( , , ), , ) , )T T T T T TA int cl int A r s r s r s ,  

    4.  fuzzy ( , )r s -  closed if , , ,
1 2 1 2 1 2

( ( ( , , ), , ) , )T T T T T TA cl int cl A r s r s r s ,  

    5.  fuzzy ( , )r s -pre open if , ,
1 2 1 2

( ( , , ), , )T T T TA int cl A r s r s ,  

    6.  fuzzy ( , )r s -pre closed if 
, ,

1 2 1 2
( ( , , ), , )T T T TA cl int A r s r s ,  

    7.  fuzzy ( , )r s -   open if , , ,
1 2 1 2 1 2

( ( ( , , ), , ) , )T T T T T TA cl int cl A r s r s r s ,  

    8.  fuzzy ( , )r s -   closed if , , ,
1 2 1 2 1 2

( ( ( , , ), , ) , )T T T T T TA int cl int A r s r s r s ,  

    9.  fuzzy ( , )r s -regular semi open if there is a fuzzy ( , )r s -regular open set B  in X  such 

that 
,

1 2
( , , )T TB A cl B r s  ,  

    10.  fuzzy ( , )r s -regular semi closed if there is a fuzzy ( , )r s -regular closed set B  in X  

such that ,
1 2

( , , )T Tint B r s A B  .  
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Definition 2.12 [11] Let 
1 2( , , )X T T  be a SoIFTS. For each ( , )r s I I   and for each  ( )A I X

, the fuzzy ( , )r s -regular semi (resp. ( , )r s - , ( , )r s -pre and ( , )r s -  )-interior is  defined by  

, , , ,
1 2 1 2 1 2 1 2

( , , ) (resp. ( , , ), ( , , ) and ( , , ))T T T T T T T Trsint A r s int A r s pint A r s int A r s   

= { ( ) | ,  isfuzzy ( , ) regularsemi (resp. , pre and ) open}B I X A B B r s       and the fuzzy ( , )r s

-regular semi (resp. ( , )r s -  , ( , )r s -pre and ( , )r s -  ) - closure is defined by 

, , , ,
1 2 1 2 1 2 1 2

( , , ) (resp. ( , , ), ( , , ) and ( , , )) = { ( ) | , 

 isfuzzy ( , ) regularsemi(resp. , pre and ) closed}

T T T T T T T Trscl A r s cl A r s pcl A r s cl A r s B I X A B

B r s

 

 

 

 
   

 3.Fuzzy ( , )r s -regular semi(resp. , pre and  ) irresolute functions     

Definition 3.1 Let 
1 2 1 2: ( , , ) ( , , )f X T T Y W W  be a mapping from a SoIFTS X  to another SoIFTS 

Y  and ( , )r s I I  . Then f  is said to be   

    1.  fuzzy ( , )r s -regular semi (resp. , pre and  ) irresolute if 1( )f B  is a fuzzy ( , )r s

-regular semi (resp.  , pre and  ) open set of X  for each fuzzy ( , )r s -regular semi (resp.  , pre and 

 ) open set B  of Y ,  

    2.  fuzzy ( , )r s -regular semi irresolute open if ( )f A  is a fuzzy ( , )r s -regular semi (resp. 

 , pre and  ) open set of Y  for each fuzzy ( , )r s -regular semi (resp.  , pre and  ) open set A  of 

X ,  

    3.  fuzzy ( , )r s -regular semi (resp.  , pre and  ) irresolute closed if ( )f A  is a fuzzy 

( , )r s -regular semi (resp.  , pre and  ) closed set of Y  for each fuzzy ( , )r s -regular semi (resp. ,pre 

and  ) closed set A  of X ,  

    4.  fuzzy ( , )r s -regular semi (resp.  , pre and  ) irresolute homeomorphism iff f  is 

bijective, f  and 1f   are fuzzy ( , )r s -regular semi (resp.  , pre and  ) irresolute.  

