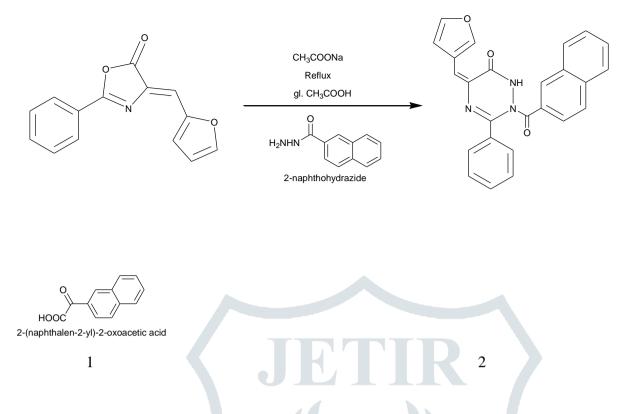
2-(2-Naphthoyl)-5-(furan-3-ylmethylene)-3-phenyl-1,2-dihydro-1,2,4-triazin-6(5*H*)-one

Tarawanti Verma¹, Manish Sinha², Nitin Bansal^{*} * Department of Pharmacology, ASBASJSM College of Pharmacy, BELA, Ropar, Punjab, India, ¹ PhD Research scholar, I.K. Gujral Punjab Technical University (IKGPTU), Jalandhar, Punjab, India; ² Laureate Institute of Pharmacy, Himachal Pradesh, India,

Abstract: A novel 1,2,4-triazin-6-one derivative (2) was synthesized by the reaction of the oxazolone derivative 1 with 1-naphthoic acid hydrazide in the presence of sodium acetate and glacial acetic acid. The title compound 2 was characterized on basis of IR, ¹H-NMR, ¹³C-NMR and mass spectral data.

Keywords: 1,2,4-triazin-6-one; 4-(furan-2-ylmethylene)-2-phenyloxazol-5(4*H*)-one; 1-naphthoic acid hydrazide; Erlenmeyer-Plochl method.


1. Introduction

1,2,4-Triazine represents a class of heterocyclic compounds possessing significant biological activities which makes them targets for research in the field of medicine and agriculture [1-3]. 1,2,4-Triazines have gained considerable pharmacological interest due to their anticonvulsant [4-8], anticancer [9-14], antiprotozoal [15], anti-viral [16], anti-malarial [17, 18], antibacterial [19-22] and antifungal effects [23-26]. In the field of agriculture, they showed effects such as insecticides, herbicides, plant growth regulators and they are deployed for enhancing crop yield [27-29].

2. Results and Discussion

The title compound 2 was synthesized by refluxing 4-(furan-2-ylmethylene)-2-phenyloxazol-5(4*H*)-one 1 (see supplementary material) with 1-naphthoic acid hydrazide in glacial acetic acid in the presence of sodium acetate, as presented in Scheme 1. The utilized azlactone was synthesized by the Erlenmeyer-Plochl method as discussed earlier [30, 31]. The acid hydrazide was prepared from the acid *via* esterification followed by hydrazinolysis with hydrazine hydrate. In the present reaction, the acid hydrazide acts as a nucleophile which attacks the carbonyl group of the oxazolone ring, followed by ring cleavage with concomitant cyclization to form the triazinone derivative 2 [5].

Scheme 1. Synthetic route to the title compound.

3. Experimental

The melting point was determined in an open-end capillary tube on a digital melting point apparatus and is uncorrected. IR spectrum was acquired on an Agilent Infra Red Spectrometer, (model FTIR-cary 630). Both proton nuclear magnetic resonance (¹H-NMR) and ¹³C NMR (DMSO) spectra of the synthesized compounds were performed with Bruker DRX-300 NMR Spectrometer at I.I.T, Delhi using CDCl₃ as solvent. Chemical shifts are expressed in ppm relative to TMS as an internal standard. Mass spectrum was recorded on a MicrOTOF-Q II at I.I.T, Delhi. The homogeneity of the compounds was monitored by ascending thin-layer chromatography (TLC), visualized by iodine vapour.

Synthesis of 2-(2-naphthoyl)-5-(furan-3-ylmethylene)-3-phenyl-1,2-dihydro-1,2,4-triazin-6(5H)-one (2) An equimolar quantity (*i.e.*, 0.01 mol) of compound 1 and of 1-naphthoic acid hydrazide was refluxed along with sodium acetate (0.2 g) in glacial acetic acid (10 mL) for 6 h. The reaction mixture was then poured into crushed ice and stirred vigorously. The solid so obtained was filtered, washed with water, dried and recrystallised from ethanol.

Yield: 80%; m.p.: 172–175 °C; Rf: 0.76; mobile phase: toluene: ethyl acetate: formic acid (5:4:1); brownish black crystalline solid.

IR cm⁻¹: 3176 (N-H), 3009 (aromatic C-H), 2933 (aliphatic C-H), 1724 (CONH), 1640 (C=O), 1580 (C=N, imine), 1525 (C=C).

