
© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905D79 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 544

Speech recognition for simple speech commands

Stephy Benny (Assistant Professor), Mukesh Choudhary, Abhijeet Iyer, Ganesh S, Shreyas Mudaliar

Information Technology, SIES Graduate School of Technology

Nerul, Navi Mumbai

I. Abstract— The paper proposes the development of

a Speech Recognition system using Mel filter techniques.
Speech recognition is used to recognize the speech words

faster, efficiently and accurately. Mel Spectrogram is used

to find characteristics from spoken word voice sample with

respect to the word uttered by the speaker. Convolutional

Neural Network (CNN) architecture with Batch

Normalization is used and an accuracy of 92-94% for 12

labels is attained. This model can be further improved by

EdgeSpeechNet or DeepSpeech and image recognition

models.

Keywords: Speech Recognition, CNN, MFCC, Mel

Spectrogram, Batch normalization

II. INTRODUCTION

Human-computer interaction led to research in Speech

Recognition. It one of the most active areas of research from the

last few decades. Many researches have been dedicated to

speech recognition research have been reported in the past few

years. Automatic speech recognition (ASR) converts speech

signals into list of words by means of an algorithm. Current

speech understanding systems can understand input

vocabularies of hundreds of words in optional environments.

Speech signal has two important types of information: (i)

speech content and (ii) The speaker identity. Speech content

recognizers aim to extract the word information from the speech

signal independent of the speaker by reducing the noise values

and preparing a spectrogram image of the voice sample and

identifying the appropriate label for the voice ample. [13]

III. SPEECH RECOGNITION

Speech recognition is a type of pattern recognition. Fig1 shows

the stages for processing involved in speech recognition. The

phases in supervised pattern recognition, are training phase and

testing phase. The process of feature extraction is relevant for

classification in both phases. During training phase, the

classification model parameters are estimated using a large

number of classes. During testing phase, the test pattern features

are matched with the trained model of each individual class.

The test pattern is concluded to belong to that class whose

model has a higher probability ratio of matching with the best

test pattern [13].

The goal of speech recognition is to generate the optimal word

subject to linguistic constraints. The vocal evidence provided

by the signal models of such units is combined with the rules of

finding nearer features of the audio samples and returning an

ideal word as output. In the case of speech recognition, two

domains are present for the pattern matching stage namely:

acoustic and symbolic. In the acoustic domain, a vectorized

feature corresponds to a small segment of frame of speech, this

is matched with the model of each and every class. The segment

or frame is assigned a set of class labels along with their

respective scores. This process of labeling is done for every

feature vector in the feature vector sequence from the test data.

The resultant label hypotheses is processed with the language

model to yield the recognized sentence [14]

Fig1: Methodology of System. [10]

IV. PREPROCESSING

A. Dataset

Speech Dataset from Google Commands Dataset or also

referred as Tensor flow command dataset was used for building

the model. The Dataset featured 30 labels namely yes, no, up,

down, right, left, bed, bedroom, cat, dog, etc., and each label

has more than 3000 voice samples, and in all 105829 voice

samples.

B. VAD (Voice Activity Detection)

Although the words are short, there is silence in them. A decent

VAD can reduce training size, accelerating training speed

significantly. For voice files with sample rates below 1600 a

random digit is added to them, in this manner of chopping audio

files silence can be removed from the audio samples.

V. FEATURE EXTRACTION

A. Logfbank –

Log Mel-filter bank features energy from an audio signal. A

numpy array of size numframes by nfilt containing features

is returned. A feature vector is present in each row.

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905D79 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 545

Fig2: A

base function for calculating Logfbank from Mels [1]

B. MFCC

Extracting features is the first step in an automatic speech

recognition system (ASR) i.e. identify the components of the

audio signal that is ideal for identifying the word content and

discarding all the other irrelevant information which carries

information like background noise, silence, audio noise. Sounds

generated by humans varies with respect to the shape of the

vocal tract. This shape or the signal waves of the tract

determines what sound is produced. The job of FFT (Fast

Fourier Transform) is to accurately represent the shape of the

vocal tract. Mel Frequency Cepstral Coefficients (MFCC) is a

popular Mel-spectral filter used in recognition approach. It has

less complexity, from spoken word samples in the database 20

coefficients of MFCC of the Mel scale frequencies of speech

Cepstrum are extracted. The MFCC samples are statistically

analyzed for components. [7]