  

  
From the above definitions it is clear that the following implications are true for ( , )r s I I    

 

 

 

 

 

 

   
 

 

The converses of the above implications are not true as the following examples show: 
Example 3.1 Let = { , } =X a b Y  and let 1 2, ( )A A I X , 1 ( )B I Y  be defined by 

1 1 1 1( ) = ( ) = (0.1,0.8), ( ) = ( ) = (0.1,0.5)A x B x A y B y , 2 2( ) = (0.3,0.6), ( ) = (0.3,0.5)A x A y . Define 

: ( )T I X I I   and : ( )W I Y I I   by 

1 2( ) = ( ( ), ( )) =T A T A T A  1 2

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = , ,
2 2

(0,1)       otherwise.

A

A A A








: :
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1 2( ) = ( ( ), ( )) =W B W B W B  
1

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = ,
2 2

(0,1)       otherwise.

B

B B








: :

 

For 
1 1

= , =
2 2

r s . Then the identity mapping 1 2 1 2: ( , , ) ( , , )f X T T Y W W  is fuzzy 
1 1

( , )
2 2

-irresolute which is not fuzzy 
1 1

( , )
2 2

-regular irresolute. Since 
1B  is fuzzy 

1 1
( , )
2 2

-regular open in W  but 

1

1( )f B  is not fuzzy 
1 1

( , )
2 2

-regular open in T .  

 Example 3.2 Let = { , } =X a b Y , and let 
1 2, ( )A A I X ,

1 ( )B I Y  be defined as 

1 1 1 1( ) = ( ) = (0.1,0.8), ( ) = ( ) = (0.1,0.5)A x B x A y B y , 2 2( ) = (0.3,0.6), ( ) = (0.3,0.5)B x B y . Define 

: ( )T I X I I   and : ( )W I Y I I   by 

1 2( ) = ( ( ), ( )) =T A T A T A  
1,

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  =
2 2

(0,1)       otherwise.

A

A A








: :

 

1 2( ) = ( ( ), ( )) =W B W B W B  
1 2

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = , ,
2 2

(0,1)       otherwise.

B

B B B








: :

 

For 
1 1

= , =
2 2

r s . Then the identity mapping 1 2 1 2: ( , , ) ( , , )f X T T Y W W  is fuzzy 
1 1

( , )
2 2

-regular 

semi irresolute which is not fuzzy 
1 1

( , )
2 2

-regular irresolute. Since 2B  is fuzzy 
1 1

( , )
2 2

-regular open in W  

but 1

2( )f B  is not fuzzy 
1 1

( , )
2 2

-regular open in T .  

Example 3.3 Let = { , } =X a b Y , and lett 1 ( )A I X , 1 2 1 2 1 2, , , ( )B B B B B B I Y    be defined as 

1 1 1 1( ) = ( ) = (0.3,0.1), ( ) = ( ) = (0.3,0.1)A x B x A y B y , 2 2( ) = (0.4,0.3), ( ) = (0.4,0.3)B x B y , 

1 2 1 2( ) ( ) = (0.4,0.1), ( ) ( ) = (0.4,0.1)B x B x B y B y  , 1 2 1 2( ) ( ) = (0.3,0.3), ( ) ( ) = (0.3,0.3)B x B x B y B y   

Define : ( )T I X I I   and : ( )W I Y I I   by 

1 2 1

(1,0)       if  = 0 ,1 ,

1 1
( ) = ( ( ), ( )) = ( , )      if  = ,

2 2

(0,1)       otherwise.

A

T A T A T A A A








: :

 

1 2( ) = ( ( ), ( )) =W B W B W B  1 2 1 2 1 2

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = , , , ,
2 2

(0,1)       otherwise.

B

B B B B B B B





 



: :

 

For 
1 1

= , =
2 2

r s . Then the identity mapping 1 2 1 2: ( , , ) ( , , )f X T T Y W W  is fuzzy 
1 1

( , )
2 2

-   

irresolute which is not fuzzy 
1 1

( , )
2 2

-irresolute. Since 2B  is fuzzy 
1 1

( , )
2 2

-open in W  but 1

2( )f B  is 
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not fuzzy 
1 1

( , )
2 2

-open in T .  

Example 3.4 Let = { , } =X a b Y , and let 
1 ( )A I X ,

1 2, ( )B B I Y  be defined as 

1 1 1 1( ) = ( ) = (0.3,0.6), ( ) = ( ) = (0.3,0.5)A x B x A y B y , 
2 2( ) = (0.4,0.3), ( ) = (0.4,0.3)B x B y  Define 

: ( )T I X I I   and : ( )W I Y I I   by 

1 2( ) = ( ( ), ( )) =T A T A T A  
1

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = ,
2 2

(0,1)       otherwise.

