METRO DOMINATION NUMBER OF FRIENDSHIP GRAPH AND CROWN GRAPH

${ }^{1}$ Vishu Kumar M, ${ }^{2}$ Nikitha B K, ${ }^{3}$ Lakshminarayana S
${ }^{1}$ Professor, ${ }^{2}$ Research scholar, ${ }^{3}$ Assistant Professor Department of Mathematics, School of Applied Science REVA University, Bangalore-560 064, India

Abstract

A Set $D \subseteq V(G)$ is called dominating set if every vertex $v \in V-D$ is adjacent to atleast one vertex in D. The dominating set with minimum cardinality is called domination number of $G \&$ it is denoted by $\gamma(G)$. Let $G(V, E)$ be a graph. A set $S \subseteq V$ is a resolving set if for every $u, v \in V(G)$ there exists $w \in V$ such that $d(u, w) \neq d(v, w)$.The resolving set with minimum cardinality is called metric basis and its cardinality is called metric dimension and is denoted by $\beta(G)$. A set D which is both resolving set as well as dominating set is called metro dominating set. The minimum cardinality of a metro dominating set is called domination number of G and is denoted by $\gamma_{\beta}(G)$. In this paper we determine metro domination of friendship graph, Crown graph and Dragon Graph.

Key Words : Domination, Metric Dimension, Locating Domination, Metro Domination.

AMS Subject classification : 05C56

1. Introduction

All the graphs considered are simple, finite and connected. A set of vertices S resolves a graph G if every vertex of G is uniquely determined by its vector of distance to the vertices in S . This work undertakes a general study of resolving sets in a friendship graph and Crown Graph. Given a graph $G(V, E)$ and $u, v \in V(G), d(u, v)$ denoted the distance between $u \& v$ in G that is the length of a shortest $u-v$ path. On 1976, Harary and Melter [4] introduce the notation of metric dimension. The vertex set and edge set of a graph G denoted by $V(G)$ and $E(G)$.The distance between vertices $u, v \in V(G)$ is denoted by $d(u, v)$. A vertex $x \in V(G)$ resolves a pair of vertices $v, w \in V(G)$ if $d(v, x) \neq d(w, x)$. A set of vertices $S \subseteq V(G)$ resolves $G, \& S$ is a resolving set S of G with minimum cardinality is a metric basis of $G \&$ its cardinality is the metric dimension of G denoted by $\beta(G)$.

2. Definitions.

2.1 Metric Dimension

A vertex $x \in V(G)$ resolves a pair of vertices $v, w \in V(G)$ if $d(v, x) \neq g(w, x)$. A set of vertices $S \subseteq V(G)$ resolves G, and S is a resolving set S of G with minimum cardinality is a metric basis of G, and its cardinality is the metric dimension of G, denoted by $\beta(G)$.

2.2 Domination

Let $G(V, E)$ be a graph. A subset of vertices $D \subseteq V$ is called a dominating set (γ-set) if every vertex in $V-D$ adjacent to at least one vertex in D.The minimum cardinality of a dominating set is called the domination number of the graph G and is denoted by $\gamma(G)$.

2.3 Locating Number

A subset D of $V(G)$ is called a dominating set, if even vertex $V-D$ is adjacent to at least one vertex in D. The minimum cardinality of a dominating set is called the domination number of graph G. The metric dimension of a graph $G(V, E)$ is the cardinality of a minimal subset S of V such that for each pair of vertices u, v of V there is a vertex w in S such that the length of the shortest path from w to u is different from the length of a shortest path from w to v.

The metric dimension of a graph G is also called as a locating number of G and studied its dominating property independently by Slater. A dominating set D is called a locating dominating set or simply LD-set if for each pair of vertices $u, v \in V-D, N D(u) \neq N D(v)$, where $N D(u)=N(u) \cap D$. The minimum cardinality of an LD-set of the graph G is called the locating domination number of G denoted by $\gamma_{\mathrm{L}}(G)$.

Figure :1 The graph G and its LD-set

Figure :2 The graph G and its MD-set

2.4 Metro Domination

A dominating set D of $V(G)$ having the property that for each pair of vertices u, v there exists a vertex w in D such that $d(u, w) \neq d(v, w)$ is called the metro dominating set of G or simply an MD-set. The minimum cardinality of a metro dominating set of G is called metro domination number of G and it is denoted by $\gamma_{\beta}(G)$.