An important factor in ASR is the extraction and selection of

the parametric representation i.e. preprocessing the acoustic

signals, which affects the recognition performance. Mel-

frequency Cepstrum coefficients (MFCC), is the result of a

discrete cosine transform (DCT) step, the logarithm of the

short-term energy spectrum expressed on a scale of Mel-

frequency. The MFCCs are proven to be more efficient in

machine learning algorithms but has lower accuracy in neural

networks because of the DCT factor. The steps for the

calculation of the MFCC include fft, logmel, dct. Linear scale

for Mel-frequency wrapping frequency contents of sounds for

speech signal is not followed. A frequency f, a pitch Hz is

measured on a ‘Mel’ scale. The Mel frequency scale is a linear

frequency spacing below 1000 Hz and has a logarithmic

spacing above 1000Hz. Filter bank have response of a

triangular band pass frequency, a constant Mel-frequency

interval determines the spacing and bandwidth. The Mel scale

filter bank is a series of l triangular band pass filters simulates

the band pass filtering which occurs in the auditory system. [7]

In final step, we convert the log Mel spectrum back to time, and

Mel Frequency Cepstrum Coefficients (MFCC) is obtained. A

representation of the local spectral properties of the signal

provides a Cepstral representation of the speech spectrum for

the given frame analysis. Mel spectrum

Coefficients are real numbers, so they are converted to the time

domain using DCT. [7].

Voice Input

 Magnitude Spectrum

output Mel

 Spectrum

 Mel

 Spectrum

Fig3: MFCC Block Diagram [1]

Mel Scale

The Mel scale relates pitch of a tone to its measured frequency.

Humans can discern small changes in pitch at low frequencies

than at high frequencies. Incorporating this scale, the features

match more closely to experimental or human hearing

standards. [10]

The formula for converting from frequency to Mel scale is:

𝑀(𝑓) = 1125𝑙𝑛 (1 +
𝑓

700
) (1)

 Equation for Mels back to frequency:

 𝑀 − 1(𝑚) = 700 (𝑒𝑥𝑝 (
𝑚

1125
) − 1)

C. Mel Spectrogram

Sound is represented in Mel Spectrogram as an acoustic time-

frequency as the power spectral density 𝑃(𝑓, 𝑡). It is sampled

around equally spaced times into a number of points ,times 𝑡𝑖
and frequencies 𝑓𝑗 (on a Mel frequency scale). With Deep

Neural Networks Mel-spectrogram performs better than

MFCCs.

Fig 4: Output of Mel spectrogram [10]

In MIR tasks mostly, the inputs are obtained as short fragments,

which is of about 2 to 4 seconds of sound. Considering a

sampling rate of 6001 Hz, a window size of 2047 samples and

a time shift parameter of 512 samples, i.e., 23 ms, the resulting

Framing Pre-

Emphasis
Windowing

DFT

Delta

Energy
And

Spectrum

Mel

filter
Bank

DCT

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905D79 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 546

spectrogram obtained contains only positive frequencies for

convenience), where the hindmost is the time dimension. Here

we can see that the frequency dimension is or has been over-

sampled. The singular bins present in the higher frequency

regions have much lower energy and little information than in

lower regions. Calculating the Mel-spectrogram for these cases

is way too easy and simply uncomplicated method of bringing

down the information to merely 80 frequency channels by

averaging them over increasingly many frequency bins. The

number of 80 channels has been determined with prefatory

experiments as a breakpoint for optimal CNN performance,

obviously because of a adequate resolution along the frequency

dimension.[15]

We now define the following building blocks of a typical CNN:

•Convolution:

𝑆 ∗ 𝑤(𝑚, 𝑛): =∑

𝑚′

∑

𝑛′

𝑆(𝑚′, 𝑛′)𝑤(𝑚 −𝑚′, 𝑛 − 𝑛′)

•Pooling:

