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I. Abstract— The paper proposes the development of 

a Speech Recognition system using Mel filter techniques. 
Speech recognition is used to recognize the speech words 

faster, efficiently and accurately. Mel Spectrogram is used 

to find characteristics from spoken word voice sample with 

respect to the word uttered by the speaker. Convolutional 

Neural Network (CNN) architecture with Batch 

Normalization is used and an accuracy of 92-94% for 12 

labels is attained. This model can be further improved by 

EdgeSpeechNet or DeepSpeech and image recognition 

models.  
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II. INTRODUCTION 

  

Human-computer interaction led to research in Speech 

Recognition. It one of the most active areas of research from the 

last few decades. Many researches have been dedicated to 

speech recognition research have been reported in the past few 

years. Automatic speech recognition (ASR) converts speech 

signals into list of words by means of an algorithm. Current 

speech understanding systems can understand input 

vocabularies of hundreds of words in optional environments. 

Speech signal has two important types of information: (i) 

speech content and (ii) The speaker identity. Speech content 

recognizers aim to extract the word information from the speech 

signal independent of the speaker by reducing the noise values 

and preparing a spectrogram image of the voice sample and 

identifying the appropriate label for the voice ample. [13]  

III. SPEECH RECOGNITION 

 

Speech recognition is a type of pattern recognition. Fig1 shows 

the stages for processing involved in speech recognition. The 

phases in supervised pattern recognition, are training phase and 

testing phase. The process of feature extraction is relevant for 

classification in both phases. During training phase, the 

classification model parameters are estimated using a large 

number of classes. During testing phase, the test pattern features 

are matched with the trained model of each individual class. 

The test pattern is concluded to belong to that class whose 

model has a higher probability ratio of matching with the best 

test pattern [13]. 

The goal of speech recognition is to generate the optimal word 

subject to linguistic constraints. The vocal evidence provided 

by the signal models of such units is combined with the rules of 

finding nearer features of the audio samples and returning an 

ideal word as output. In the case of speech recognition, two 

domains are present for the pattern matching stage namely: 

acoustic and symbolic. In the acoustic domain, a vectorized 

feature corresponds to a small segment of frame of speech, this 

is matched with the model of each and every class. The segment 

or frame is assigned a set of class labels along with their 

respective scores. This process of labeling is done for every 

feature vector in the feature vector sequence from the test data. 

The resultant label hypotheses is processed with the language 

model to yield the recognized sentence [14]  

 

 
 

Fig1: Methodology of System. [10]  

 

IV. PREPROCESSING 

A. Dataset 

Speech Dataset from Google Commands Dataset or also 

referred as Tensor flow command dataset was used for building 

the model. The Dataset featured 30 labels namely yes, no, up, 

down, right, left, bed, bedroom, cat, dog, etc., and each label 

has more than 3000 voice samples, and in all 105829 voice 

samples. 

B. VAD (Voice Activity Detection)  

Although the words are short, there is silence in them. A decent 

VAD can reduce training size, accelerating training speed 

significantly. For voice files with sample rates below 1600 a 

random digit is added to them, in this manner of chopping audio 

files silence can be removed from the audio samples. 

 

V. FEATURE EXTRACTION 

A. Logfbank – 

Log Mel-filter bank features energy from an audio signal. A 

numpy array of size numframes by nfilt containing features 

is returned. A feature vector is present in each row. 
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Fig2: A 

base function for calculating Logfbank from Mels [1] 

 

B. MFCC 

Extracting features is the first step in an automatic speech 

recognition system (ASR) i.e. identify the components of the 

audio signal that is ideal for identifying the word content and 

discarding all the other irrelevant information which carries 

information like background noise, silence, audio noise. Sounds 

generated by humans varies with respect to the shape of the 

vocal tract.  This shape or the signal waves of the tract 

determines what sound is produced. The job of FFT (Fast 

Fourier Transform) is to accurately represent the shape of the 

vocal tract. Mel Frequency Cepstral Coefficients (MFCC) is a 

popular Mel-spectral filter used in recognition approach. It has 

less complexity, from spoken word samples in the database 20 

coefficients of MFCC of the Mel scale frequencies of speech 

Cepstrum are extracted. The MFCC samples are statistically 

analyzed for components. [7]  