A

A A








: :

 

1 2( ) = ( ( ), ( )) =W B W B W B  
1 2

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = , ,
2 2

(0,1)       otherwise.

B

B B B








: :

 

For 
1 1

= , =
2 2

r s . Then the identity mapping 1 2 1 2: ( , , ) ( , , )f X T T Y W W  is fuzzy 
1 1

( , )
2 2

-semi 

irresolute,  -irresolute which is not fuzzy 
1 1

( , )
2 2

-  irresolute, pre irresolute. Since 2B  is fuzzy 
1 1

( , )
2 2

-pre open,   open in W  but 1

2( )f B  is not fuzzy 
1 1

( , )
2 2

-pre open,   open in T .  

Example 3.5 Let = { , } =X a b Y , and let 1 ( )A I X ,
1 2, ( )B B I Y  be defined as 

1 1( ) = (0.2,0.2), ( ) = (0.1,0.2)A x A y , 1 1( ) = (0.1,0.1), ( ) = (0.1,0.1)B x B y . Define : ( )T I X I I   and 

: ( )W I Y I I   by 

1 2( ) = ( ( ), ( )) =T A T A T A  
1

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = ,
2 2

(0,1)       otherwise.

A

A A








: :

 

1 2( ) = ( ( ), ( )) =W B W B W B  
1

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = ,
2 2

(0,1)       otherwise.

B

B B








: :

 

For 
1 1

= , =
2 2

r s . Then the identity mapping 1 2 1 2: ( , , ) ( , , )f X T T Y W W  is fuzzy 
1 1

( , )
2 2

-semi 

irresolute which is not fuzzy 
1 1

( , )
2 2

-regular semi irresolute. Since 1B  is fuzzy 
1 1

( , )
2 2

-regular semi open 

in W  but 1

1( )f B  is not fuzzy 
1 1

( , )
2 2

-regular semi open in T .  

Example 3.6 Let = { , } =X a b Y , and let 1 ( )A I X , 1 2, ( )B B I Y  be defined as 

1 1( ) = (0.1,0.1), ( ) = (0.1,0.1)A x A y , 1 1( ) = (0.2,0.2), ( ) = (0.1,0.2)B x B y . Define : ( )T I X I I   and 

: ( )W I Y I I   by 

1 2( ) = ( ( ), ( )) =T A T A T A  1

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = ,
2 2

(0,1)       otherwise.

A

A A








: :
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1 2( ) = ( ( ), ( )) =W B W B W B  
1

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = ,
2 2

(0,1)       otherwise.

B

B B








: :

 

For 
1 1

= , =
2 2

r s . Then the identity mapping 1 2 1 2: ( , , ) ( , , )f X T T Y W W  is fuzzy 
1 1

( , )
2 2

-semi 

irresolute which is not fuzzy 
1 1

( , )
2 2

-   irresolute. Since 
1B  is fuzzy 

1 1
( , )
2 2

-   open in W  but 

1

1( )f B  is not fuzzy 
1 1

( , )
2 2

-   open in T .  

Example 3.7 Let = { , } =X a b Y , and let 
1 ( )A I X ,

1 2 1 2 1 2, , , ( )B B B B B B I Y    be defined as 

1 2 1 2( ) = ( ) = (0.1,0.3), ( ) = ( ) = (0.1,0.3)A x B x A y B y  1 1( ) = (0.3,0.6), ( ) = (0.3,0.5)B x B y , 

1 2 1 2( ) ( ) = (0.3,0.3), ( ) ( ) = (0.3,0.3)B x B x B y B y  , 1 2 1 2( ) ( ) = (0.1,0.6), ( ) ( ) = (0.1,0.5)B x B x B y B y   

Define : ( )T I X I I   and : ( )W I Y I I   by 

1 2( ) = ( ( ), ( )) =T A T A T A  1

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = ,
2 2

(0,1)       otherwise.

A

A A








: :

 

1 2( ) = ( ( ), ( )) =W B W B W B  
1 2 1 2 1 2

(1,0)       if  = 0 ,1 ,

1 1
( , )      if  = , , , ,
2 2

(0,1)       otherwise.

