Regular Semi Irresolute on Intuitionistic Fuzzy Topological Spaces in Ŝostak's Sense

${ }^{1}$ S. Tamilselvan, ${ }^{2}$ A. Vadivel and ${ }^{3}$ G. Saravanakumar
${ }^{1}$ Mathematics Section (FEAT), Annamalai University, Annamalainagar,Tamil Nadu-608002
${ }^{2}$ Department of Mathematics, Government Arts College(Autonomous) Karur,Tamil Nadu-639005
${ }^{3}$ Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu-608002

Abstract

In this paper, we introduce the concepts of fuzzy (r, s) -regular semi irresolute on intuitionistic fuzzy topological spaces in \hat{S} ostak's sense and then we investigate some of their characteristic properties.

Keywords and phrases: intuitionistic fuzzy topology in \hat{S} ostka's sense, fuzzy (r, s) -regular semi irresolute.

AMS (2000) subject classification: 54A40.

\section*{1.Introduction}

The concept of fuzzy sets was introduced by Zadeh [13]. Change [2] defined fuzzy topological spaces. These spaces and its generalizations are later studied by several authors, one of which, developed by \hat{S} ostak [12], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra and Samanta [3], and by Ramadan [10]. As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Coker and his collegues [4, 6, 7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Coker and Demirci [5] defined intuitionistic fuzzy topological spaces in \hat{S} ostak's sense as a generalization of smooth fuzzy topological spaces and intuitionistic fuzzy topological spaces. In this paper, we introduce the concepts of fuzzy (r, s) -regular semi irresolute on intuitionistic fuzzy topological spaces in \hat{S} ostak's sense and then we investigate some of their characteristic properties.

2.Preliminaries

Let I be the unit interval [0,1] of the real line. A member μ of I^{X} is called a fuzzy set of X . By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1 , respectively. For any $\mu \in I^{X}, \mu^{c}$ denotes the complement of $\tilde{1}-\mu$. All other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered pair

$$
A=\left(\mu_{A}, \gamma_{A}\right)
$$

where the functions $\mu_{A}: X \rightarrow I$ and $\gamma_{A}: X \rightarrow I$ denote the degree of membership and degree of non-membership, respectively, and $\mu_{A}+\gamma_{A} \leq \tilde{1}$.

Obviously every fuzzy set μ on X is an intuitionistic fuzzy set of the form $(\mu, \tilde{1}-\mu)$.
Definition 2.1 [1] Let $A=\left(\mu_{A}, \gamma_{A}\right)$ and $B=\left(\mu_{B}, \gamma_{B}\right)$ be intuitionistic fuzzy sets on X. Then

1. $A \subseteq B$ iff $\mu_{A} \leq \mu_{B}$ and $\gamma_{A} \geq \gamma_{B}$,
2. $A=B$ iff $A \subseteq B$ and $B \subseteq A$,
3. $A^{c}=\left(\gamma_{A}, \mu_{A}\right)$,
4. $A \cap B=\left(\mu_{A} \wedge \mu_{B}, \gamma_{A} \vee \gamma_{B}\right)$
5. $A \cup B=\left(\mu_{A} \vee \mu_{B}, \gamma_{A} \wedge \gamma_{B}\right)$,
6. $0:=(\tilde{0}, \tilde{1})$ and $1:=(\tilde{1}, \tilde{0})$.

Definition 2.2 [1] Let f be a map from a set X to a set Y. Let $A=\left(\mu_{A}, \gamma_{A}\right)$ be a intuitionistic fuzzy set of X and $B=\left(\mu_{B}, \gamma_{B}\right)$ an intuitionistic fuzzy set of Y. Then:

1. The image of A under f, denoted by $f(A)$ is an intuitionistic fuzzy set in Y defined by

$$
f(A)=\left(f\left(\mu_{A}\right), \tilde{1}-f\left(\tilde{1}-\gamma_{A}\right)\right) .
$$

2. The inverse image of B under f, denoted by $f^{-1}(B)$ is an intuitionistic fuzzy set in X defined by

$$
f^{-1}(B)=\left(f^{-1}\left(\mu_{B}\right), f^{-1}\left(\gamma_{B}\right)\right) .
$$

Definition 2.3 [10] A smooth fuzzy topology on X is a map $T: I^{X} \rightarrow I$ which satisfies the following properties:

1. $T(\tilde{0})=T(\tilde{1})=1$,
2. $T\left(\mu_{1} \wedge \mu_{2}\right) \geq T\left(\mu_{1}\right) \wedge T\left(\mu_{2}\right)$,
3. $T\left(\vee \mu_{i}\right) \geq \wedge T\left(\mu_{i}\right)$.

The pair (X, T) is called a smooth fuzzy topological space.
Definition 2.4 [5] An intuitionistic fuzzy topology on X is a family T of intuitionistic fuzzy sets in X which satisfies the following properties:

1. $0:, 1: \in T$,
2. If $A_{1}, A_{2} \in T$, then $A_{1} \cap A_{2} \in T$,
3. If $A_{i} \in T$ for all i, then $\cup A_{i} \in T$.

The pair (X, T) is called an intuitionistic fuzzy topological space.
Let $I(X)$ be a family of all intuitionistic fuzzy sets of X and let $I \otimes I$ be the set of the pair (r, s) such that $r, s \in I$ and $r+s \leq 1$

Definition 2.5 [6] Let X be a nonempty set. An intuitionistic fuzzy topology in \hat{S} ostak's sense (SolFT for short) $T=\left(T_{1}, T_{2}\right)$ on X is a map $T: I(X) \rightarrow I \otimes I$ which satisfied the following properties:

1. $\quad T_{1}(0:)=T_{1}(1:)=1$ and $T_{2}(0:)=T_{2}(1:)=1$,
2. $\quad T_{1}(A \cap B) \geq T_{1}(A) \wedge T_{1}(B)$ and $T_{2}(A \cap B) \leq T_{2}(A) \vee T_{2}(B)$,
3. $T_{1}\left(\cup A_{i}\right) \geq \wedge T_{1}\left(A_{i}\right)$ and $T_{2}\left(\cup A_{i}\right) \leq \vee T_{2}\left(A_{i}\right)$

The $(X, T)=\left(X, T_{1}, T_{2}\right)$ is said to be an intuitionistic fuzzy topological space in \hat{S} ostak's sense (SolFTS for short). Also, we call $T_{1}(A)$ a gradation of openness of A and $T_{2}(A)$ a gradation of nonopenness of A

Definition 2.6 [8] Let A be an intuitionistic fuzzy set in a SolFTS (X, T_{1}, T_{2}) and ($\left.r, s\right) \in I \otimes I$. Then A is said to be

1. fuzzy (r, s)-open if $T_{1}(A) \geq r$ and $T_{2}(A) \leq s$,
2. fuzzy (r, s)-closed if $T_{1}\left(A^{c}\right) \geq r$ and $T_{2}\left(A^{c}\right) \leq s$.