2.5 Friendship Graph

A friendship Graph $\quad F_{n}$ is a graph. F_{n} is a graph that can be constructed by coalescence n copies of the cycle Graph C_{3} of length 3 with a common vertex. The friendship graph F_{n} is also planar graph with $2 n+1$ vertices \& $3 n$ edges. The vertex set is $V\left(F_{n}\right)=\left\{c, v_{1}, v_{2, \ldots} v_{2 n}\right\}$ and the edge set is $E\left(F_{n}\right)=\left\{c v_{1}, c v_{2}, c v_{3}, . . c v_{2 n}\right\} \cup\left\{v_{1} v_{2}, v_{3} v_{4}, \ldots . v_{2 i-1} v_{2 i}, \ldots \ldots . v_{2 n-1} v_{2 n}\right\}$ for $n \geq 2$

2.6 Crown graph

An crown, $C_{n} \square P_{2}$ is a graph in which path P_{2} is attached at each vertex of the cycle C_{n}. Let $v_{0}, v_{1}, v_{2}, \ldots v_{n-1}$ be the vertices of the cycle, $C_{n} \square P_{2}$ such that v_{i} is adjacent to $v_{i+1}, 0 \leq i \leq n-2$ and v_{0} is adjacent to v_{n-1}. Also let u_{0}, u_{1} be the vertices of the path which is attached to every vertices of C_{n} such that u_{0} adjacent to u_{1}. We denote the vertices of the path adjacent to the vertex v_{i}, as $u_{i 0}, u_{i 1}, \ldots \ldots$. $u_{i m-1}$.where $u_{i 0}$ adjacent to $v_{i}, 0 \leq i \leq n-1$.

2.7 Dragran Graph

Let $v_{0} v_{1}, v_{2}, \ldots v_{n-1}$, be the vertices of the cycle of $D_{n} m$ such that v_{i} is adjacent to v_{i+1}, $0 \leq i \leq n-2$ and v_{0} is adjacent to v_{n-1}. Also let $u_{0}, u_{1}, u_{2}, \ldots u_{m-1}$ be the vertices of the path or tail of $D_{n} m$. Such that u_{j} is adjacent to $u_{i+1}, 0 \leq j \leq m-2$ and u_{0} is adjacent to v_{0}.

2.8 Resolving Set [4]

The subset S is a resolving set if $r\left(\frac{v}{s}\right)$ for every two vertices of G have distinct representation. A resolving set of minimum cardinality for G is called a minimum resolving set or a basis for G. If $S=\left\{s_{1}, s_{2}, \ldots . s_{k}\right\}$ then $r\left(\frac{v}{s}\right)=\left(d\left(v, s_{1}\right), d\left(v, s_{2}\right), \ldots d\left(v, s_{k}\right)\right)$.

3. Some known results

In this section we mention some of the known results on metric dimension, domination and metro domination which we use in the subsequent section.

Theorem 3.1. (Harary \& Melter [4])
The metric dimension of a non trivial complete graph of order n is $n-1$.
Theorem 3.2.(Khuller, Raghavachari, Rosenfeld [8])
The metric dimension of a graph G is 1 if and only if G is a path.
Theorem 3.3. (Harary and Melter [4])
The metric dimension of a complete bipartite graph $K_{m n}$ is $m+n-2$.
Theorem 3.4. [9] if G is a graph with no isolated vertices and S is a minimal dominating set of G then $V(G)-S$ is a dominating set of G.

Theorem 3.5. (Sooryanarayana and Raghunath [7])
The metro domination number of a graph G is $\left[\frac{n}{5}\right\rceil$ if and only if G is a cycle.
Theorem 3.6. (Sooryanarayana and Raghunath [7])
Let G be a graph on n vertices. Thus $\gamma_{\beta}(G)=n-1$ if and only G is K_{n} or $K_{1, n-1}$ fo $\mathrm{r} \mathrm{n} \geq 1$
Theorem 3.7.(Sooryanarayana and Raghunath [7]) For any integer $n, \gamma_{\beta}\left(P_{4}\right)$ is $=\left[\frac{n}{3}\right]$.
Remark 3.8. For any connected graph $G, \gamma_{\beta}(G) \geq \max \{\gamma(G), \beta(G)\}$. [6]
Theorem 3.9. For all integer $n \geq 2, \operatorname{dim}\left(F_{n}\right)=n$.