B

B B B B B B B





 



: :

 

For 
1 1

= , =
2 2

r s . Then the identity mapping 1 2 1 2: ( , , ) ( , , )f X T T Y W W  is fuzzy 
1 1

( , )
2 2

-  

irresolute which is not fuzzy 
1 1

( , )
2 2

-pre irresolute. Since 2B  is fuzzy 
1 1

( , )
2 2

-pre open in W  but 

1

1( )f B  is not fuzzy 
1 1

( , )
2 2

-pre open in T .  

  Theorem 3.1 Let 1 2 1 2( , , ), ( , , )X T T Y W W  be SoIFTSs and let :f X Y  be mappings and 

( , )r s I I  . Then the following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -regular semi irresolute.  

    2.  For each ( , )r s -frsc set 1, ( )YB I f B  is ( , )r s -frsc set in X .  

    3.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf rscl A r s rscl f A r s , for each XA I  and ( , )r s I I  .  

    4.  1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wrscl f B r s f rscl B r s  , for each YB I  and ( , )r s I I  .  

    5.  1 1

, ,
1 2 1 2

( ( , , )) ( ( ), , )W W T Tf rsint B r s rsint f B r s  , for each YB I  and ( , )r s I I  .  

   Proof. (i) (ii) It is easily proved from Definition 10(`)@ 

(ii) (iii) Let (ii) holds and let , ,
1 2 1 2

( ( , , )) ( ( ), , )T T W Wf rscl A r s rscl f A r sÚ  for some XA I  and 

( , )r s I I  . So there exists , (0,1]y Y t   such that: 

, ,
1 2 1 2

( ( , , ))( ) > > ( ( ), , )( )T T W Wf rscl A r s y t rscl f A r s y  

 If 1( ) =f y  , it is a contradiction, because ,
1 2

( ( , , ))( ) = 0T Tf rscl A r s y : . So, if 1( )f y   , there 

exists 1( )x f y  such that  
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, , ,

1 2 1 2 1 2
( ( , , ))( ) ( , , )( ) > > ( ( ), , )( ( ))T T T T W Wf rscl A r s y rscl A r x t rscl f A r s f x  (1) 

 

Also, 
,

1 2
( ( ), , )( ( )) <W Wrscl f A r s f x t , implies that there exists r -frsc set B  with ( ) =f A B  such 

that 
,

1 2
( ( ), , )( ( )) ( ( )) <W Wrscl f A r s f x B f x t . Moreover, ( )f A B  implies 1( )A f B . From (2), 

1( )f B  is ( , )r s -frsc. Thus 1

,
1 2

( , ) ( )T Trscl A r f B  and this implies:  

 1

,
1 2

( , , )( ) ( )( ) = ( ( )) <T Trscl A r s x f B x B f x t  (2) 

 

 From relations (1) and (2) we see that: 

,
1 2

( , , )( ) >T Trscl A r s x t  and 
,

1 2
( , , )( )T Trscl A r s x t  which is a contradiction. Hence the result. 

(iii) (iv) Put 1= ( )( )YA f B B I   and apply (iii) we have 
1 1

, , ,
1 2 1 2 1 2

        ( ( ( ), , )) ( ( ( ), , )) ( , , )T T W W W Wf rscl f B r s rscl f f B r s rscl B r s   . 

 Hence, 1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wrscl f B r s f rscl B r s  . 

(iv) (v) It follows immediately by taking the complement of (iv). 
(v) (i) Let (v) holds and let B  be ( , )r s -frso in Y . By (v) 

1 1

, ,
1 2 1 2

( ( ,, , )) ( ( ), , )W W T Tf rsint B s r rsint f B r s  . Then, 1 1

,
1 2

( ) ( ( ), , )T Tf B rsint f B r s  . But 

1 1

,
1 2

( ( ), , ) ( )T Trsint f B r s f B  . Hence 1 1

,
1 2

( ( ), , ) = ( )T Trsint f B r s f B  . So, 1( )f B  is ( , )r s -frso and 

there by f  is ( , )r s -fuzzy regular semi irresolute.           