Definition 2.7 [8] Let $\left(X, T_{1}, T_{2}\right)$ be a SolFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s) -interior is defined by

$$
\operatorname{int}_{T_{1}, T_{2}}(A, r, s)=\cup\{B \in I(X) \mid A \supseteq B, B \text { isfuzzy }(r, s)-\text { open }\} .
$$

and the fuzzy (r, s)-closure is defined by
$c l_{T_{1}, T_{2}}(A, r, s)=\cap\{B \in I(X) \mid A \subseteq B, B$ isfuzzy $(r, s)-$ closed $\}$.
The operators int: $I(X) \times I \otimes I \rightarrow I(X)$ and $c l: I(X) \times I \otimes I \rightarrow I(X)$ are called the fuzzy interior operotar and fuzzy closure operator in $\left(X, T_{1}, T_{2}\right)$, respectively.

Lemma 2.1 [8] For an intuitionistic fuzzy set A in a SolFTS (X, T_{1}, T_{2}) and (r, s) $\in I \otimes I$

1. $\operatorname{int}_{T_{1}, T_{2}}(A, r, s)^{c}=c l_{T_{1}, T_{2}}\left(A^{c}, r, s\right)$,
2. $\quad c l_{T_{1}, T_{2}}(A, r, s)^{c}=\operatorname{int}_{T_{1}, T_{2}}\left(A^{c}, r, s\right)$.

Definition 2.8 [8] Let (X, T) be an intuitionistic fuzzy topological space in \hat{S} ostak's sense. Then it is easy to see that for each $(r, s) \in I \otimes I$, the family $T_{(r, s)}$ defined by

$$
T_{(r, s)}=\left\{A \in I(X) \mid T_{1}(A) \geq r \text { and } T_{2}(A) \leq s\right\}
$$

is an intuitionistic fuzzy topology on X.
Definition 2.9 [8] Let (X, T) be an intuitionistic fuzzy topological space $(r, s) \in I \otimes I$. Then the map $T^{(r, s)}: I(X) \rightarrow I \otimes I$ defined by

$$
T^{(r, s)}(A)=\left\{\begin{array}{cc}
(1,0), & \text { if } A=0,1 \\
(r, s), & \text { if } A \in T-\{0,1\} \\
(0,1), & \text { otherwise }
\end{array}\right.
$$

becomes an intuitionistic fuzzy topology in \hat{S} ostak's sense on X.
Definition 2.10 [9] Let A be an intuitionistic fuzzy set in a SolFTS (X, T_{1}, T_{2}) and (r, s) $\in I \otimes I$. Then A is said to be

1. fuzzy (r, s)-semi open if there is a fuzzy (r, s)-open set B in X such that $B \subseteq A \subseteq c l_{T_{1}, T_{2}}(B, r, s)$,
2. fuzzy (r, s)-semi closed if there is a fuzzy (r, s)-closed set B in X such that int $_{T_{1}, T_{2}}(B, r, s) \subseteq A \subseteq B$.

Definition 2.11 [11] Let A be an intuitionistic fuzzy set in a SolFTS $\left(X, T_{1}, T_{2}\right)$ and $(r, s) \in I \otimes I$. Then A is said to be

1. fuzzy (r, s)-regular open if $A=\operatorname{int}_{T_{1}, T_{2}}\left(c l_{T_{1}, T_{2}}(A, r, s), r, s\right)$,
2. fuzzy (r, s)-regular closed if $A=c l_{T_{1}, T_{2}}\left(i n t_{T_{1}, T_{2}}(A, r, s), r, s\right)$,
3. fuzzy $(r, s)-\alpha$ open if $A \subseteq \operatorname{int}_{T_{1}, T_{2}}\left(c l_{T_{1}, T_{2}}\left(\right.\right.$ int $\left.\left._{T_{1}, T_{2}}(A, r, s), r, s\right) r, s\right)$,
4. fuzzy $(r, s)-\alpha$ closed if $A \supseteq c l_{T_{1}, T_{2}}\left(\right.$ int $\left._{T_{1}, T_{2}}\left(c l_{T_{1}, T_{2}}(A, r, s), r, s\right) r, s\right)$,
5. fuzzy (r, s)-pre open if $A \subseteq i n t_{T_{1}, T_{2}}\left(c l_{T_{1}, T_{2}}(A, r, s), r, s\right)$,
6. fuzzy (r, s)-pre closed if $A \supseteq c l_{T_{1}, T_{2}}\left(\right.$ int $\left._{T_{1}, T_{2}}(A, r, s), r, s\right)$,
7. fuzzy $(r, s)-\beta$ open if $A \subseteq c l_{T_{1}, T_{2}}$ (int $\left.T_{T_{1}, T_{2}}\left(c l_{T_{1}, T_{2}}(A, r, s), r, s\right) r, s\right)$,
8. fuzzy $(r, s)-\beta$ closed if $A \supseteq$ int $_{T_{1}, T_{2}}\left(c l_{T_{1}, T_{2}}\left(\right.\right.$ int $\left.\left._{T_{1}, T_{2}}(A, r, s), r, s\right) r, s\right)$,
9. fuzzy (r, s)-regular semi open if there is a fuzzy (r, s)-regular open set B in X such that $B \subseteq A \subseteq c l_{T_{1}, T_{2}}(B, r, s)$,
10. fuzzy (r, s) -regular semi closed if there is a fuzzy (r, s)-regular closed set B in X such that $\operatorname{int}_{T_{1}, T_{2}}(B, r, s) \subseteq A \subseteq B$.

