METRO DOMINATION NUMBER OF FRIENDSHIP GRAPH AND CROWN GRAPH

¹Vishu Kumar M, ²Nikitha B K, ³Lakshminarayana S ¹Professor, ² Research scholar, ³ Assistant Professor Department of Mathematics, School of Applied Science REVA University, Bangalore-560 064, India

Abstract : A Set $D \subseteq V(G)$ is called dominating set if every vertex $v \in V - D$ is adjacent to atleast one vertex in D. The dominating set with minimum cardinality is called domination number of G & it is denoted by $\gamma(G)$. Let G(V, E) be a graph. A set $S \subseteq V$ is a resolving set if for every $u, v \in V(G)$ there exists $w \in V$ such that $d(u, w) \neq d(v, w)$. The resolving set with minimum cardinality is called metric basis and its cardinality is called metric dimension and is denoted by $\beta(G)$. A set D which is both resolving set as well as dominating set is called metro dominating set. The minimum cardinality of a metro dominating set is called domination number of G and is denoted by $\gamma_{\beta}(G)$. In this paper we determine metro domination of friendship graph, Crown graph and Dragon Graph.

Key Words : Domination, Metric Dimension, Locating Domination, Metro Domination.

AMS Subject classification : 05C56

1. Introduction

All the graphs considered are simple, finite and connected. A set of vertices *S* resolves a graph *G* if every vertex of *G* is uniquely determined by its vector of distance to the vertices in S. This work undertakes a general study of resolving sets in a friendship graph and Crown Graph. Given a graph G(V, E) and $u, v \in V(G)$, d(u, v) denoted the distance between u & v in *G* that is the length of a shortest u - v path. On 1976, Harary and Melter [4] introduce the notation of metric dimension. The vertex set and edge set of a graph *G* denoted by V(G) and E(G). The distance between vertices $u, v \in V(G)$ is denoted by d(u, v). A vertex $x \in V(G)$ resolves a pair of vertices $v, w \in V(G)$ if $d(v, x) \neq d(w, x)$. A set of vertices $S \subseteq V(G)$ resolves *G*, & *S* is a resolving set *S* of *G* with minimum cardinality is a metric basis of *G* & its cardinality is the metric dimension of *G* denoted by $\beta(G)$.

2. Definitions.

2.1 Metric Dimension

A vertex $x \in V(G)$ resolves a pair of vertices $v, w \in V(G)$ if $d(v, x) \neq g(w, x)$. A set of vertices $S \subseteq V(G)$ resolves G, and S is a resolving set S of G with minimum cardinality is a metric basis of G, and its cardinality is the metric dimension of G, denoted by $\beta(G)$.

2.2 Domination

Let G(V, E) be a graph. A subset of vertices $D \subseteq V$ is called a dominating set (γ -set) if every vertex in V - D adjacent to at least one vertex in D. The minimum cardinality of a dominating set is called the domination number of the graph G and is denoted by $\gamma(G)$.

2.3 Locating Number

A subset D of V(G) is called a dominating set, if even vertex V - D is adjacent to at least one vertex in D. The minimum cardinality of a dominating set is called the domination number of graph G. The metric dimension of a graph G(V, E) is the cardinality of a minimal subset S of V such that for each pair of vertices u, v of V there is a vertex w in S such that the length of the shortest path from w to u is different from the length of a shortest path from w to v.

The metric dimension of a graph G is also called as a locating number of G and studied its dominating property independently by Slater. A dominating set D is called a locating dominating set or simply LD-set if for each pair of vertices $u, v \in V - D$, $ND(u) \neq ND(v)$, where $ND(u) = N(u) \cap D$. The minimum cardinality of an LD-set of the graph G is called the locating domination number of G denoted by $\gamma_L(G)$.