4. Our results :

Theorem 4.1 For any integer $n \geq 3, \gamma_{\beta}\left(F_{n}\right)=n$.
Proof: It is obvious that $\gamma\left(F_{n}\right)=1$. (Central vertex ' c ' dominates all the vertices of F_{n}). Also by theorem 3.9 $\operatorname{dim}\left(F_{n}\right)=n$. By remark 3.8.

$$
\begin{align*}
& \gamma_{\beta}\left(F_{n}\right) \geq \max \left(\beta,\left(F_{n}\right), \gamma\left(F_{n}\right)\right) \\
& \gamma_{\beta}\left(F_{n}\right) \geq \max (n, 1) . \\
& \gamma_{\beta}\left(F_{n}\right) \geq n . \tag{1}
\end{align*}
$$

To prove the reserve inequality we define a dominating set. $D=\left\{v_{2 k-1} / k \geq 1,1 \leq k \leq 2 n-1\right\}$
he above set serves as a domination set, which is also a resolving set by theorem 3.9.
$\therefore \gamma_{\beta}\left(F_{n}\right) \leq n$
Thus from (1) \& (2)
$\gamma_{\beta}\left(F_{n}\right)=n$.
Lemma 4.2 For any integer $n \geq 3, \gamma\left(C_{n} \square P_{2}\right)=n$.
Proof: Since the crown graph $C_{n} \square P_{2}$ contains n-pendent vertices, to dominates these pendent vertices we require minimum n vertices of $C_{n} \square P_{2}$ thus $\gamma\left(C_{n} \square P_{2}\right) \geq n$.
To prove the reverse inequality we define a set $D=\left\{V_{k} / 0 \leq k \leq n-1\right\}$.
The above set serves as a dominating set of $C_{n} \square P_{2}$ thus $\gamma\left(C_{n} \square P_{2}\right) \leq n$.
From (1) and (2) $\gamma\left(C_{n} \square P_{2}\right)=n$.

Theorem 4.3. For any integer $n \geq 3, \beta\left(C_{n} \square P_{2}\right)=3$

Proof : Case-1 for odd n

We choose a subset $S=\left\{u_{00}, u_{10}, u_{\left[\frac{n}{2}\right] 0}\right\}$
and we must show that $\operatorname{dim}\left(C_{n} \square P_{2}\right)=3$
For $n \geq 3$. By definition 2.7, we got the representations of vertices of graph $C_{n} \square P_{2}$ with respect to S are
$r\left(v_{0} \backslash s\right)=\left(1,2,\left\lceil\left.\frac{n}{2} \right\rvert\,\right)\right.$
$r\left(v_{1} \backslash s\right)=\left(2,1,\left\lfloor\frac{n}{2}\right\rfloor\right)$
$r\left(v_{i} \backslash s\right)=\left(i+1, i,\left\lfloor\frac{n}{2}\right\rfloor-(i-1)\right) \quad 2 \leq i \leq\lfloor n / 2\rfloor$
$r\left(v_{\left\lceil\frac{n}{2}\right\rceil} \backslash s\right)=\left(\left\lceil\frac{n}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil, 2\right)$
$r\left(v_{i} \backslash s\right)=\left(2\left\lceil\frac{n}{2}\right\rceil-i, 2\left\lceil\frac{n}{2}\right\rceil-(i-1), i-\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)\right) \quad\left[\frac{n}{2}\right\rceil+1 \leq i \leq n-1$.
$r\left(u_{00} \backslash s\right)=\left(4,3,\left\lfloor\frac{n}{2}\right\rfloor\right)$