Definition 2.12 [11] Let $\left(X, T_{1}, T_{2}\right)$ be a SolFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s)-regular semi (resp. $(r, s)-\alpha,(r, s)$-pre and (r, s) - β)-interior is defined by $\operatorname{rint}_{T_{1}, T_{2}}(A, r, s)\left(\operatorname{resp} . \alpha i n t_{T_{1}, T_{2}}(A, r, s), \operatorname{pint}_{T_{1}, T_{2}}(A, r, s)\right.$ and $\left.\beta i n t_{T_{1}, T_{2}}(A, r, s)\right)$ $=\bigcup\{B \in I(X) \mid A \supseteq B, B$ isfuzzy $(r, s)-$ regularsemi (resp. α, pre and β)-open $\}$ and the fuzzy (r, s) -regular semi (resp. $(r, s)-\alpha,(r, s)$-pre and $(r, s)-\beta)$ - closure is defined by $r s c l_{T_{1}, T_{2}}(A, r, s)\left(\operatorname{resp} . \alpha c l_{T_{1}, T_{2}}(A, r, s), \operatorname{pcl}_{T_{1}, T_{2}}(A, r, s)\right.$ and $\left.\beta c l_{T_{1}, T_{2}}(A, r, s)\right)=\bigcap\{B \in I(X) \mid A \subseteq B$, B isfuzzy $(r, s)-$ regularsemi(resp. α, pre and β) -closed $\}$

3.Fuzzy (r, s)-regular semi(resp. α, pre and β) irresolute functions

Definition 3.1 Let $f:\left(X, T_{1}, T_{2}\right) \rightarrow\left(Y, W_{1}, W_{2}\right)$ be a mapping from a SolFTS X to another SolFTS Y and $(r, s) \in I \otimes I$. Then f is said to be

1. fuzzy (r, s)-regular semi (resp. α, pre and β) irresolute if $f^{-1}(B)$ is a fuzzy (r, s) -regular semi (resp. α, pre and β) open set of X for each fuzzy (r, s)-regular semi (resp. α, pre and β) open set B of Y,
2. fuzzy (r, s)-regular semi irresolute open if $f(A)$ is a fuzzy (r, s)-regular semi (resp. α, pre and β) open set of Y for each fuzzy (r, s)-regular semi (resp. α, pre and β) open set A of X,
3. fuzzy (r, s)-regular semi (resp. α, pre and β) irresolute closed if $f(A)$ is a fuzzy (r, s)-regular semi (resp. α, pre and β) closed set of Y for each fuzzy (r, s) -regular semi (resp. α, pre and β) closed set A of X,
4. fuzzy (r, s)-regular semi (resp. α, pre and β) irresolute homeomorphism iff f is bijective, f and f^{-1} are fuzzy (r, s)-regular semi (resp. α, pre and β) irresolute.

From the above definitions it is clear that the following implications are true for $(r, s) \in I \otimes I$

The converses of the above implications are not true as the following examples show:
Example 3.1 Let $X=\{a, b\}=Y$ and let $A_{1}, A_{2} \in I(X), B_{1} \in I(Y)$ be defined by $A_{1}(x)=B_{1}(x)=(0.1,0.8), A_{1}(y)=B_{1}(y)=(0.1,0.5) \quad, \quad A_{2}(x)=(0.3,0.6), A_{2}(y)=(0.3,0.5) \quad$. Define $T: I(X) \rightarrow I \otimes I$ and $W: I(Y) \rightarrow I \otimes I$ by

$$
T(A)=\left(T_{1}(A), T_{2}(A)\right)=\left\{\begin{array}{cc}
(1,0) & \text { if } A=0:, 1: \\
\left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } A=A_{1}, A_{2} \\
(0,1) & \text { otherwise }
\end{array}\right.
$$

$W(B)=\left(W_{1}(B), W_{2}(B)\right)=\left\{\begin{array}{cc}(1,0) & \text { if } B=0: 1:, \\ \left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } B=B_{1}, \\ (0,1) & \text { otherwise. }\end{array}\right.$
For $r=\frac{1}{2}, s=\frac{1}{2}$. Then the identity mapping $f:\left(X, T_{1}, T_{2}\right) \rightarrow\left(Y, W_{1}, W_{2}\right)$ is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$ -irresolute which is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular irresolute. Since B_{1} is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular open in W but $f^{-1}\left(B_{1}\right)$ is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular open in T.

Example 3.2 Let $X=\{a, b\}=Y$, and let $A_{1}, A_{2} \in I(X), B_{1} \in I(Y)$ be defined as $A_{1}(x)=B_{1}(x)=(0.1,0.8), A_{1}(y)=B_{1}(y)=(0.1,0.5) \quad, \quad B_{2}(x)=(0.3,0.6), B_{2}(y)=(0.3,0.5) \quad$. Define $T: I(X) \rightarrow I \otimes I$ and $W: I(Y) \rightarrow I \otimes I$ by

$$
T(A)=\left(T_{1}(A), T_{2}(A)\right)=\left\{\begin{array}{cc}
(1,0) & \text { if } A=0:, 1: \\
\left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } A=A_{1,} \\
(0,1) & \text { otherwise. }
\end{array}\right]
$$

$W(B)=\left(W_{1}(B), W_{2}(B)\right)=\left\{\begin{array}{cc}(1,0) & \text { if } B=0:, 1 ; \\ \left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } B=B_{1}, B_{2}, \\ (0,1) & \text { otherwise. }\end{array}\right.$
For $r=\frac{1}{2}, s=\frac{1}{2}$. Then the identity mapping $f:\left(X, T_{1}, T_{2}\right) \rightarrow\left(Y, W_{1}, W_{2}\right)$ is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular semi irresolute which is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular irresolute. Since B_{2} is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular open in W but $f^{-1}\left(B_{2}\right)$ is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular open in T.

Example 3.3 Let $X=\{a, b\}=Y$, and lett $A_{1} \in I(X), B_{1}, B_{2}, B_{1} \cup B_{2}, B_{1} \cap B_{2} \in I(Y)$ be defined as $A_{1}(x)=B_{1}(x)=(0.3,0.1), A_{1}(y)=B_{1}(y)=(0.3,0.1) \quad, \quad B_{2}(x)=(0.4,0.3), B_{2}(y)=(0.4,0.3)$ $B_{1}(x) \cup B_{2}(x)=(0.4,0.1), B_{1}(y) \cup B_{2}(y)=(0.4,0.1), \quad B_{1}(x) \cap B_{2}(x)=(0.3,0.3), B_{1}(y) \cap B_{2}(y)=(0.3,0.3)$ Define $T: I(X) \rightarrow I \otimes I$ and $W: I(Y) \rightarrow I \otimes I$ by

$$
T(A)=\left(T_{1}(A), T_{2}(A)\right)=\left\{\begin{array}{cc}
(1,0) & \text { if } A=0:, 1: \\
\left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } A=A_{1}, \\
(0,1) & \text { otherwise } .
\end{array}\right.
$$

$$
W(B)=\left(W_{1}(B), W_{2}(B)\right)=\left\{\begin{array}{cl}
(1,0) \quad \text { if } B=0:, \\
\left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } B=B_{1}, B_{2}, B_{1} \cup B_{2}, B_{1} \cap B_{2}, \\
& (0,1) \quad \text { otherwise } .
\end{array}\right.
$$