¹H-NMR (300 MHz, CDCl₃): δ (ppm) 10.29 (s, 1H, CON*H*, D₂O exchangeable), 8.01–7.98 (d, 1H, Ar-*H*), 7.78–7.69 (m, 3H, Ar-*H*), 7.55 (s, 1H, C*H*=C), 7.44-7.3 (m, 4H, Ar-*H*), 7.32-7.28 (m, 3H, Ar-*H*), 7.16-7.05 (m, 4H, Ar-*H*), 6.52-6.51 (s, 1H, Ar-*H*), 4.02-3.99 (s 1H, C*H*=C).

¹³C-NMR (75 MHz, CDCl₃): δ 153.59 (*C*=O, benzoyl), 148.17 (*C*₆), 135.34 (*C*₃), 134.85 (2'-Furan), 134.60 (*C*₅-furan) 134.03, 131.91, 130.09, 129.33, 128.66, 128.41, 128.21, 128.03, 127.81, 126.86, 126.53, 124.99, 108.48 (C-CH₃).

ESI-MS: $m/z = 407.1264(M^+)$, $408.1342(M^++2)$.

4. Conclusion

The new 1, 2, 4- triazin-6-one derivative, namely 2-(2-naphthoyl)-5-(furan-3-ylmethylene)-3-phenyl-1,2dihydro-1,2,4-triazin-6(5H)-one was successfully synthesized and characterized.

5. Acknowledgement

Authors are highly thankful to BSAIP, Faridabad (Haryana) and I. K. Gujral Punjab Technical University, Jalandhar, Punjab for providing the necessary facilities for carrying out the research work.

6. References and Notes:

- 1. Boger, D.L. 1986. Diels-Alder cycloaddition reactions of heterocyclic azadienes: Scope and applications. Chemical Review, 86: 781–793.
- 2. Boger, D.L. 1983. Diels-Alder reactions of azadienes. Tetrahedron, 39: 2869–2939.
- Neunhoeffer, H. 1984. Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Eds.; Pergamon Press: Oxford, UK, p. 385.
- 4. Yuen, A.W. 1994. Lamotrigine: A review of antiepileptic efficacy. Epilepsia, 35: S33–S36.

- Kaushik, D. Khan, S.A. Chawla, G. 2010. Design & synthesis of 2-(substituted aryloxy)-5-(substituted benzylidene)-3-phenyl-2, 5-dihydro-1*H*-[1, 2, 4] triazin-6-one as potential anticonvulsant agents. Eur. J. Med. Chem. 45, 3960–3969.
- Khan, A.A. Siddiqui, N. Akhtar, M.J. Ali Z. Yar M.S. 2016. Design, synthesis, and biological evaluation of 6-(2-aminosubstituted phenyl)-4-(substituted phenyl)-1,2,4-triazine-3,5(2H,4H)-dione derivatives as anticonvulsant agents. Arch. Pharm. Chem. Life Sci. 349, 277–292.
- Hamid Irannejad, H. Nima Naderi, N. Emami, S. Ghadikolaei, R.Q. Foroumadi, A. Zafari, T. Mazar-Atabaki, A. Dadashpour. S. 2014. Microwave-assisted synthesis and anticonvulsant activity of 5,6bisaryl-1,2,4-triazine-3-thiol derivatives. Med. Chem. Res. 23, 2503–2514.
- Sahu, M. Siddiqui, N. Naim, M.J. Alam, O. Yar, M.S. Sharma, V. Wakode, S. 2017. Design, synthesis, and docking study of pyrimidine–triazine hybrids for GABA estimation in animal epilepsy models. Arch. Pharm. Chem. Life Sci. 350, e1700146.
- Gibson, N.W. Erickson, L.C. Hickman, J.A. 1984. Effects of the antitumor agent 8-carbamoyl-3-(2-chloroethyl) imidazo [5, 1-*d*]-1, 2, 3, 5-tetrazin-4(3*H*)-one on the DNA of mouse L1210 cells. Cancer Res. 44, 1767–1771.
- 10. Smith, R.H. Scudiero, D.A. Michejda, C.J. 1990. 1, 3-Dialkyl-3-acyltriazenes, a novel class of antineoplastic alkylating agents. J. Med. Chem. 33, 2579–2583.
- Sztanke, K. Rzymowska, J. Niemczyk, M. Dybała, I. Kozioł, A.E. 2006. Synthesis, crystal structure and anticancer activity of novel derivatives of ethyl 1-(4-oxo-8-aryl-4,6,7,8 tetrahydroimidazo[2,1c][1,2,4]triazin-3-yl)formate. Eur. J. Med. Chem. 41, 539–547.
- Sztanke, K. Pasternak, K. Sztanke, M. Kandefer-Szerszen, M. Kozioł, A.E. Dybała, I. 2009. Crystal structure, antitumour and antimetastatic activities of disubstituted fused 1,2,4-triazinones. Bioorg. Med. Chem. Lett. 19, 5095–5100.