 Theorem 3.2 Let 1 2 1 2( , , ), ( , , )X T T Y W W  be SoIFTSs and let :f X Y  be mappings and 

( , )r s I I  . Then the following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -  irresolute.  

    2.  For each fuzzy ( , )r s -  closed set 1, ( )YB I f B  is fuzzy ( , )r s -  closed set in X .  

    3.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf cl A r s cl f A r s  , for each XA I  and ( , )r s I I  .  

    4.  1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wcl f B r s f cl B r s   , for each YB I  and ( , )r s I I  .  

    5.  1 1

, ,
1 2 1 2

( ( , , )) ( ( ), , )W W T Tf int B r s int f B r s   , for each YB I  and ( , )r s I I  .  

  

 Proof. It follows from Theorem 4(`)@           

  Theorem 3.3 Let 1 2 1 2( , , ), ( , , )X T T Y W W  be SoIFTSs and let :f X Y  be mappings and 

( , )r s I I  . Then the following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -pre irresolute.  

    2.  For each fuzzy ( , )r s -pre closed set 1, ( )YB I f B  is fuzzy ( , )r s -pre closed set in X .  

    3.  , ,
1 2 1 2

( ( , , )) ( ( ), , )T T W Wf pcl A r s pcl f A r s , for each XA I  and ( , )r s I I  .  

    4.  1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wpcl f B r s f pcl B r s  , for each YB I  and ( , )r s I I  .  

    5.  1 1

, ,
1 2 1 2

( ( , , )) ( ( ), , )W W T Tf pint B r s pint f B r s  , for each YB I  and ( , )r s I I  .  

  

 Proof. It follows from Theorem 4(`)@           

 Theorem 3.4 Let 1 2 1 2( , , ), ( , , )X T T Y W W  be SoIFTSs and let :f X Y  be mappings and 

( , )r s I I  . Then the following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -   irresolute.  

    2.  For each fuzzy ( , )r s -   closed set 1, ( )YB I f B  is fuzzy ( , )r s -   closed set in X .  
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    3.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf cl A r s cl f A r s  , for each XA I  and ( , )r s I I  .  

    4.  1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wcl f B r s f cl B r s   , for each YB I  and ( , )r s I I  .  

    5.  1 1

, ,
1 2 1 2

( ( , , )) ( ( ), , )W W T Tf int B r s int f B r s   , for each YB I  and ( , )r s I I  .  

  

 Proof. It follows from Theorem 4(`)@           

  Theorem 3.5 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  A map f  is ( , )r s -fuzzy regular semi irresolute open.  

    2.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf rsint A r s rsint f A r s , for each XA I  and ( , )r s I I  .  

    3.  1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wrsint f B r s f rsint B r s  , for each YB I  and ( , )r s I I  .  

    4.  For any YA I  and any ( , )r s -frso set XB I  such that 1( )B f A , there exists a 

( , )r s -frscl set YC I  with A C  such that 1( )f C A  .  

   Proof. (i) (ii) Since 
,

1 2
( , , )T Trsint A r s A , then 

,
1 2

( , , ) ( )T Trsint A r s f A . By (i), 

, ,
1 2 1 2

                           ( ( , , )) ( ( ), , )T T W Wf rsint A r s rsint f A r s . 

(ii) (iii) Let (ii) holds. Take 1= ( ), YA f B A I   and apply part (ii). 

(iii)  (iv) Let XB I  be a ( , )r s -frsc set. Since 1( )f A B  , then 
1 11 1 ( ) = (1 )B f A f A    : : :

. It follows, 
1

, ,
1 2 1 2

(1 , , ) 1 ( (1 ), , )T T T Trsint B r s B rsint f A r s    : : :  By (iii), 

1 1

, ,
1 2 1 2

                 1 ( (1 ), , ) ( (1 , , ))T T W WB rsint f A r s f rsint A r s     : : : . 

It implies 
1 1 1

, , ,
1 2 1 2 1 2

1 ( (1 , , )) = (1 (1 , , )) = ( ( , , ))W W W W W WB f rsint A r s f rsint A r s f rscl A r s      : : : : . So, 

1

,
1 2

( ( , , ))T TB f rscl A r s . Take 
,

1 2
= ( , , ))T TC rscl A r s . Then C  is ( , )r s -frsc such that 1( )B f C  and 

C A . Hence the result. 