For $r=\frac{1}{2}, s=\frac{1}{2}$. Then the identity mapping $f:\left(X, T_{1}, T_{2}\right) \rightarrow\left(Y, W_{1}, W_{2}\right)$ is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)-\alpha$ irresolute which is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-irresolute. Since B_{2} is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-open in W but $f^{-1}\left(B_{2}\right)$ is
not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-open in T.
Example 3.4 Let $X=\{a, b\}=Y$, and let $A_{1} \in I(X), B_{1}, B_{2} \in I(Y)$ be defined as $A_{1}(x)=B_{1}(x)=(0.3,0.6), A_{1}(y)=B_{1}(y)=(0.3,0.5) \quad, \quad B_{2}(x)=(0.4,0.3), B_{2}(y)=(0.4,0.3) \quad$ Define $T: I(X) \rightarrow I \otimes I$ and $W: I(Y) \rightarrow I \otimes I$ by
$T(A)=\left(T_{1}(A), T_{2}(A)\right)=\left\{\begin{array}{cc}(1,0) & \text { if } A=0:, 1: \\ \left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } A=A_{1}, \\ (0,1) & \text { otherwise. }\end{array}\right.$
$W(B)=\left(W_{1}(B), W_{2}(B)\right)=\left\{\begin{array}{cc}(1,0) & \text { if } B=0:, 1: \\ \left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } B=B_{1}, B_{2}, \\ (0,1) & \text { otherwise. }\end{array}\right.$
For $r=\frac{1}{2}, s=\frac{1}{2}$. Then the identity mapping $f:\left(X, T_{1}, T_{2}\right) \rightarrow\left(Y, W_{1}, W_{2}\right)$ is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-semi irresolute, β-irresolute which is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)-\alpha$ irresolute, pre irresolute. Since B_{2} is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$ -pre open, α open in W but $f^{-1}\left(B_{2}\right)$ is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-pre open, α open in T.

Example 3.5 Let $X=\{a, b\}=Y$, and let $A_{1} \in I(X), B_{1}, B_{2} \in I(Y)$ be defined as $A_{1}(x)=(0.2,0.2), A_{1}(y)=(0.1,0.2), \quad B_{1}(x)=(0.1,0.1), B_{1}(y)=(0.1,0.1)$. Define $T: I(X) \rightarrow I \otimes I$ and $W: I(Y) \rightarrow I \otimes I$ by

$$
\begin{gathered}
T(A)=\left(T_{1}(A), T_{2}(A)\right)=\left\{\begin{array}{cc}
(1,0) & \text { if } A=0:, 1: \\
\left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } A=A_{1}, \\
(0,1) & \text { otherwise } .
\end{array}\right. \\
W(B)=\left(W_{1}(B), W_{2}(B)\right)=\left\{\begin{aligned}
(1,0) & \text { if } B=0:, 1 \\
\left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } B=B_{1}, \\
(0,1) & \text { otherwise. }
\end{aligned}\right.
\end{gathered}
$$

For $r=\frac{1}{2}, s=\frac{1}{2}$. Then the identity mapping $f:\left(X, T_{1}, T_{2}\right) \rightarrow\left(Y, W_{1}, W_{2}\right)$ is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-semi irresolute which is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular semi irresolute. Since B_{1} is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular semi open in W but $f^{-1}\left(B_{1}\right)$ is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-regular semi open in T.

Example 3.6 Let $X=\{a, b\}=Y$, and let $A_{1} \in I(X), B_{1}, B_{2} \in I(Y)$ be defined as $A_{1}(x)=(0.1,0.1), A_{1}(y)=(0.1,0.1), \quad B_{1}(x)=(0.2,0.2), B_{1}(y)=(0.1,0.2)$. Define $T: I(X) \rightarrow I \otimes I \quad$ and $W: I(Y) \rightarrow I \otimes I$ by

$$
T(A)=\left(T_{1}(A), T_{2}(A)\right)=\left\{\begin{array}{cc}
(1,0) & \text { if } A=0:, 1: \\
\left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } A=A_{1} \\
(0,1) & \text { otherwise }
\end{array}\right.
$$

$W(B)=\left(W_{1}(B), W_{2}(B)\right)=\left\{\begin{array}{cc}(1,0) & \text { if } B=0:, 1 ; \\ \left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } B=B_{1}, \\ (0,1) & \text { otherwise. }\end{array}\right.$
For $r=\frac{1}{2}, s=\frac{1}{2}$. Then the identity mapping $f:\left(X, T_{1}, T_{2}\right) \rightarrow\left(Y, W_{1}, W_{2}\right)$ is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-semi irresolute which is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)-\beta$ irresolute. Since B_{1} is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)-\beta$ open in W but $f^{-1}\left(B_{1}\right)$ is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)-\beta$ open in T.

Example 3.7 Let $X=\{a, b\}=Y$, and let $A_{1} \in I(X), B_{1}, B_{2}, B_{1} \cup B_{2}, B_{1} \cap B_{2} \in I(Y)$ be defined as $A_{1}(x)=B_{2}(x)=(0.1,0.3), A_{1}(y)=B_{2}(y)=(0.1,0.3) \quad B_{1}(x)=(0.3,0.6), B_{1}(y)=(0.3,0.5)$ $B_{1}(x) \cup B_{2}(x)=(0.3,0.3), B_{1}(y) \cup B_{2}(y)=(0.3,0.3), \quad B_{1}(x) \cap B_{2}(x)=(0.1,0.6), B_{1}(y) \cap B_{2}(y)=(0.1,0.5)$ Define $T: I(X) \rightarrow I \otimes I$ and $W: I(Y) \rightarrow I \otimes I$ by

$$
\begin{aligned}
& T(A)=\left(T_{1}(A), T_{2}(A)\right)=\left\{\begin{array}{cc}
(1,0) & \text { if } A=0,1 \\
\left(\frac{1}{2}, \frac{1}{2}\right) & \text { if } A=A_{1},
\end{array}\right. \\
& (0,1) \\
& \text { otherwise. }
\end{aligned},
$$

For $r=\frac{1}{2}, s=\frac{1}{2}$. Then the identity mapping $f:\left(X, T_{1}, T_{2}\right) \rightarrow\left(Y, W_{1}, W_{2}\right)$ is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)-\alpha$ irresolute which is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-pre irresolute. Since B_{2} is fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-pre open in W but $f^{-1}\left(B_{1}\right)$ is not fuzzy $\left(\frac{1}{2}, \frac{1}{2}\right)$-pre open in T.