For 1 ≤ 𝑝 ≤ ∞, we define A×B pooling as the operator

mapping an M × N array 𝑆0 to a
𝑀

𝐴
×

𝑁

𝐵
 array 𝑆1 by

𝑆1(𝑚, 𝑛) = 𝑃𝑝
𝐴,𝐵(𝑚, 𝑛) = |𝑣𝑆0

𝑚,𝑛| ∨ 𝑝𝑤ℎ𝑒𝑟𝑒𝑣𝑆0
𝑚,𝑛

 For 𝑚 = 1, . . . ,
𝑀

𝐴
 and 𝑛 = 1, . . . ,

𝑁

𝐵
, is the vector consisting of

the array entries 𝑆0; (𝑛 − 1) · 𝐵 + 1, . . . , 𝑛 · 𝐵. In this work, we

use max-pooling, which has been the most successful choice,

corresponding 𝑝 = ∞ in the above formula.[9]

The window function for generating the spectrogram by 𝑔 ∈
𝐶𝑁 and the mel-filters, typically given by simple triangular

functions, by 𝛬𝑣 ∈ 𝐶𝑁 for 𝜈 ∈ 𝐼 = {1, . . . , 𝐾}, where K is the

chosen number of filters. We can then write the mel-

spectrogram as

𝑀𝑆𝑔(𝑓)(𝑏, 𝜈) =∑

𝑘

Ꞙ(𝑓. 𝑇𝑏𝑔)(𝑘) ∨
2. 𝛬𝑣(𝑘).

We then compare two different settings which lead to a time-

frequency feature map which is then used as input to the deeper

layers of the CNN:1. STFT-based: Compute spectrogram and

take weighted averages over certain regions in frequency; for

the classical Mel scale this leads to the Mel-spectrogram

coefficients, but other choices of 𝛬𝑣 are possible. Taking time-

and frequency-sampling parametersα,βinto account, the

resulting time-frequency feature map is computed for 𝑏 = 𝛼𝑙0

as follows.

 𝑀𝑆𝑔(𝑓)(𝑏, 𝜈) = ∑𝑘 Ꞙ(𝑓. 𝑇𝑏𝑔)(𝛽𝑘) ∨
2. 𝛬𝑣(𝛽𝑘). (5)

2. Filter bank-based: compute filtered version off with respect

to some, possibly adaptive, filter bank ℎ𝑣, ν ∈ I and apply
subsequent time-averaging using a time-averaging
function𝜛𝑣:

𝐹𝐵ℎ𝑣(𝑓)(𝑏, 𝜈) =∑

𝑙

(𝑓 ∗ ℎ𝑣)(𝛼𝑙) ∨
2. 𝜛𝑣(𝛼𝑙 − 𝑏). [15]

The figure 5 shows the working of Mel spectrogram

 Fig 5: Mel Spectrogram Block Diagram [1]

VI. MODEL

A. Layers

● Sequential Model

The Sequential model is consists of a stack of layers that are

arranged in a linear manner. Before training a model, we

need to configure the input shape of the layers,hidden layers

if they are present and their dimensions. This layer is usually

the default layer for any Keras model.

● Batch Normalization

The dispensation of each layer's inputs changes during

training of the model because the parameters of the preceding

layers change. Thus, training our model using Deep Neural

Networks is an intricate process to do with. This reduces the

speed of training the model as it acquires for itself a lower

learning rates, needs careful parameter initialization thus

making it reputedly hard to train models with drenching

nonlinearities. We mention to this circumstance as the internal

covariate nshift. The solution we use to eliminate this problem

is by normalizing layer input.[15] .

The process of batch normalizing draws its source from making

normalization a part of the model architecture. It is performed

by doing the normalization for mini-batch size due to which it

is called as Batch Normalization. [3]

It is a technique used for improving the performance and

stability of neural networks, and also makes more complicated

and advanced deep learning models work in practice. The idea

behind is to normalize the inputs of each layer in such a way

that they have a mean output after applying activation function

tends to zero or is zero and a standard deviation of the same

nears one or is equal to one. This is analogous to how the inputs

to networks are standardized. The main theory used here is to

normalizing the inputs given to layers within the network and

not normalizing the input to the network directly. We normalize

the activations of the previous layer for each batch during the

training phase of the model, so thus we call this mini-group of

layers taken for normalizing as "batch".[3] We apply a

transformation that maintains the mean activation value close

to 0 and the activation standard deviation value close to 1. Other

than some of the innate reasons, there are some good

mathematical basis why batch normalization helps the network

or the model to learn better and faster. By doing the batch

normalization helps combat what the authors term it as internal

covariate shift. As Batch Normalization is faster to train and

learn, it permits us to use much higher and effective learning

rates of the model and be less worried and cautious about

initialization. It also acts as a regularizer for that batch, in some

cases eliminating the need for Dropout. Applied to a state-of-

the-art image classification model, Batch Normalization

achieves the same accuracy with 14 times fewer training steps

and beats the original model by a significant margin. [8]