Case-2 for even n

We choose a set $S=\left\{u_{00}, u_{10}, u_{\left(\frac{n-2}{2}\right) 0}\right\}$
By definition 2.7, we got the representations of vertices of graph $C_{n} \square P_{2}$ with respect to S are
$r\left(v_{0} \backslash s\right)=\left(1,2, \frac{n}{2}\right)$
$r\left(v_{1} \backslash s\right)=\left(2,1, \frac{n-2}{2}\right)$
$r\left(v_{i} \backslash s\right)=\left(i+1, i, \frac{n}{2}-i\right) \quad 2 \leq i \leq \frac{n-2}{2}$
$r\left(v_{\frac{n}{2}}^{2} \backslash s\right)=\left(\frac{n+2}{2}, \frac{n}{2}, 2\right)$
$r\left(v_{i} \backslash s\right)=\left(n-(i-1), n-(i-2), i-\left(\frac{n-4}{2}\right)\right) \quad \frac{n+2}{2} \leq i \leq n-1$
From the above (case 1 and case 2), the representations of vertices of cycle C_{n} in the graph $C_{n} \square P_{2}$ are distinct. Also we can observe that the representation of the vertices $u_{i 0}(0 \leq i \leq n-1)$ are also distinct. This implies that S is resolving set, but it is not necessarily the lower bound. Thus the upper bound is dim $\left(C_{n} \square P_{2}\right) \leq 3$.
Now we show that $\operatorname{dim}\left(C_{n} \square P_{2}\right) \geq 3$.

Let $S=\left\{u_{00}, u_{10}, u_{\left(\frac{n-2}{2}\right) 0}\right\}$.Is a resolving set which is $|S|=3$. Assume that S_{1} is another minimum resolving set or we can denote $\left|S_{1}\right|<3$. If we choose an ordered set $S_{1} \subseteq S-\left\{u_{i 0}\right\}, i=0,1,\left(\frac{n-2}{2}\right)$ so that there are two vertices which are of same representation. S_{1} is not a resolving set is a contradiction with assumptions.
Thus the lower bond is $\operatorname{dim}\left(C_{n} \square P_{2}\right) \geq 3$.
From above proving we conclude that $\operatorname{dim}\left(C_{n} \square P_{2}\right)=3$.

Theorem 4.4. For any integer $n \geq 3, \gamma_{\beta}\left(C_{n} \square P_{2}\right)=n$.
Proof: By lemma $4.3 \operatorname{dim}\left(C_{n} \square P_{2}\right)=3$, also by lemma $4.2 \gamma\left(C_{n} \square P_{2}\right)=n$
By remark $3.8 \gamma_{\beta}\left(C_{n} \square P_{2}\right) \geq \max \left\{\beta\left(C_{n} \square P_{2}\right), \gamma\left(C_{n} \square P_{2}\right)\right\}$.

$$
\geq \max \{3, n\}
$$

$$
\begin{equation*}
\gamma_{\beta}\left(C_{n} \square P_{2}\right) \geq n \tag{1}
\end{equation*}
$$

To prove the reverse inequality we defined a dominating set $D=\left\{\frac{u_{i 0}}{0} \leq i \leq n-1\right\}$.
We note that the above set serves as a dominating set which also a resolving set
$\therefore \gamma_{\beta}\left(C_{n} \square P_{2}\right) \leq n$
Thus $\gamma_{\beta}\left(C_{n} \square P_{2}\right)=n$.

References

[1] A.Abdollahi, S.Jan Baz \& M.R.Oboudi 2013 Graphs co spectra with a friendship graph or its complaint. Transaction on combinatorics .
[2] S. Lakshminarayana and M. Vishu Kumar, On the k-metro domination number of Paths, Annals of Pure and Applied Mathematics vol. 14, no. 3, 2017, 593-600.
[3] P. J. Slater, "Dominating and reference sets in a graph", Journal of Mathematical and Physical sciences, 22(4) (1988), 445-455.
[4] F Harary and R A Melter on the metric dimension of graphs Ars combination, 2 (1976), 191-195
[5] E. J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7: 247-261, 1977.
[6] Mulyono \& Wulandari, The metric dimension of friendship graph F_{n}, Lollipop graph $L_{m, n}$ \& Petersen graph $P_{n, m}$ Bulletin of Mathematics. Vol. 08,No 02, (2016) PP 117-124
[7] P Raghunath and B Sooryanarayana, metro domination no of a graph, $20^{\text {th }}$ annual conference of Ramanujan Mathematics Society July 25-30 (2005) University of Calicut.
[8] S Khuller, B Raghavachari and D.Rosan - field, landmark in graphs, Discrete applied math, 70(3), (1996) 217-229.
[9]M.Alishahi and S.H.Shalmaee Domination number of square of Cartesian product of cycles open journal of discrete mathematic 5 (2015) 88-94.
[10]G.A.Dirac, Some theorems on abstract graphs, Proc.London Math. Soc., 2(1952)6981.