Theorem 3.1 Let $\left(X, T_{1}, T_{2}\right),\left(Y, W_{1}, W_{2}\right)$ be SolFTSs and let $f: X \rightarrow Y$ be mappings and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

1. f is fuzzy (r, s)-regular semi irresolute.
2. For each (r, s)-frsc set $B \in I^{Y}, f^{-1}(B)$ is (r, s)-frsc set in X.
3. $f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right) \subseteq r s c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$ and $(r, s) \in I \otimes I$.
4. $\quad r s c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(r s c l_{W_{1}, W_{2}}(B, r, s)\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
5. $\quad f^{-1}\left(r \operatorname{sint}_{W_{1}, W_{2}}(B, r, s)\right) \subseteq \operatorname{sint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$, for each $B \in I^{Y} \quad$ and $(r, s) \in I \otimes I$.

Proof. (i) \Leftrightarrow (ii) It is easily proved from Definition 10($) @$
(ii) \Rightarrow (iii) Let (ii) holds and let $f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right)$ Ú $r s c l_{W_{1}, W_{2}}(f(A), r, s)$ for some $A \in I^{X}$ and $(r, s) \in I \otimes I$. So there exists $y \in Y, t \in(0,1]$ such that:

$$
f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right)(y)>t>r s c l_{W_{1}, W_{2}}(f(A), r, s)(y)
$$

If $f^{-1}(y)=\phi$, it is a contradiction, because $f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right)(y)=0$: So, if $f^{-1}(y) \neq \phi$, there exists $x \in f^{-1}(y)$ such that

$$
\begin{equation*}
f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right)(y) \supseteq r s c l_{T_{1}, T_{2}}(A, r,)(x)>t>r s c l_{W_{1}, W_{2}}(f(A), r, s)(f(x)) \tag{1}
\end{equation*}
$$

Also, $r s c l_{W_{1}, W_{2}}(f(A), r, s)(f(x))<t$, implies that there exists r-frsc set B with $f(A)=B$ such that $\quad r s c l_{W_{1}, W_{2}}(f(A), r, s)(f(x)) \subseteq B(f(x))<t$. Moreover, $f(A) \subseteq B$ implies $A \subseteq f^{-1}(B)$. From (2), $f^{-1}(B)$ is (r, s)-frsc. Thus $r s c l_{T_{1}, T_{2}}(A, r) \subseteq f^{-1}(B)$ and this implies:

$$
\begin{equation*}
\operatorname{rscl}_{T_{1}, T_{2}}(A, r, s)(x) \subseteq f^{-1}(B)(x)=B(f(x))<t \tag{2}
\end{equation*}
$$

From relations (1) and (2) we see that:
$\operatorname{rscl}_{T_{1}, T_{2}}(A, r, s)(x)>t$ and $\operatorname{rscl}_{T_{1}, T_{2}}(A, r, s)(x) \leq t$ which is a contradiction. Hence the result. (iii) \Rightarrow (iv) Put $A=f^{-1}(B)\left(B \in I^{Y}\right)$ and apply (iii) we have

$$
f\left(r s c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)\right) \subseteq r s c l_{W_{1}, W_{2}}\left(f\left(f^{-1}(B), r, s\right)\right) \subseteq r s c l_{W_{1}, W_{2}}(B, r, s) .
$$

Hence, $\operatorname{rscl}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(\operatorname{rscl}_{W_{1}, W_{2}}(B, r, s)\right)$.
(iv) \Rightarrow (v) It follows immediately by taking the complement of (iv).
(v) \Rightarrow (i) Let (v) holds and let B be (r, s)-frso in Y. By (v)
$f^{-1}\left(r \operatorname{sint}_{W_{1}, W_{2}}(B,, s, r)\right) \subseteq r \operatorname{sint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$. Then, $f^{-1}(B) \subseteq r \sin t_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$. But $r \operatorname{sint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}(B)$. Hence $\operatorname{rsint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)=f^{-1}(B)$. So, $f^{-1}(B)$ is (r, s)-frso and there by f is (r, s)-fuzzy regular semi irresolute.

Theorem 3.2 Let $\left(X, T_{1}, T_{2}\right),\left(Y, W_{1}, W_{2}\right)$ be SolFTSs and let $f: X \rightarrow Y$ be mappings and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

1. f is fuzzy $(r, s)-\alpha$ irresolute.
2. For each fuzzy $(r, s)-\alpha$ closed set $B \in I^{Y}, f^{-1}(B)$ is fuzzy $(r, s)-\alpha$ closed set in X.
3. $f\left(\alpha c l_{T_{1}, T_{2}}(A, r, s)\right) \subseteq \alpha c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$ and $(r, s) \in I \otimes I$.
4. $\quad \alpha c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(\alpha c l_{W_{1}, W_{2}}(B, r, s)\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
5. $\quad f^{-1}\left(\alpha\right.$ int $\left._{W_{1}, W_{2}}(B, r, s)\right) \subseteq \operatorname{\alpha int}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$, for each $B \in I^{Y} \quad$ and $(r, s) \in I \otimes I$.

Proof. It follows from Theorem 4(`)@
Theorem 3.3 Let $\left(X, T_{1}, T_{2}\right),\left(Y, W_{1}, W_{2}\right)$ be SolFTSs and let $f: X \rightarrow Y$ be mappings and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

1. f is fuzzy (r, s)-pre irresolute.
2. For each fuzzy (r, s)-pre closed set $B \in I^{Y}, f^{-1}(B)$ is fuzzy (r, s)-pre closed set in X.
3. $f\left(p c l_{T_{1}, T_{2}}(A, r, s)\right) \subseteq p c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$ and $(r, s) \in I \otimes I$.
4. $p c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(p c l_{W_{1}, W_{2}}(B, r, s)\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
5. $\quad f^{-1}\left(\operatorname{pint}_{W_{1}, W_{2}}(B, r, s)\right) \subseteq \operatorname{pint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.