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905D79 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 547

Fig 6: Batch Normalizing Transform, applied to activation x

over a mini-batch [3]

Benefits of batch normalization

● works train faster

● Allows higher learning rates

● Makes weights easier to initialize

● Makes more activation functions viable

● Simplifies the creation of deeper networks

● Provides some regularization.

B. Optimizers and activation functions

● Adam optimizer: Adam was used because speech

samples contained noise. The method is

straightforward efficient to implement, requires less

memory, it is also invariant to the diagonal rescaling

of the gradients, Hence well suited for problems which

are large in terms of data and/or parameters[16]. The

method is also appropriate for non-stationary

objectives and for problems having sparse gradients

and/or very high noise[16]. Adaptive Moment

Estimation (Adam) is another method where for each

parameter adaptive learning is computed. To store an

exponentially decaying average squared gradients 𝑣𝑡
of past like Adadelta and RMS prop, Adam also uses

the exponentially decaying average gradients 𝑚𝑡 of

past, which is similar to momentum [17]. Whereas

momentum can be seen as a ball running down a slope,

Adam behaves like a heavy ball with friction, which

thus prefers flat minima in the error surface. The

decaying averages of past and past squared gradients

𝑚𝑡 and 𝑣𝑡 can be computed respectively as follows:

𝑚𝑡 = 𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡
𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡

2
𝑚𝑡 and 𝑣𝑡 are first moment(the mean) estimates and

second moment (the uncentered variance) estimates of

the gradients respectively. As 𝑚𝑡 and vt are vectors

initialized as 0's, the authors of Adam observed that

they are zero biased, especially at the time of initial

time steps, and also at smaller decay rates (i.e. β1 and

β2are close to 1). They counteract these biases by

computing bias-corrected first and second-moment

estimates:

 𝑚𝑡 =
𝑚𝑡

(1−𝛽1
𝑡)

𝑣𝑡 =
𝑣𝑡

(1 − 𝛽2
𝑡)

They then use these to update the parameters just as

we have seen in Ad delta and RMS prop, which yields

the Adam update rule:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂√𝑡
𝑣+ 𝜖𝑡

𝑚
The authors propose default values of 0.9 for 𝛽1, 0.999

for 𝛽2, and 10−8 for ϵ. Hence, it is empirically shown

that Adam works well in practice and also compares

favourably to other adaptive learning-method

algorithms [16].

● SoftMax

It is used to compute probability distribution from a

vector of real numbers. The SoftMax function

produces an output which is a range of values between

0and 1, with the sum of the probabilities been equal to

1. The main difference between the Sigmoid and

SoftMax AF is that the Sigmoid is used in binary

classification while the SoftMax is used for

multivariate classification tasks. [4]

Suppose there are M classes and l labelled training

data (𝑥1, 𝑦1),···, (𝑥𝑙 , 𝑦𝑙), where 𝑥𝑖 ∈ 𝑅𝑚 is the ith

training example and 𝑦𝑖 ∈ {1,···, 𝑀} is the class label

of xi. For an example, let us denote the output

(decision function value) of the kth binary classifier

(class 𝜔𝑘 versus the rest) as 𝑟𝑖𝑘; 𝑟𝑖𝑘 is expected to be

large if xi is in class ωk and small otherwise[18]. After

Mone-versus-all binary classifiers are constructed, we

can obtain the posterior probabilities through a soft-

max function

 𝑃𝑘
𝑖 = 𝑃𝑟𝑜𝑏(𝑋𝑖) =

𝑒
𝑤𝑘𝑟𝑘

𝑖+𝑤𝑘0

𝑧𝑖
 (1)

where

𝑧𝑖 = ∑

𝑀

𝑘=1

𝑒𝑤𝑘𝑟𝑘
𝑖+𝑤𝑘0

is a normalization term that ensures that [18].