An important factor in ASR is the extraction and selection of 

the parametric representation i.e. preprocessing the acoustic 

signals, which affects the recognition performance. Mel-

frequency Cepstrum coefficients (MFCC), is the result of a 

discrete cosine transform (DCT) step, the logarithm of the 

short-term energy spectrum expressed on a scale of Mel-

frequency. The MFCCs are proven to be more efficient in 

machine learning algorithms but has lower accuracy in neural 

networks because of the DCT factor. The steps for the 

calculation of the MFCC include fft, logmel, dct. Linear scale 

for Mel-frequency wrapping frequency contents of sounds for 

speech signal is not followed. A frequency f, a pitch Hz is 

measured on a ‘Mel’ scale. The Mel frequency scale is a linear 

frequency spacing below 1000 Hz and has a logarithmic 

spacing above 1000Hz. Filter bank have response of a 

triangular band pass frequency, a constant Mel-frequency 

interval determines the spacing and bandwidth. The Mel scale 

filter bank is a series of l triangular band pass filters simulates 

the band pass filtering which occurs in the auditory system. [7] 

In final step, we convert the log Mel spectrum back to time, and 

Mel Frequency Cepstrum Coefficients (MFCC) is obtained. A 

representation of the local spectral properties of the signal 

provides a Cepstral representation of the speech spectrum for 

the given frame analysis. Mel spectrum 

Coefficients are real numbers, so they are converted to the time 

domain using DCT. [7]. 
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Fig3: MFCC Block Diagram [1] 

 

Mel Scale 

The Mel scale relates pitch of a tone to its measured frequency. 

Humans can discern small changes in pitch at low frequencies 

than at high frequencies. Incorporating this scale, the features 

match more closely to experimental or human hearing 

standards. [10] 

The formula for converting from frequency to Mel scale is:            

𝑀(𝑓) = 1125𝑙𝑛 (1 +
𝑓

700
) (1)   

 Equation for Mels back to frequency: 

   𝑀 − 1(𝑚) = 700 (𝑒𝑥𝑝 (
𝑚

1125
) − 1) 

 

C. Mel Spectrogram 

Sound is represented in Mel Spectrogram as an acoustic time-

frequency as the power spectral density 𝑃(𝑓, 𝑡). It is sampled 

around equally spaced times into a number of points ,times 𝑡𝑖 
and frequencies 𝑓𝑗 (on a Mel frequency scale). With Deep 

Neural Networks Mel-spectrogram performs better than 

MFCCs.  

 

 

Fig 4: Output of Mel spectrogram [10] 

In MIR tasks mostly, the inputs are obtained as short fragments, 

which is of about 2 to 4 seconds of sound. Considering a 

sampling rate of 6001 Hz, a window size of 2047 samples and 

a time shift parameter of 512 samples, i.e., 23 ms, the resulting 
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spectrogram obtained contains only positive frequencies for 

convenience), where the hindmost is the time dimension. Here 

we can see that the frequency dimension is or has been  over-

sampled. The singular bins present in the higher frequency 

regions have much lower energy and little information than in 

lower regions. Calculating the Mel-spectrogram for these cases 

is way too easy and simply uncomplicated method of bringing 

down the information to merely 80 frequency channels by 

averaging them over increasingly many frequency bins. The 

number of 80 channels has been determined with prefatory 

experiments as a breakpoint for optimal CNN performance, 

obviously because of a adequate resolution along the frequency 

dimension.[15] 

We now define the following building blocks of a typical CNN: 

•Convolution: 

𝑆 ∗ 𝑤(𝑚, 𝑛): =∑

𝑚′

∑

𝑛′

𝑆(𝑚′, 𝑛′)𝑤(𝑚 −𝑚′, 𝑛 − 𝑛′) 

•Pooling:  

For 1 ≤ 𝑝 ≤ ∞, we define A×B pooling as the operator 

mapping an M × N array 𝑆0 to a 
𝑀

𝐴
×

𝑁

𝐵
 array 𝑆1 by 

 