- Fu, D.J. Song, J. Hou, Y.H. Zhao, R.H. Li, J.H. Mao, R.W. Yang, J.J. Li, P. Zi, X.L. Li, Z.H. Zhang, Q.Q. Wang, F.Y. Zhang, S.Y. Zhang, Y.B. Liu, H.M. Discovery of 5,6-diaryl-1,2,4-triazines hybrids as potential apoptosis inducers. Eur. J. Med. Chem. DOI: 10.1016/j.ejmech.2017.07.011
- 14. Patel, A.B. Chikhalia, K.H. Kumari, P. 2014. An efficient synthesis of new thiazolidin-4-one fused *s*-triazines as potential antimicrobial and anticancer agents. J Saudi Chem Soc. 18, 646–656.
- Singh, S. Husain, K. Athar, F. Azam, A. 2005. Synthesis and antiamoebic activity of 3, 7dimethylpyrazolo[3, 4-*e*][1,2,4] triazin-4-yl thiosemicarbazide derivatives. Eur. J. Pharma. Sci. 25, 255–262.
- Abdel-Rahman, R.M. Saeda, M. Fawzy, M. El-Baz, M. 1994. Synthesis of some new 1, 6-dihydro-3-substituted 6-spiro-(9'-fluorene)-1, 2, 4-triazin-5-(4H)-ones as potential anti-HIV and anticancer drugs. Pharmazie, 49, 729–733.
- Katiyar, S.B. Srivastava, K. Puri, S.K. Chauhan, P.M.S. 2005. Synthesis of 2-[3, 5- substituted pyrazol-1-yl]-4, 6-trisubstituted triazine derivatives as antimalarial agents. Bioorg. Med. Chem. Lett. 15, 4957–4960.
- Shandilya, A. Hoda, N. Kha, S. Jameel, E. Kumar, J. Jayaram, B. 2017. *De novo* lead optimization of triazine derivatives identifies potent antimalarials. J. Mol. Graph. Model. 71, 96–103.
- Srinivas, K. Srinivas, U. Jayathirtha, R. Bhanuprakash, K. Harakishore, K. Murthy, U.S.N. 2005. Synthesis and antibacterial activity of 2,4,6-trisubstituted *s*-triazines. Bioorg. Med. Chem. Lett. 15, 1121–1123.

- Deshmukh, R. Jha, A.K. Thakur, A.S. Dewangan, D. 2011. Synthesis and antibacterial activity of some 1, 3, 4-oxadiazole derivatives and their thione analogues. Int. J. Res. Pharma. Bio. Sci. 2, 215–219.
- Saravanan, J. Mohan, S. Roy, J.J. 2010. Synthesis of some 3-substituted amino-4,5-tetramethylene thieno[2,3-d][1,2,3]-triazin-4(3H)-ones as potential antimicrobial agents. Eur. J. Med. Chem. 45, 4365–4369.
- 22. Dongre, R.P. Rathod, S.D. 2017. Synthesis of novel isoxazoline derivatives containing *s*-triazine *via* chalcones and their anti-microbial studies. Der. Pharma. Chem. 9, 68-71
- 23. Sangshetti, J.N. Shinde, D.B. 2010. One pot synthesis and SAR of some novel 3-substituted 5,6diphenyl-1,2,4-triazines as antifungal agents. Bioorg. Med. Chem. Lett. 20, 742–745.
- 24. Hunt, J.C.A. Briggs, E. Clarke, E.D. Whittingham, W.G. 2007. Synthesis and SAR studies of novel antifungal 1,2,3-triazines. Bioorg. Med. Chem. Lett. 17, 5222–5226.
- 25. Dawane, B.S. Kadam, S.N. Shaikh, B.M. 2010. An efficient synthesis of 1, 2, 4-triazine derivatives and their *in vitro* antimicrobial activity. Der. Pharmacia Lett. 2, 126–131.
- 26. Shinde, R.S. Salunke, S.D. 2015. Synthesis and studies of novel piperidine-substituted triazine derivatives as potential anti-inflammatory and antimicrobial agents. J. Chem. Pharm. Res. 7, 704-714
- 27. Yang, R. Kaplan, P.A. 2001. Reaction of isothiourea with 2,3-diaza-3-pentenedioic anhydride: A solid phase synthesis of 3-amino-1,2,4-triazin-5(4*H*)-ones. Tetrahedron Lett. 42, 4433–4435.
- 28. Oettmeier, W. Hilp, U. Draber, W. 1991. Structure-activity relationships of triazinone herbicides on resistant weeds and resistant chlamydomonas reinhardtii. Pestic. Soc. 33, 399–409.

- 29. Kranz, E. Santel, H. Luerssen, K. 1990. New 6-cyclo-butyl-1, 2, 4-triazinone derivatives—useful as herbicides and plant growth regulators. DE: 3917043 A1,
- 30. Kaushik, D. Verma, T. Madaan, K. 2011. 2-(Benzoylamino)-3-(5-chloro-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)acrylic acid. Molbank M726.
- 31. Kaushik, D. Verma, T. 2011. 5-[(5-Chloro-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)methylene]-2-(4-nitrobenzoyl)-3-phenyl-2,5-dihydro-1,2,4-triazin-6(1*H*)-one. Molbank M733; doi:10.3390/M733