∑

𝑀

𝑘=1

𝑃𝑘
𝑖 = 1

 The parameters of the soft-max function, (𝑤1 , 𝑤1𝑜),··
·, (𝑤𝑀 , 𝑤𝑀𝑜), can be designed by minimizing a

penalized negative log-likelihood (NLL) function ,

i.e.,

𝐸 =
1

2
‖𝑤‖2 − 𝐶∑

𝑙

𝑖=1

𝑙𝑜𝑔𝑃𝑦𝑖
𝑖(2)

subject to 𝑤𝑘 , 𝑤𝑘𝑜 > 0, 𝑘 = 1,···, 𝑀(3)

where ‖𝑤‖2 = ∑𝑙
𝑖=1 (𝑤𝑘

2 + 𝑤𝑘𝑜
2)

 and C is a positive regularization parameter.[11]

● ReLu:

ReLu is used as an activation function in DNNs, with

SoftMax function as their classification function.[6]

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905D79 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 548

C. Neural Network Layers

Conv2d:

The most basic building block in a general neural network may

be written as𝑥𝑛 + 1 = 𝜎(𝐴𝑛𝑥𝑛 + 𝐵𝑛) where 𝑥𝑛 is the data

vector, or array, in the 𝑛𝑡ℎ layer, A represents a linear operator,

bins a vector of biases in the 𝑛𝑡ℎ layer and the non-linearity is

applied component-wise. Note that in each layer the array 𝑥𝑛

may have a different dimension. Now, in the case of

convolutional layers of CNN's, the matrix A has a particular

structure for the convolutional layers, namely, it is a block-

Toeplitz matrix, or, depending on the implementation of the

filters, a concatenation of circular matrices, each representing

one convolution kernel. There may be an arbitrarily high

number of convolutional layers, followed by a certain number

of so-called dense layers, for which is again an arbitrary linear

operator. [9]

The first required parameter in conv2d is the number of filters

that the convolutional layer will learn.

In the network architecture the early layers (i.e., closer to the

actual input image) learn convolutional filters fewer while

layers in the network deeper (i.e., closer to the output

predictions) will learn more filters.[12]

Fig 7: Conv2d block diagram[9]

VII. TRAINING METHODOLOGY

The process began with extracting MFCC and STD features

from

the Google Commands Dataset and received an accuracy of

max 80% using a conv2d using Keras, The learning rate was to

0.001 and the dataset was divided into 80% to 20% of training

and testing samples respectively. We used ReLU with SoftMax

and applied Adam, Adamax, Nadam though higher accuracy

was achieved with Adam optimizer.12 labels were used for

training the model. Deep neural susceptible to highly correlated

data and hence we will be using Mel spectrograms instead of

mfcc, since spectrograms do not necessarily include the DCT

(Discrete Fourier Transform) step.

Before applying Mel spectrogram, the audio samples were

padded and chopped according to set parameters, the window

size was set to 20 and step size of 10 was used for Mels, images

are stored for each sample. With Mfcc 80% accuracy was

achieved. Accuracy was improved with batch normalization

with 5 layers of conv1d and ReLu activation, 80:20 ratio of

training to testing was used from the same and achieved an

accuracy of 92% validation accuracy for it.

CONCLUSION

Speech has been the easiest and reliable form of communication

for living beings. Speech Recognition has helped to make

machines user friendly and to work with ease. Speech as a

biometric authentication has emerged due to decades of

research. Research in speech recognition has led to creation of

varied models and striving to achieving greater accuracies.

Machines have been made to respond to human speech

commands with acceptable accuracies. This paper attempts to

provide a insight on usage on neural networks for detecting

certain speech commands. Research is underway to obtain more

accuracy and research on digital signal processing for

understanding signal patterns more effectively.

ACKNOWLEDGMENT

We wish to express our deep sense of gratitude to thank our

project guide Prof.Stephy Benny for providing timely assistant

to our query and guidance. We take this opportunity to thank

our HOD. Prof.K. Lakshmisudha and Principal, Dr. Vikram

Patil for their valuable guidance and immense support in

providing all the necessary facilities. We would like to thank

the entire faculty of the IT Department for their valuable ideas

and timely assistance in this project. Last but not least, we

would also like to thank teaching and non-teaching staff

members of our college for their support, in facilitating timely

completion of this project.