Proof. It follows from Theorem 4(`)@
Theorem 3.4 Let $\left(X, T_{1}, T_{2}\right),\left(Y, W_{1}, W_{2}\right)$ be SolFTSs and let $f: X \rightarrow Y$ be mappings and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

1. f is fuzzy $(r, s)-\beta$ irresolute.
2. For each fuzzy $(r, s)-\beta$ closed set $B \in I^{Y}, f^{-1}(B)$ is fuzzy $(r, s)-\beta$ closed set in X.
3. $\quad f\left(\beta c l_{T_{1}, T_{2}}(A, r, s)\right) \subseteq \beta c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$ and $(r, s) \in I \otimes I$.
4. $\quad \beta c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(\beta c l_{w_{1}, W_{2}}(B, r, s)\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.

Proof. It follows from Theorem 4(`)@
Theorem 3.5 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. A map f is (r, s)-fuzzy regular semi irresolute open.
2. $f\left(r \sin t_{T_{1}, T_{2}}(A, r, s)\right) \subseteq r \operatorname{sint}_{w_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$ and $(r, s) \in I \otimes I$.
3. $\quad r \operatorname{sint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(r \operatorname{sint}_{W_{1}, W_{2}}(B, r, s)\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
4. For any $A \in I^{Y}$ and any (r, s)-frso set $B \in I^{X}$ such that $B \supseteq f^{-1}(A)$, there exists a (r, s)-frscl set $C \in I^{Y}$ with $A \subseteq C$ such that $f^{-1}(C) \subseteq A$.

Proof. (i) \Rightarrow (ii) Since $\operatorname{rsint}_{T_{1}, T_{2}}(A, r, s) \subseteq A$, then $\operatorname{rsint}_{T_{1}, T_{2}}(A, r, s) \subseteq f(A)$. By (i),

$$
f\left(r \sin t_{T_{1}, T_{2}}(A, r, s)\right) \subseteq r \operatorname{sint}_{W_{1}, w_{2}}(f(A), r, s) .
$$

(ii) \Rightarrow (iii) Let (ii) holds. Take $A=f^{-1}(B), A \in I^{Y}$ and apply part (ii).
(iii) \Rightarrow (iv) Let $B \in I^{X}$ be a (r, s)-frsc set. Since $f^{-1}(A) \subseteq B$, then
 $r \operatorname{sint}_{T_{1}, T_{2}}(1:-B, r, s) \subseteq 1:-B \subseteq r \operatorname{sint} t_{T_{1}, T_{2}}\left(f^{-1}(1:-A), r, s\right) \quad$ By (iii),

$$
1:-B \subseteq r \sin t_{T_{1}, T_{2}}\left(f^{-1}(1:-A), r, s\right) \subseteq f^{-1}\left(r \sin t_{w_{1}, W_{2}}(1:-A, r, s)\right)
$$

It
implies
$B \supseteq 1:-f^{-1}\left(r \operatorname{sint} W_{W_{1}, W_{2}}(1:-A, r, s)\right)=f^{-1}\left(1:-r \operatorname{sint} t_{W_{1}, W_{2}}(1:-A, r, s)\right)=f^{-1}\left(r s c l_{W_{1}, W_{2}}(A, r, s)\right) \quad$. So, $B \supseteq f^{-1}\left(\operatorname{rscl}_{T_{1}, T_{2}}(A, r, s)\right)$. Take $\left.C=\operatorname{rscl}_{T_{1}, T_{2}}(A, r, s)\right)$. Then C is (r, s)-frsc such that $B \supseteq f^{-1}(C)$ and $C \supseteq A$. Hence the result.
(iv) \Rightarrow (i) Let D be (r, s)-frso in X. Put $A=1:-f(D)$ and $B=1:-D$. It is easy to see that $B \supseteq f^{-1}(A)$. By part (iv), there exists ($\left.r, s\right)$-frsc set $C \in I^{Y}$ such that $C \supseteq A$ and $B \supseteq f^{-1}(C)$ or $1:-D \supseteq f^{-1}(C)$. It implies $D \subseteq 1:-f^{-1}(C)=f^{-1}(1 ;-C)$. Thus $f(w) \subseteq f f^{-1}(1:-C) \subseteq 1:-C$. On the other hand, $A \subseteq C, f(D)=1:-A$ implies $f(D)=1:-A \supseteq 1:-C$. Finally, we have $f(D)=1:-C$ and therefore $f(D)$ is (r, s)-frso. Hence f is fuzzy (r, s) regular semi irresolute open.

Theorem 3.6 Let $\left(X, T_{1}, T_{2}\right)$ and (Y, W_{1}, W_{2}) be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. A map f is fuzzy $(r, s)-\alpha$ irresolute open.
2. $\quad f\left(\alpha \operatorname{cint}_{T_{1}, T_{2}}(A, r, s)\right) \subseteq \operatorname{\alpha int}_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$ and $(r, s) \in I \otimes I$.
3. $\alpha \operatorname{int}_{T_{T_{1}, T_{2}}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(\alpha i n t_{W_{1}, W_{2}}(B, r, s)\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
4. For any $A \in I^{Y}$ and any fuzzy $(r, s)-\alpha$ open set $B \in I^{X}$ such that $B \supseteq f^{-1}(A)$, there exists a fuzzy $(r, s)-\alpha$ closed set $C \in I^{Y}$ with $A \subseteq C$ such that $f^{-1}(C) \subseteq A$.

Proof. It follows from Theorem 5(`)@
Theorem 3.7 Let $\left(X, T_{1}, T_{2}\right)$ and (Y, W_{1}, W_{2}) be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The
following statements are equivalent:

1. A map f is fuzzy (r, s)-pre irresolute open.
2. $\quad f\left(\operatorname{pint}_{T_{1}, T_{2}}(A, r, s)\right) \subseteq \operatorname{pint}_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$ and $(r, s) \in I \otimes I$.
3. $\operatorname{pint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(\operatorname{pint}_{W_{1}, W_{2}}(B, r, s)\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
4. For any $A \in I^{Y}$ and any fuzzy (r, s)-pre open set $B \in I^{X}$ such that $B \supseteq f^{-1}(A)$, there exists a fuzzy (r, s)-pre closed set $C \in I^{Y}$ with $A \subseteq C$ such that $f^{-1}(C) \subseteq A$.