𝑆1(𝑚, 𝑛) = 𝑃𝑝
𝐴,𝐵(𝑚, 𝑛) = |𝑣𝑆0

𝑚,𝑛| ∨ 𝑝𝑤ℎ𝑒𝑟𝑒𝑣𝑆0
𝑚,𝑛 

 For 𝑚 = 1, . . . ,
𝑀

𝐴
 and 𝑛 = 1, . . . ,

𝑁

𝐵
, is the vector consisting of 

the array entries 𝑆0; (𝑛 − 1) · 𝐵 + 1, . . . , 𝑛 · 𝐵. In this work, we 

use max-pooling, which has been the most successful choice, 

corresponding 𝑝 = ∞ in the above formula.[9] 

The window function for generating the spectrogram by 𝑔 ∈
𝐶𝑁 and the mel-filters, typically given by simple triangular 

functions, by 𝛬𝑣 ∈ 𝐶𝑁 for 𝜈 ∈ 𝐼 = {1, . . . , 𝐾}, where K is the 

chosen number of filters. We can then write the mel-

spectrogram as 

𝑀𝑆𝑔(𝑓)(𝑏, 𝜈) =∑

𝑘

Ꞙ(𝑓. 𝑇𝑏𝑔)(𝑘) ∨
2. 𝛬𝑣(𝑘). 

 

We then compare two different settings which lead to a time-

frequency feature map which is then used as input to the deeper 

layers of the CNN:1. STFT-based: Compute spectrogram and 

take weighted averages over certain regions in frequency; for 

the classical Mel scale this leads to the Mel-spectrogram 

coefficients, but other choices of 𝛬𝑣 are possible. Taking time- 

and frequency-sampling parametersα,βinto account, the 

resulting time-frequency feature map is computed for 𝑏 = 𝛼𝑙0 

as follows. 

 𝑀𝑆𝑔(𝑓)(𝑏, 𝜈) = ∑𝑘 Ꞙ(𝑓. 𝑇𝑏𝑔)(𝛽𝑘) ∨
2. 𝛬𝑣(𝛽𝑘). (5) 

2. Filter bank-based: compute filtered version off with respect 

to some, possibly adaptive, filter bank ℎ𝑣, ν ∈ I  and apply 
subsequent time-averaging using a time-averaging 
function𝜛𝑣:  

𝐹𝐵ℎ𝑣(𝑓)(𝑏, 𝜈) =∑

𝑙

(𝑓 ∗ ℎ𝑣)(𝛼𝑙) ∨
2. 𝜛𝑣(𝛼𝑙 − 𝑏). [15] 

The figure 5 shows the working of Mel spectrogram 

 

 

 Fig 5: Mel Spectrogram Block Diagram [1] 

VI. MODEL 

A. Layers 

● Sequential Model 

The Sequential model is consists of a stack of layers that are 

arranged in a linear manner. Before training a model, we 

need to configure the input shape of the layers,hidden layers 

if they are present and their dimensions. This layer is usually 

the default layer for any Keras model. 

● Batch Normalization 

The dispensation of each layer's inputs changes during       

training of the model because the parameters of the preceding 

layers change. Thus, training our model using Deep Neural 

Networks is an intricate process to do with. This reduces the 

speed of training the model as it acquires for itself a lower 

learning rates, needs careful parameter initialization thus 

making it reputedly hard to train models with drenching 

nonlinearities. We mention to this circumstance as the internal 

covariate nshift. The solution we use to eliminate this problem 

is by normalizing layer input.[15] . 

 

The process of batch normalizing draws its source from making 

normalization a part of the model architecture. It is performed 

by doing the normalization for mini-batch size due to which it 

is called as Batch Normalization. [3]  

It is a technique used for improving the performance and 

stability of neural networks, and also makes more complicated 

and advanced deep learning models work in practice. The idea 

behind is to normalize the inputs of each layer in such a way 

that they have a mean output after applying activation function 

tends to zero or is zero and a standard deviation of the same 

nears one or is equal to one. This is analogous to how the inputs 

to networks are standardized. The main theory used here is to 

normalizing the inputs given to layers within the network and 

not normalizing the input to the network directly. We normalize 

the activations of the previous layer for each batch during the 

training phase of the model, so thus we call this mini-group of 

layers taken for normalizing as "batch".[3] We apply a 

transformation that maintains the mean activation value close 

to 0 and the activation standard deviation value close to 1. Other 

than some of the innate reasons, there are some good 

mathematical basis why batch normalization helps the network 

or the model to learn better and faster. By doing the batch 

normalization helps combat what the authors term it as internal 

covariate shift. As Batch Normalization is faster to train and 

learn, it permits us to use much higher and effective learning 

rates of the model and be less worried and cautious about 

initialization. It also acts as a regularizer for that batch, in some 

cases eliminating the need for Dropout. Applied to a state-of-

the-art image classification model, Batch Normalization 

achieves the same accuracy with 14 times fewer training steps 

and beats the original model by a significant margin. [8]  
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Fig 6: Batch Normalizing Transform, applied to activation x 

over a mini-batch [3] 