(iv) (i) Let D  be ( , )r s -frso in X . Put = 1 ( )A f D:  and =1B D:
. It is easy to see 

that 1( )B f A . By part (iv), there exists ( , )r s -frsc set YC I  such that C A  and 1( )B f C  or 
11 ( )D f C :

. It implies 1 11 ( ) = (1 )D f C f C   : :
. Thus 1( ) (1 ) 1f w ff C C   : :

. 

On the other hand, A C , ( ) = 1f D A:  implies ( ) =1 1f D A C  : :
. Finally, we have 

( ) = 1f D C:  and therefore ( )f D  is ( , )r s -frso. Hence f  is fuzzy ( , )r s regular semi irresolute 

open.           

 Theorem 3.6 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  A map f  is fuzzy ( , )r s -  irresolute open.  

    2.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf int A r s int f A r s  , for each XA I  and ( , )r s I I  .  

    3.  1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wint f B r s f int B r s   , for each YB I  and ( , )r s I I  .  

    4.  For any YA I  and any fuzzy ( , )r s -  open set XB I  such that 1( )B f A , there 

exists a fuzzy ( , )r s -  closed set YC I  with A C  such that 1( )f C A  .  

  

 Proof. It follows from Theorem 5(`)@           

 Theorem 3.7 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 
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following statements are equivalent:   

    1.  A map f  is fuzzy ( , )r s -pre irresolute open.  

    2.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf pint A r s pint f A r s , for each XA I  and ( , )r s I I  .  

    3.  1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wpint f B r s f pint B r s  , for each YB I  and ( , )r s I I  .  

    4.  For any YA I  and any fuzzy ( , )r s -pre open set XB I  such that 1( )B f A , there 

exists a fuzzy ( , )r s -pre closed set YC I  with A C  such that 1( )f C A  .  

  

 Proof. It follows from Theorem 5(`)@           

 Theorem 3.8 Let 
1 2( , , )X T T  and 

1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  A map f  is fuzzy ( , )r s -   irresolute open.  

    2.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf int A r s int f A r s  , for each XA I  and ( , )r s I I  .  

    3.  1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wint f B r s f int B r s   , for each YB I  and ( , )r s I I  .  

    4.  For any YA I  and any fuzzy ( , )r s -   open set XB I  such that 1( )B f A , there 

exists a fuzzy ( , )r s -   closed set YC I  with A C  such that 1( )f C A  .  

  

 Proof. It follows from Theorem 5(`)@           

  Theorem 3.9 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -regular semi irresolute closed.  

    2.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf rscl A r s rscl f A r s , for each XA I .  

   Proof. (i) (ii) Let XA I . Since 
,

1 2
( , , )T TA rscl A r s , then 

,
1 2

( ) ( ( , , ))T Tf A f rscl A r s . It 

implies 
, ,

1 2 1 2
( ( ), , ) ( ( , , ))W W T Trscl f A r s f rscl A r s . 

(ii) (i) Let (ii) holds and XA I  such that A  is ( , )r s -frsc. Then 
,

1 2
( ( ), , ) ( )W Wrscl f A r s f A . 

But 
,

1 2
( ) ( ( ), , )W Wf A rscl f A r s . Hence ( )f A  is ( , )r s -frsc and therefore f  is fuzzy ( , )r s -regular 

semi irresolute closed.           

 Theorem 3.10 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -  irresolute closed.  

    2.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf cl A r s cl f A r s  , for each XA I .  

  

 Proof. It follows from Theorem 4(`)@           

 Theorem 3.11 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -pre irresolute closed.  

    2.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf pcl A r s pcl f A r s , for each XA I .  

  

 Proof. It follows from Theorem 4(`)@           

 Theorem 3.12 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -   irresolute closed.  
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    2.  
, ,

1 2 1 2
( ( , , )) ( ( ), , )T T W Wf cl A r s cl f A r s  , for each XA I .  

  

 Proof. It follows from Theorem 4(`)@           

  Theorem 3.13 Let 
1 2( , , )X T T  and 

1 2( , , )Y W W  be SoIFTS‘s. Let :f X Y  is bijective. Then :   

    1.  f  is fuzzy ( , )r s -regular semi irresolute closed iff 
1 1

, ,
1 2 1 2

( ( , , )) ( ( ), , )W W T Tf rscl B r s rscl f B r s   for each YB I  and ( , )r s I I  .  