REFERENCES

[1] Haytham Fayek, "Speech Processing for Machine

Learning: Filter banks Mel-Frequency Cepstral

Coefficients (MFCCs) and What's In-Between", Apr

2016, [online] Available:

https://haythamfayek.com/2016/04/21/speech-

processing-for-machine-learning.html.

[2] Simeon kostadinov,Dec 16,2017,”Understanding

GRU Networks”, retrieved from url:

https://towardsdatascience.com/understanding-gru-

networks-2ef37df6c9be

[3] C. Nwankpa, W. Ijomah, A. Gachagan, and S.

Marshall, “Activation Functions: Comparison

oftrends in Practice and Research for Deep Learning,”

arXiv:1811.03378, pp. 1–20, 2018.
[4] Adrian Rosebrock, December 31 2018, ”Keras

Conv2D and Convolutional Layers”from

url:https://www.pyimagesearch.com/2018/12/31/kera

s-conv2d-and-convolutional-layers/

[5] A. F. Agarap, “Deep Learning using Rectified Linear

Units (ReLU),” arXiv:1803.08375, no. 1, pp. 2–8,

2018.
[6] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term

Memory Based Recurrent Neural Network

Architectures for Large Vocabulary Speech

Recognition,” , arXiv:1402.1128, no. Cd, 2014.
[7] Jaron Colins,Jun 27,2017, “Glossary of Deep

Learning: Batch Normalisation”[online], available

:https://medium.com/deeper-learning/glossary-of-

deep-learning-batch-normalisation-8266dcd2fa82

[8] S. Ioffe and S. Christian, “Batch Normalization:

http://www.jetir.org/
https://www.pyimagesearch.com/2018/12/31/keras-conv2d-and-convolutional-layers/
https://www.pyimagesearch.com/2018/12/31/keras-conv2d-and-convolutional-layers/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905D79 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 549

Accelerating Deep Network Training by Reducing

Internal Covariate Shift,” arXiv:1502.03167, vol.

abs/1502.0, 2018.
[9] M. Dörfler, T. Grill, R. Bammer, and A. Flexer, “Basic

filters for convolutional neural networks applied to

music: Training or design?,arXiv 1709.02291, Neural

Comput. Appl., 2018.
[10] S. B. Davis and P. Mermelstein, “Comparison of

Parametric Representations for Monosyllabic Word

Recognition in Continuously Spoken Sentences,”

IEEE Trans. Acoust., vol. 28, no. 4, pp. 357–366,

1980.

[11] K. Duan, A. N. Poo, S. K. Shevade, S. S. Keerthi, and

W. Chu, “Multi-category Classification by Soft-Max

Combination of Binary Classifiers,”, MCS'03

Proceedings of the 4th international conference on

Multiple classifier systems, pp 125-134, 2007.
[12] Adrian Rosebrock, 31/12/2018,”Keras Conv2D and

Convolutional Layers”[online], available :

https://www.pyimagesearch.com/2018/12/31/keras-

conv2d-and-convolutional-layers/
[13] S. Swamy and R. K.V, “An Efficient Speech

Recognition System,” Comput. Sci. Eng. An Int. J.,

vol. 3, no. 4, pp. 21–27, 2013.

[14] R. E. Gruhn, W. Minker, and S. Nakamura, “Statistical

Pronunciation Modeling for Non-Native Speech

Processing,” Stat. Pronunciation Model. Non-Native

Speech Process. Springer, pp. 5–17, 2011.
[15] M. D ̈orfler, T. Grill, R. Bammer, A. Flexer ,Basic

Filters for Convolutional Neural Networks Appliedto

Music: Training or Design,19 Sep

2018,arXiv:1709.02291v3

[16] R. Shindjalova, K. Prodanova,V. Svechtarov,

Modeling Data for Tilted Implants in Grafted with

Bio-Oss Maxillary Sinuses Using Logistic Regression,

AIP Conference Proceedings, vol. 1631, pp. 58-62,

2014.

[17] Ruder, S. An overview of gradient descent

optimization algorithms.CoRR, abs/1609.04747,

2016.

[18] K. Duan, S. Keerthi, W. Chu, S. Shevade, and A. Poo,

"Multi-category classification by soft-max

combination of binary classifiers," Multiple Classifier

Systems, pp. 160-160, 2003.

http://www.jetir.org/
https://www.pyimagesearch.com/author/adrian/