Figure :1 The graph G and its LD-set

Figure :2 The graph G and its MD-set

2.4 Metro Domination

A dominating set D of V(G) having the property that for each pair of vertices u, v there exists a vertex w in D such that $d(u, w) \neq d(v, w)$ is called the metro dominating set of G or simply an MD-set. The minimum cardinality of a metro dominating set of G is called metro domination number of G and it is denoted by $\gamma_{\beta}(G)$.

2.5 Friendship Graph

A friendship Graph F_n is a graph. F_n is a graph that can be constructed by coalescence n copies of the cycle Graph C_3 of length 3 with a common vertex. The friendship graph F_n is also planar graph with 2n+1 vertices & 3n edges. The vertex set is $V(F_n) = \{c, v_1, v_{2,...}v_{2n}\}$ and the edge set is $E(F_n) = \{cv_1, cv_2, cv_3, ... cv_{2n}\} \cup \{v_1v_2, v_3v_4, ..., v_{2i-1}v_{2i}, ..., v_{2n-1}v_{2n}\}$ for $n \ge 2$ [1]

2.6 Crown graph

An crown, $C_n \square P_2$ is a graph in which path P_2 is attached at each vertex of the cycle C_n . Let $v_0, v_1, v_2, ..., v_{n-1}$ be the vertices of the cycle, $C_n \square P_2$ such that v_i is adjacent to v_{i+1} , $0 \le i \le n-2$ and v_0 is adjacent to v_{n-1} . Also let u_0, u_1 be the vertices of the path which is attached to every vertices of C_n such that u_0 adjacent to u_1 . We denote the vertices of the path adjacent to the vertex v_i , as $u_{i0}, u_{i1}, \ldots, u_{im-1}$. where u_{i0} adjacent to v_i , $0 \le i \le n-1$.

2.7 Dragran Graph

Let v_0 $v_1, v_2, \dots v_{n-1}$, be the vertices of the cycle of $D_n m$ such that v_i is adjacent to v_{i+1} , $0 \le i \le n-2$ and v_0 is adjacent to v_{n-1} . Also let $u_0, u_1, u_2, \dots u_{m-1}$ be the vertices of the path or tail of $D_n m$. Such that u_j is adjacent to u_{i+1} , $0 \le j \le m-2$ and u_0 is adjacent to v_0 .

2.8 Resolving Set [4]

The subset *S* is a resolving set if $r\left(\frac{v}{s}\right)$ for every two vertices of *G* have distinct representation. A resolving set of minimum cardinality for *G* is called a minimum resolving set or

a basis for G. If $S = \{s_1, s_2, ..., s_k\}$ then $r\left(\frac{v}{s}\right) = (d(v, s_1), d(v, s_2), ..., d(v, s_k)).$

3. Some known results

In this section we mention some of the known results on metric dimension, domination and metro domination which we use in the subsequent section.

Theorem 3.1. (Harary & Melter [4]) The metric dimension of a non trivial complete graph of order n is n-1.

Theorem 3.2.(Khuller, Raghavachari, Rosenfeld [8]) The metric dimension of a graph G is 1 if and only if G is a path.

Theorem 3.3. (Harary and Melter [4]) The metric dimension of a complete bipartite graph K_{mn} is m+n-2

Theorem 3.4. [9] if G is a graph with no isolated vertices and S is a minimal dominating set of G then V(G)-S is a dominating set of G.

Theorem 3.5. (Sooryanarayana and Raghunath [7]) The metro domination number of a graph G is $\left[\frac{n}{5}\right]$ if and only if G is a cycle.

Theorem 3.6. (Sooryanarayana and Raghunath [7]) Let *G* be a graph on *n* vertices. Thus $\gamma_{\beta}(G) = n-1$ if and only *G* is K_n or $K_{1,n-1}$ for $n \ge 1$

Theorem 3.7.(Sooryanarayana and Raghunath [7]) For any integer n, $\gamma_{\beta}(P_4)$ is= $\left[\frac{n}{3}\right]$.

Remark 3.8. For any connected graph $G, \gamma_{\beta}(G) \ge \max \{\gamma(G), \beta(G)\}$. [6]

Theorem 3.9. For all integer $n \ge 2$, dim $(F_n) = n$.