    2.  f  is fuzzy ( , )r s -regular semi irresolute closed iff f  is fuzzy ( , )r s -regular semi 

irresolute open.  

   Proof. (1)( ): Let f  be fuzzy ( , )r s -regular semi irresolute closed. From Theorem 4(`)@ we 

have:  

 
, ,

1 2 1 2
( ( , , )) ( ( ), , ))T T W Wf rscl A r s rscl f A r s , XA I .  

 Let YB I  and put 1= ( )A f B , we have  

 1 1

, , ,
1 2 1 2 1 2

( ( ( ), , )) ( ( ), , ) = ( , , )T T W W W Wf rscl f B r s rscl ff B r s rscl B r s  .  

 It implies 1 1

, ,
1 2 1 2

( ( ), , ) ( ( , , ))T T W Wrscl f B r s f rscl B r s  . 

(): On the other hand let the condition is satisfied and let XB I  such that B  is ( , )r s -frsc. 

Then ( ) Yf B I . Apply the condition we have: 
1 1

, ,
1 2 1 2

          ( ( , , )) ( ( ( ), , ), , )T T W Wrscl f f B r s f rscl f B r s r s  . 

It implies that 1

, ,
1 2 1 2

( , , ) ( ( ( ), , ), , )T T W Wrscl B r s f rscl f B r s r s . Then, 

, ,
1 2 1 2

( ( , , )) ( ( ), , )T T W Wf rscl B r s rscl f B r s . So by Theorem 4(`)@ f  is fuzzy ( , )r s -regular semi irresolute 

closed. 
 (ii) Apply Theorem 4(`)@ and taking the complement we have the required result.           

From Theorems 4(`)@ 5(`)@ 4(`)@ 2(`)@ we obtain the following Theorem. 
Theorem 3.14  Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTS‘s. Let :f X Y  is bijective. Then :   

    1.  f  is fuzzy ( , )r s -  irresolute closed iff 1 1

, ,
1 2 1 2

( ( , , )) ( ( ), , )W W T Tf cl B r s cl f B r s    for 

each YB I  and ( , )r s I I  .  

    2.  f  is fuzzy ( , )r s -  irresolute closed iff f  is fuzzy ( , )r s -  irresolute open.  

  

 Proof. It follows from Theorem 2(`)@            

 Theorem 3.15 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTS‘s. Let :f X Y  is bijective. Then :   

    1.  f  is fuzzy ( , )r s -pre irresolute closed iff 1 1

, ,
1 2 1 2

( ( , , )) ( ( ), , )W W T Tf pcl B r s pcl f B r s   

for each YB I  and ( , )r s I I  .  

    2.  f  is fuzzy ( , )r s -pre irresolute closed iff f  is fuzzy ( , )r s -pre irresolute open.  

  

 Proof. It follows from Theorem 2(`)@           

 Theorem 3.16 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTS‘s. Let :f X Y  is bijective. Then :   

    1.  f  is fuzzy ( , )r s -   irresolute closed iff 1 1

, ,
1 2 1 2

( ( , , )) ( ( ), , )W W T Tf cl B r s cl f B r s    

for each YB I  and ( , )r s I I  .  

    2.  f  is fuzzy ( , )r s -   irresolute closed iff f  is fuzzy ( , )r s -   irresolute open.  

  

 Proof. It follows from Theorem 2(`)@           

 Theorem 3.17 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 
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following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -regular semi irresolute homeomorphism,  

    2.  f  is fuzzy ( , )r s -regular semi irresolute and fuzzy ( , )r s -regular semi irresolute open,  

    3.  f  is fuzzy ( , )r s -regular semi irresolute and fuzzy ( , )r s -regular semi irresolute closed,  

    4.  
, ,

1 2 1 2
( ( , , )) = ( ( ), , )T T W Wf rsint A r s rsint f A r s , for each , ( , )XA I r s I I   ,  

    5.  
, ,

1 2 1 2
( ( , , )) = ( ( ), , )T T W Wf rscl A r s rscl f A r s , for each , ( , )XA I r s I I   ,  

    6.  1 1

, ,
1 2 1 2

( ( ), , ) = ( ( , , ))T T W Wrsint f B r s f rsint B r s  ,  

    7.  1 1

, ,
1 2 1 2

( ( ), , ) = ( ( , , ))T T W Wrscl f B r s f rscl B r s  , , ( , )YI r s I I   .  