 

 

Benefits of batch normalization 

 

● works train faster 

● Allows higher learning rates 

● Makes weights easier to initialize 

● Makes more activation functions viable 

● Simplifies the creation of deeper networks 

● Provides some regularization.   

 

B. Optimizers and activation functions 

 

● Adam optimizer: Adam was used because speech 

samples contained noise. The method is 

straightforward  efficient to implement, requires less 

memory, it is also invariant to the diagonal rescaling 

of the gradients, Hence well suited for problems which 

are large in terms of data and/or parameters[16]. The 

method is also appropriate for non-stationary 

objectives and for problems having sparse gradients 

and/or very high noise[16]. Adaptive Moment 

Estimation (Adam) is another method where for each 

parameter adaptive learning is computed. To store an 

exponentially decaying average squared gradients 𝑣𝑡 
of past like Adadelta and RMS prop, Adam also uses 

the exponentially decaying average gradients 𝑚𝑡 of 

past, which is similar to momentum [17]. Whereas 

momentum can be seen as a ball running down a slope, 

Adam behaves like a heavy ball with friction, which 

thus prefers flat minima in the error surface. The 

decaying averages of past and past squared gradients 

𝑚𝑡 and 𝑣𝑡 can be computed respectively as follows: 

𝑚𝑡 = 𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡  
𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡

2 
𝑚𝑡 and 𝑣𝑡 are  first moment(the mean) estimates and  

second moment (the uncentered variance) estimates of 

the gradients respectively. As 𝑚𝑡 and vt are vectors 

initialized  as  0's, the authors of Adam observed that 

they are zero biased, especially at the time of initial 

time steps, and also at smaller decay rates (i.e. β1 and 

β2are close to 1). They counteract these biases by 

computing bias-corrected first and second-moment 

estimates: 

                         𝑚𝑡 =
𝑚𝑡

(1−𝛽1
𝑡)

 

𝑣𝑡 =
𝑣𝑡

(1 − 𝛽2
𝑡)

 

They then use these to update the parameters just as 

we have seen in Ad delta and RMS prop, which yields 

the Adam update rule: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂√𝑡
𝑣+ 𝜖𝑡

𝑚 
The authors propose default values of 0.9 for 𝛽1, 0.999 

for 𝛽2, and 10−8 for ϵ. Hence, it is empirically shown 

that Adam works well in practice and also compares 

favourably to other adaptive learning-method 

algorithms [16]. 

● SoftMax 

It is used to compute probability distribution from a 

vector of real numbers. The SoftMax function 

produces an output which is a range of values between 

0and 1, with the sum of the probabilities been equal to 

1. The main difference between the Sigmoid and 

SoftMax AF is that the Sigmoid is used in binary 

classification while the SoftMax is used for 

multivariate classification tasks. [4] 

Suppose there are M classes and l labelled training 

data (𝑥1, 𝑦1),···, (𝑥𝑙 , 𝑦𝑙), where 𝑥𝑖 ∈ 𝑅𝑚 is the ith 

training example and 𝑦𝑖 ∈ {1,···, 𝑀} is the class label 

of xi. For an example, let us denote the output 

(decision function value) of the kth binary classifier 

(class 𝜔𝑘 versus the rest) as 𝑟𝑖𝑘; 𝑟𝑖𝑘 is expected to be 

large if xi is in class ωk and small otherwise[18]. After 

Mone-versus-all binary classifiers are constructed, we 

can obtain the posterior probabilities through a soft-

max function 

 𝑃𝑘
𝑖 = 𝑃𝑟𝑜𝑏(𝑋𝑖) =

𝑒
𝑤𝑘𝑟𝑘

𝑖+𝑤𝑘0

𝑧𝑖
      (1) 

where 

𝑧𝑖 = ∑

𝑀

𝑘=1

𝑒𝑤𝑘𝑟𝑘
𝑖+𝑤𝑘0  

 

is a normalization term that ensures that [18]. 