4. Our results :

Theorem 4.1 For any integer $n \ge 3$, $\gamma_{\beta}(F_n) = n$.

Proof: It is obvious that $\gamma(F_n) = 1$. (Central vertex 'c' dominates all the vertices of F_n). Also by theorem 3.9 dim $(F_n) = n$. By remark 3.8.

$$\begin{aligned} \gamma_{\beta}(F_n) &\geq \max(\beta, (F_n), \gamma(F_n)) \\ \gamma_{\beta}(F_n) &\geq \max(n, 1). \\ \gamma_{\beta}(F_n) &\geq n. \end{aligned} \tag{1}$$

To prove the reserve inequality we define a dominating set. $D = \{v_{2k-1} | k \ge 1, 1 \le k \le 2n-1\}$ he above set serves as a domination set, which is also a resolving set by theorem 3.9.

 $\therefore \gamma_{\beta}(F_n) \le n$

Thus from (1) & (2) $\gamma_{\beta}(F_n) = n$.

Lemma 4.2 For any integer $n \ge 3$, $\gamma(C_n \Box P_2) = n$.

Proof: Since the crown graph $C_n \square P_2$ contains *n*-pendent vertices, to dominates these pendent vertices we require minimum *n* vertices of $C_n \square P_2$ thus $\gamma(C_n \square P_2) \ge n$. (1)

(2)

To prove the reverse inequality we define a set $D = \{ V_k / 0 \le k \le n-1 \}$. The above set serves as a dominating set of $C_n \Box P_2$ thus $\gamma(C_n \Box P_2) \le n$. (2) From (1) and (2) $\gamma(C_n \Box P_2) = n$.

Theorem 4.3. For any integer $n \ge 3$, $\beta(C_n \Box P_2) = 3$ **Proof : Case-1 for odd** nWe choose a subset $S = \{u_{00}, u_{10}, u_{\lfloor \frac{n}{2} \rfloor 0}\}$

and we must show that dim $(C_n \Box P_2) = 3$

For $n \ge 3$. By definition 2.7, we got the representations of vertices of graph $C_n \square P_2$ with respect to *S* are $r(v_0 \setminus s) = (1, 2, \lfloor \frac{n}{2} \rfloor)$

$$r(v_{1} \setminus s) = (2,1, \left\lfloor \frac{n}{2} \right\rfloor)$$

$$r(v_{1} \setminus s) = (2,1, \left\lfloor \frac{n}{2} \right\rfloor)$$

$$r(v_{i} \setminus s) = (i+1, i, \left\lfloor \frac{n}{2} \right\rfloor - (i-1))$$

$$2 \le i \le \lfloor n/2 \rfloor$$

$$r\left(v_{\left\lfloor \frac{n}{2} \right\rfloor} \setminus s\right) = \left(\left\lfloor \frac{n}{2} \right\rfloor, \left\lfloor \frac{n}{2} \right\rfloor, 2\right)$$

$$r(v_{i} \setminus s) = (2\left\lfloor \frac{n}{2} \right\rfloor - i, 2\left\lfloor \frac{n}{2} \right\rfloor - (i-1), i - (\left\lfloor \frac{n}{2} \right\rfloor - 1))$$

$$\left[\frac{n}{2} \right\rfloor + 1 \le i \le n-1.$$

$$r(u_{00} \setminus s) = (4,3, \left\lfloor \frac{n}{2} \right\rfloor)$$

Case – 2 for even n

We choose a set $S = \left\{ u_{00}, u_{10}, u_{\left(\frac{n-2}{2}\right)0} \right\}$ By definition 2.7, we got the representations of vertices of graph $C_n \Box P_2$ with respect to S are $r(v_0 \setminus s) = (1, 2, \frac{n}{2})$ $r(v_1 \setminus s) = (2, 1, \frac{n-2}{2})$ $r(v_1 \setminus s) = (i + 1, i, \frac{n}{2} - i)$ $2 \le i \le \frac{n-2}{2}$ $r(v_n \setminus s) = (\frac{n+2}{2}, \frac{n}{2}, 2)$ $r(v_i \setminus s) = (n - (i - 1), n - (i - 2), i - \left(\frac{n-4}{2}\right))$ $\frac{n+2}{2} \le i \le n - 1$