  

 Theorem 3.18 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -  irresolute homeomorphism,  

    2.  f  is fuzzy ( , )r s -  irresolute and fuzzy ( , )r s -  irresolute open,  

    3.  f  is fuzzy ( , )r s -  irresolute and fuzzy ( , )r s -  irresolute closed,  

    4.  
, ,

1 2 1 2
( ( , , )) = ( ( ), , )T T W Wf int A r s int f A r s  , for each , ( , )XA I r s I I   ,  

    5.  
, ,

1 2 1 2
( ( , , )) = ( ( ), , )T T W Wf cl A r s cl f A r s  , for each , ( , )XA I r s I I   ,  

    6.  1 1

, ,
1 2 1 2

( ( ), , ) = ( ( , , ))T T W Wint f B r s f int B r s   ,  

    7.  1 1

, ,
1 2 1 2

( ( ), , ) = ( ( , , ))T T W Wcl f B r s f cl B r s   , , ( , )YI r s I I   ,  

  

 Theorem 3.19 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -pre irresolute homeomorphism,  

    2.  f  is fuzzy ( , )r s -pre irresolute and fuzzy ( , )r s -pre irresolute open,  

    3.  f  is fuzzy ( , )r s -pre irresolute and fuzzy ( , )r s -pre irresolute closed,  

    4.  
, ,

1 2 1 2
( ( , , )) = ( ( ), , )T T W Wf pint A r s pint f A r s , for each , ( , )XA I r s I I   ,  

    5.  
, ,

1 2 1 2
( ( , , )) = ( ( ), , )T T W Wf pcl A r s pcl f A r s , for each , ( , )XA I r s I I   ,  

    6.  1 1

, ,
1 2 1 2

( ( ), , ) = ( ( , , ))T T W Wpint f B r s f pint B r s  ,  

    7.  1 1

, ,
1 2 1 2

( ( ), , ) = ( ( , , ))T T W Wpcl f B r s f pcl B r s  , , (, , )YI r s I I   .  

  

 Theorem 3.20 Let 1 2( , , )X T T  and 1 2( , , )Y W W  be SoIFTSs. Let :f X Y  be a mapping. The 

following statements are equivalent:   

    1.  f  is fuzzy ( , )r s -   irresolute homeomorphism,  

    2.  f  is fuzzy ( , )r s -   irresolute and fuzzy ( , )r s -   irresolute open,  

    3.  f  is fuzzy ( , )r s -   irresolute and fuzzy ( , )r s -   irresolute closed,  

    4.  
, ,

1 2 1 2
( ( , , )) = ( ( ), , )T T W Wf int A r s int f A r s  , for each , ( , )XA I r s I I   ,  

    5.  , ,
1 2 1 2

( ( , , )) = ( ( ), , )T T W Wf cl A r s cl f A r s  , for each , ( , )XA I r s I I   ,  

    6.  1 1

, ,
1 2 1 2

( ( ), , ) = ( ( , , ))T T W Wint f B r s f int B r s   ,  

    7.  1 1

, ,
1 2 1 2

( ( ), , ) = ( ( , , ))T T W Wcl f B r s f cl B r s   , , ( , )YI r s I I   .  
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Note that the composition of two fuzzy regular semi(resp.  ,pre and  ) irresolute mappings is 

fuzzy regular semi(resp.  ,pre and  ) irresolute. In general, the composition of two fuzzy regular semi 

(resp.  ,pre and  ) continuous mappings is not fuzzy regular semi(resp.  ,pre,  ) continuous.  
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[12]  A. Ŝ ostak,  On a fuzzy topological structure, Supp. Rend. Circ. Math. palermo (Ser.II),  
     11  (1985), 89-103.  

[13]  L. A. Zadeh,  Fuzzy sets, Information and Control,  8  (1965), 338-353.  

  

http://www.jetir.org/