Proof. It follows from Theorem 5(`)@
Theorem 3.8 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. A map f is fuzzy $(r, s)-\beta$ irresolute open.
2. $f\left(\beta\right.$ int $\left.T_{T_{1}, T_{2}}(A, r, s)\right) \subseteq \beta$ int $t_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$ and $(r, s) \in I \otimes I$.
3. $\operatorname{Bint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \subseteq f^{-1}\left(\beta\right.$ int $\left._{W_{1}, W_{2}}(B, r, s)\right)$, for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
4. For any $A \in I^{Y}$ and any fuzzy $(r, s)-\beta$ open set $B \in I^{X}$ such that $B \supseteq f^{-1}(A)$, there exists a fuzzy $(r, s)-\beta$ closed set $C \in I^{Y}$ with $A \subseteq C$ such that $f^{-1}(C) \subseteq A$.

Proof. It follows from Theorem 5(`)@
Theorem 3.9 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. f is fuzzy (r, s)-regular semi irresolute closed.
2. $f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right) \supseteq r s c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$.

Proof. (i) \Rightarrow (ii) Let $A \in I^{X}$. Since $A \subseteq r s c l_{T_{1}, T_{2}}(A, r, s)$, then $f(A) \subseteq f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right)$. It implies $r s c l_{W_{1}, W_{2}}(f(A), r, s) \subseteq f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right)$.
(ii) \Rightarrow (i) Let (ii) holds and $A \in I^{X}$ such that A is ($\left.r, s\right)$-frsc. Then $r s c l_{W_{1}, W_{2}}(f(A), r, s) \subseteq f(A)$. But $f(A) \subseteq r s c l_{W_{1}, W_{2}}(f(A), r, s)$. Hence $f(A)$ is (r, s)-frsc and therefore f is fuzzy (r, s)-regular semi irresolute closed.

Theorem 3.10 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. f is fuzzy $(r, s)-\alpha$ irresolute closed.
2. $f\left(\alpha c l_{T_{1}, T_{2}}(A, r, s)\right) \supseteq \alpha c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$.

Proof. It follows from Theorem 4(`)@
Theorem 3.11 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. f is fuzzy (r, s)-pre irresolute closed.
2. $f\left(p c l_{T_{1}, T_{2}}(A, r, s)\right) \supseteq p c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$.

Proof. It follows from Theorem 4(`)@
Theorem 3.12 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. f is fuzzy $(r, s)-\beta$ irresolute closed.
2. $\quad f\left(\beta c l_{T_{1}, T_{2}}(A, r, s)\right) \supseteq \beta c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X}$.

Proof. It follows from Theorem 4(`)@
Theorem 3.13 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTS's. Let $f: X \rightarrow Y$ is bijective. Then :

1. f is fuzzy (r, s)-regular semi irresolute closed iff $f^{-1}\left(r s c l_{W_{1}, W_{2}}(B, r, s)\right) \subseteq \operatorname{rscl}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$ for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
2. f is fuzzy (r, s)-regular semi irresolute closed iff f is fuzzy (r, s)-regular semi irresolute open.

Proof. (1)(\Rightarrow): Let f be fuzzy (r, s)-regular semi irresolute closed. From Theorem 4(`)@ we have:

$$
\begin{aligned}
& \left.f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right) \supseteq r s c l_{W_{1}, W_{2}}(f(A), r, s)\right), \quad A \in I^{X} . \\
& \quad \text { Let } B \in I^{Y} \text { and put } A=f^{-1}(B) \text {, we have } \\
& f\left(r s c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)\right) \supseteq r s l_{W_{1}, W_{2}}\left(f f^{-1}(B), r, s\right)=r s c l_{W_{1}, W_{2}}(B, r, s) .
\end{aligned}
$$

It implies $\operatorname{rscl}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right) \supseteq f^{-1}\left(r s c l_{W_{1}, W_{2}}(B, r, s)\right)$.
(\Leftarrow) : On the other hand let the condition is satisfied and let $B \in I^{X}$ such that B is (r, s)-frsc. Then $f(B) \in I^{Y}$. Apply the condition we have:

$$
r s c l_{T_{1}, T_{2}}\left(f^{-1} f(B, r, s)\right) \supseteq f^{-1}\left(r s c l_{W_{1}, W_{2}}(f(B), r, s), r, s\right)
$$

It implies that $\quad \operatorname{rscl}_{T_{1}, T_{2}}(B, r, s) \supseteq f^{-1}\left(\operatorname{rscl}_{W_{1}, W_{2}}(f(B), r, s), r, s\right)$. Then, $f\left(r s c l_{T_{1}, T_{2}}(B, r, s)\right) \supseteq \operatorname{rscl}_{W_{1}, W_{2}}(f(B), r, s)$. So by Theorem 4(`)@f is fuzzy (r, s)-regular semi irresolute closed.
(ii) Apply Theorem 4(')@ and taking the complement we have the required result.

From Theorems 4(')@ 5(')@4(`)@2(')@ we obtain the following Theorem.
Theorem 3.14 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTS's. Let $f: X \rightarrow Y$ is bijective. Then :

1. f is fuzzy $(r, s)-\alpha$ irresolute closed iff $f^{-1}\left(\alpha c l_{W_{1}, W_{2}}(B, r, s)\right) \subseteq \alpha c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$ for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
2. f is fuzzy $(r, s)-\alpha$ irresolute closed iff f is fuzzy $(r, s)-\alpha$ irresolute open.

Proof. It follows from Theorem 2(`)@
Theorem 3.15 Let $\left(X, T_{1}, T_{2}\right)$ and (Y, W_{1}, W_{2}) be SolFTS's. Let $f: X \rightarrow Y$ is bijective. Then:

1. f is fuzzy (r, s)-pre irresolute closed iff $f^{-1}\left(p c l_{W_{1}, W_{2}}(B, r, s)\right) \subseteq p c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$ for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
2. f is fuzzy (r, s)-pre irresolute closed iff f is fuzzy (r, s)-pre irresolute open.

Proof. It follows from Theorem 2(`)@
Theorem 3.16 Let $\left(X, T_{1}, T_{2}\right)$ and (Y, W_{1}, W_{2}) be SolFTS's. Let $f: X \rightarrow Y$ is bijective. Then:

1. f is fuzzy $(r, s)-\beta$ irresolute closed iff $f^{-1}\left(\beta c l_{W_{1}, W_{2}}(B, r, s)\right) \subseteq \beta c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)$ for each $B \in I^{Y}$ and $(r, s) \in I \otimes I$.
2. f is fuzzy $(r, s)-\beta$ irresolute closed iff f is fuzzy $(r, s)-\beta$ irresolute open.