∑

𝑀

𝑘=1

𝑃𝑘
𝑖 = 1 

 

 The parameters of the soft-max function, (𝑤1 , 𝑤1𝑜),··
·, (𝑤𝑀 , 𝑤𝑀𝑜), can be designed by minimizing a 

penalized negative log-likelihood (NLL) function , 

i.e.,  

𝐸 =
1

2
‖𝑤‖2 − 𝐶∑

𝑙

𝑖=1

𝑙𝑜𝑔𝑃𝑦𝑖
𝑖(2) 

 

subject to 𝑤𝑘 , 𝑤𝑘𝑜 > 0, 𝑘 = 1,···, 𝑀(3)  

where ‖𝑤‖2 = ∑𝑙
𝑖=1 (𝑤𝑘

2 + 𝑤𝑘𝑜
2) 

 and C is a positive regularization parameter.[11] 

● ReLu: 

ReLu is used as an activation function in DNNs, with 

SoftMax function as their classification function.[6] 

 

http://www.jetir.org/


© 2019 JETIR  May 2019, Volume 6, Issue 5                                           www.jetir.org  (ISSN-2349-5162) 
 

JETIR1905D79 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 548 

 

 

 

C. Neural Network Layers 

Conv2d: 

The most basic building block in a general neural network may 

be written as𝑥𝑛 + 1 = 𝜎(𝐴𝑛𝑥𝑛 + 𝐵𝑛) where 𝑥𝑛 is the data 

vector, or array, in the 𝑛𝑡ℎ layer, A represents a linear operator, 

bins a vector of biases in the 𝑛𝑡ℎ layer and the non-linearity is 

applied component-wise. Note that in each layer the array 𝑥𝑛 

may have a different dimension. Now, in the case of 

convolutional layers of CNN's, the matrix A has a particular 

structure for the convolutional layers, namely, it is a block-

Toeplitz matrix, or, depending on the implementation of the 

filters, a concatenation of circular matrices, each representing 

one convolution kernel. There may be an arbitrarily high 

number of convolutional layers,  followed by a certain number 

of so-called dense layers, for which is again an arbitrary linear 

operator. [9] 

The first required parameter in conv2d  is the number of filters 

that the convolutional layer will learn. 

In the network architecture the early layers (i.e., closer to the 

actual input image) learn convolutional filters fewer while 

layers in the network deeper (i.e., closer to the output 

predictions) will learn more filters.[12] 

 

 

 

 

Fig 7: Conv2d block diagram[9] 

VII. TRAINING METHODOLOGY 

The process began with extracting MFCC and STD features 

from 

the Google Commands Dataset and received an accuracy of 

max 80% using a conv2d using Keras, The learning rate was to 

0.001 and the dataset was divided into 80% to 20% of training 

and testing samples respectively. We used ReLU with SoftMax 

and applied Adam, Adamax, Nadam though higher accuracy 

was achieved with Adam optimizer.12 labels were used for 

training the model. Deep neural susceptible to highly correlated 

data and hence we will be using Mel spectrograms instead of 

mfcc, since spectrograms do not necessarily include the DCT 

(Discrete Fourier Transform) step. 

 

Before applying Mel spectrogram, the audio samples were 

padded and chopped according to set parameters, the window 

size was set to 20 and step size of 10 was used for Mels, images 

are stored for each sample. With Mfcc 80% accuracy was 

achieved. Accuracy was improved with batch normalization 

with 5 layers of conv1d and ReLu activation, 80:20 ratio of 

training to testing was used from the same and achieved an 

accuracy of 92% validation accuracy for it. 

CONCLUSION 

Speech has been the easiest and reliable form of communication 

for living beings. Speech Recognition has helped to make 

machines user friendly and to work with ease. Speech as a 

biometric authentication has emerged due to decades of 

research. Research in speech recognition has led to creation of 

varied models and striving to achieving greater accuracies. 

Machines have been made to respond to human speech 

commands with acceptable accuracies.  This paper attempts to 

provide a insight on usage on neural networks for detecting 

certain speech commands. Research is underway to obtain more 

accuracy and research on digital signal processing for 

understanding signal patterns more effectively. 
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