From the above (case 1 and case 2), the representations of vertices of cycle C_n in the graph $C_n \Box P_2$ are distinct. Also we can observe that the representation of the vertices $u_{i0} (0 \le i \le n-1)$ are also distinct. This implies that *S* is resolving set, but it is not necessarily the lower bound. Thus the upper bound is dim $(C_n \Box P_2) \le 3$.

Now we show that $\dim(C_n \Box P_2) \ge 3$.

(1)

(2)

Let $S = \{u_{00}, u_{10}, u_{\left(\frac{n-2}{2}\right)0}\}$. Is a resolving set which is |S| = 3. Assume that S_1 is another minimum resolving set or we can denote $|S_1| < 3$. If we choose an ordered set $S_1 \subseteq S - \{u_{i0}\}, i = 0, 1, \left(\frac{n-2}{2}\right)$ so that there are two vertices which are of same representation. S_1 is not a resolving set is a contradiction with assumptions.

Thus the lower bond is $\dim(C_n \Box P_2) \ge 3$.

From above proving we conclude that $\dim(C_n \Box P_2) = 3$.

Theorem 4.4. For any integer $n \ge 3$, $\gamma_{\beta}(C_n \Box P_2) = n$. **Proof:** By lemma 4.3 dim $(C_n \Box P_2) = 3$, also by lemma 4.2 $\gamma(C_n \Box P_2) = n$ By remark 3.8 $\gamma_{\beta}(C_n \Box P_2) \ge \max\{\beta(C_n \Box P_2), \gamma(C_n \Box P_2)\}.$

$$\geq \max \{3, n\}$$

$$\gamma_{\beta}(C_n \Box P_2) \ge n$$

To prove the reverse inequality we defined a dominating set $D = \{\frac{u_{i0}}{0} \le i \le n-1\}$.

We note that the above set serves as a dominating set which also a resolving set $\gamma_{\beta}(C_n \Box P_2) \le n$

Thus $\gamma_{\beta}(C_n \Box P_2) = n.$

References

[1] A.Abdollahi, S.Jan Baz & M.R.Oboudi 2013 Graphs co spectra with a friendship graph or its complaint. Transaction on combinatorics .

[2] S. Lakshminarayana and M. Vishu Kumar, On the k-metro domination number of Paths, Annals of Pure and Applied Mathematics vol. 14, no. 3, 2017, 593-600.

[3] P. J. Slater, "Dominating and reference sets in a graph", Journal of Mathematical and Physical sciences, 22(4) (1988), 445-455.

[4] F Harary and R A Melter on the metric dimension of graphs Ars combination, 2 (1976), 191-195

[5] E. J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7: 247-261, 1977.

[6] Mulyono & Wulandari, The metric dimension of friendship graph F_n , Lollipop graph $L_{m,n}$ & Petersen graph $P_{n,m}$ Bulletin of Mathematics. Vol. 08,No 02, (2016) PP 117-124

[7] P Raghunath and B Sooryanarayana, metro domination no of a graph, 20th annual conference of Ramanujan Mathematics Society July 25-30 (2005) University of Calicut.

[8] S Khuller, B Raghavachari and D.Rosan – field, landmark in graphs, Discrete applied math, 70(3), (1996) 217-229.

[9]M.Alishahi and S.H.Shalmaee Domination number of square of Cartesian product of cycles open journal of discrete mathematic 5 (2015) 88-94.

[10]G.A.Dirac, Some theorems on abstract graphs, Proc.London Math. Soc., 2(1952)6981.