Proof. It follows from Theorem 2(`)@
Theorem 3.17 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The

following statements are equivalent:

1. f is fuzzy (r, s)-regular semi irresolute homeomorphism,
2. f is fuzzy (r, s)-regular semi irresolute and fuzzy (r, s)-regular semi irresolute open,
3. f is fuzzy (r, s)-regular semi irresolute and fuzzy (r, s)-regular semi irresolute closed,
4. $f\left(r \operatorname{sint}_{T_{1}, T_{2}}(A, r, s)\right)=r \operatorname{sint}_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X},(r, s) \in I \otimes I$,
5. $f\left(r s c l_{T_{1}, T_{2}}(A, r, s)\right)=r s c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X},(r, s) \in I \otimes I$,
6. $\operatorname{rsint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)=f^{-1}\left(r \operatorname{sint}_{W_{1}, W_{2}}(B, r, s)\right)$,
7. $r s c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)=f^{-1}\left(r s c l_{W_{1}, W_{2}}(B, r, s)\right), \quad \mu \in I^{Y},(r, s) \in I \otimes I$.

Theorem 3.18 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. f is fuzzy $(r, s)-\alpha$ irresolute homeomorphism,
2. f is fuzzy $(r, s)-\alpha$ irresolute and fuzzy $(r, s)-\alpha$ irresolute open,
3. f is fuzzy $(r, s)-\alpha$ irresolute and fuzzy $(r, s)-\alpha$ irresolute closed,
4. $f\left(\operatorname{\alpha int}_{T_{1}, T_{2}}(A, r, s)\right)=\operatorname{\alpha int}_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X},(r, s) \in I \otimes I$,
5. $f\left(\alpha c l_{T_{1}, T_{2}}(A, r, s)\right)=\alpha c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X},(r, s) \in I \otimes I$,
6. $\operatorname{\alpha int}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)=f^{-1}\left(\operatorname{\alpha int}_{W_{1}, W_{2}}(B, r, s)\right)$,
7. $\alpha c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)=f^{-1}\left(\alpha c l_{W_{1}, W_{2}}(B, r, s)\right), \mu \in I^{Y},(r, s) \in I \otimes I$,

Theorem 3.19 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. f is fuzzy (r, s) -pre irresolute homeomorphism,
2. f is fuzzy (r, s)-pre irresolute and fuzzy (r, s)-pre irresolute open,
3. f is fuzzy (r, s)-pre irresolute and fuzzy (r, s)-pre irresolute closed,
4. $f\left(\operatorname{pint}_{T_{1}, T_{2}}(A, r, s)\right)=\operatorname{pint}_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X},(r, s) \in I \otimes I$,
5. $f\left(p c l_{T_{1}, T_{2}}(A, r, s)\right)=p c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X},(r, s) \in I \otimes I$,
6. $\operatorname{pint}_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)=f^{-1}\left(\right.$ pint $\left._{W_{1}, W_{2}}(B, r, s)\right)$,
7. $p c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)=f^{-1}\left(p c l_{W_{1}, W_{2}}(B, r, s)\right), \quad \mu \in I^{Y},(, r, s) \in I \otimes I$.

Theorem 3.20 Let $\left(X, T_{1}, T_{2}\right)$ and $\left(Y, W_{1}, W_{2}\right)$ be SolFTSs. Let $f: X \rightarrow Y$ be a mapping. The following statements are equivalent:

1. f is fuzzy $(r, s)-\beta$ irresolute homeomorphism,
2. f is fuzzy $(r, s)-\beta$ irresolute and fuzzy $(r, s)-\beta$ irresolute open,
3. f is fuzzy $(r, s)-\beta$ irresolute and fuzzy $(r, s)-\beta$ irresolute closed,
4. $f\left(\operatorname{\beta int}_{T_{1}, T_{2}}(A, r, s)\right)=\operatorname{\beta int}_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X},(r, s) \in I \otimes I$,
5. $f\left(\beta c l_{T_{1}, T_{2}}(A, r, s)\right)=\beta c l_{W_{1}, W_{2}}(f(A), r, s)$, for each $A \in I^{X},(r, s) \in I \otimes I$,
6. $\beta_{i n t_{T_{1}, T_{2}}}\left(f^{-1}(B), r, s\right)=f^{-1}\left(\beta \operatorname{int}_{W_{1}, W_{2}}(B, r, s)\right)$,
7. $\beta c l_{T_{1}, T_{2}}\left(f^{-1}(B), r, s\right)=f^{-1}\left(\beta c l_{W_{1}, W_{2}}(B, r, s)\right), \mu \in I^{Y},(r, s) \in I \otimes I$.

Note that the composition of two fuzzy regular semi(resp. α, pre and β) irresolute mappings is fuzzy regular semi(resp. α, pre and β) irresolute. In general, the composition of two fuzzy regular semi (resp. α, pre and β) continuous mappings is not fuzzy regular semi(resp. α, pre, β) continuous.

References

[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
[3] K. C. Chattopadhyay, R. N. Harza and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
[4] D. Coker and A. Haydar Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math 3 (1995), 899-909.
[5] D. Coker, M. Demirci An introduction to intuitionistic fuzzy topologica spaces in Sostak's sense,BUSEFAL, 67 (1996), 67-76.
[6] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
[7] H. Gurcay, D. Coker and A. Haydar Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math 5 (1997), 365-378.
[8] E.P. Lee and Y.B. Im, Mated fuzzy topological spaces, J. of Fuzzy Logic and Intelligent Systems 11 (2001), 161-165.
[9] E.P. Lee, Semiopen sets on intuitionistic fuzzy topological spaces in \hat{S} ostak's sense, Journal of Korean institute of Intelligent Systems 11 (2) (2004), 234-238.
[10] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems, 48 (1992), 371-375.
[11] G. Saravanakumar, S. Tamilselvan and A. Vadivel, Regular Semi open sets on intuitionistic fuzzy topological spaces in \hat{S} ostak's sense, Applications and Applied Mathematics (Accepted)
[12] A. \hat{S} ostak, On a fuzzy topological structure, Supp. Rend. Circ. Math. palermo (Ser.II), 11 (1985), 89-103.
[13] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

