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1. INTRODUCTION 

       A family ℱ of 𝑟 −uniform hypergraphs (𝑟 −graphs for 

short), and an 𝑟 −graph 𝐺, we say that 𝐺 is ℱ −free if 𝐺 

contains no member of ℱ as a subhypergraph. The extremal 

number 𝑒𝑥(𝑛, ℱ) is the maximum number of edges in an 

ℱ −free 𝑛 −vertex 𝑟 −graph (in case ℱ is a single 𝑟 −graph ℱ, 
we write 𝑒𝑥(𝑛, ℱ) instead of 𝑒𝑥(𝑛, {ℱ}). The Turán density of 

ℱ is defined as  

 

𝜋(ℱ):= lim
𝑛→∞

𝑒𝑥(𝑛, ℱ)

(𝑛
𝑟
)

. 

       

 When ℱ is an 𝑟 −graph, 𝜋(ℱ) ≠ 0, and 𝑟 > 2, determining 

𝜋(ℱ) is a hard problem, even for very simple 𝑟 −graphs ℱ. A 

result of Erdős and Simonovits implies that if 𝐻 is an 𝑟 −graph 

containing two vertices 𝑥, 𝑦 such that 𝑥 ∪ 𝑆 ∈ 𝐻 iff 𝑦 ∪ 𝑆 ∈ 𝐻, 
and no edge contains both 𝑥 and 𝑦, then 𝜋(𝐻) = 𝜋(𝐻 − 𝑦). 
Consequently, when studying 𝜋(𝐻), we may restrict to the 

case when 𝐻 contains no two vertices 𝑥 and 𝑦 as above. In this 

case we say that 𝐻 is irreducible. When 𝑟 = 3, the value of 

𝜋(ℱ) is known for very few irreducible 𝑟 −graphs ℱ. This lack 

of knowledge of the behavior of 𝜋 prevents us from 

understanding general phenomenon of the extremal theory of 

hypergraphs. It is therefore of interest to increase the list of 

irreducible hypergraphs with known Turán density.  

 

       Extending this method, the Mubayi and Rödl [15] 

determined 𝜋 for about ten more irreducible 3 −graphs, but in 

each case the value was 3/4. They also conjectured that 

𝜋(ℱ) = 4/9, where ℱ = {123,124,125,345}, and gave the 

lower bound. This conjecture was recently proved by Füredi-

Pikhurko-Simonovits [9] and exact results and further 

extensions were obtained by the same authors in [10]. Another 

recent result, due to Keevash and Sudakov [12], determines 

𝜋(𝐶3
(2𝑟)

), where 𝐶3
(2𝑟)

 is the (2𝑟) −graph obtained by letting 

𝑃1, 𝑃2, 𝑃3 be pairwise disjoint sets of size 𝑟, and taking as edges 

the three sets 𝑃𝑖 ∪ 𝑃𝑗  with 𝑖 ≠ 𝑗. This result settled a conjecture 

of Frankl [6]. In spite of this recent activity, until the current 

work, there were only finitely many irreducible 3 −graphs 

whose Turán density was known. 

 

Definition 1.1 Fix l, r ≥ 2. Let 𝒦l
(r)

 be the family of r −graphs 

with at most ( l
2
) edges, that contain a set S, called the core, of l 

vertices, with an edge containing every pair of vertices in S. 

Let Hl
(r)
∈ 𝒦l

(r)
 be the r −graph with vertex set 

AU̇(∪̇
S∈(A2)

BS), where |A| = l, |BS| = r − 2 for every S, and 

edge set {S ∪ BS: S ∈ (
A
2
)}.  

2 INFINITELY MANY DENSITIES 

       Denote by 𝐻(𝑘) the 𝑟 −graph obtained from 𝐻 by 

replacing each vertex of 𝐻 by 𝑘 copies of itself. Call the 𝑘 

copies of vertex 𝑣 clones of 𝑣. The supersaturation result of 

Erdős and Simonovits implies that if 𝑘 > 0 is any fixed 

integer, then 𝜋(𝐻(𝑘)) = 𝜋(𝐻). We need a slightly stronger 

statement that follows immediately from their argument. 

 

 Lemma 2.1 Fix k, t ≥ 1, r ≥ 2, and let F = {H1, … , Ht} be a 

(finite) family of r −graphs. Suppose that H is an r −graph 

satisfying H ⊂ Hi(k) for every i ∈ [t]. Then π(H) ≤ π(ℱ).  
 

Proof. In what follows, we write 𝑎 <    < 𝑏 to denote that 𝑏 is 

much larger than 𝑎; for the sake of clarity, we prefer this 

notation to giving the explicit relationship. Choose 𝜀 > 0. 
Then there exists an 𝑚 >    > 1/𝜀 such that every 𝑟 −graph on 

𝑚 vertices with more than (𝜋(ℱ) + 𝜀/2)(𝑚
𝑟
) edges contains a 

copy of some 𝐻𝑖 ∈ ℱ. Choose 𝑛 >    > 𝑚. 
 

    Suppose that 𝐺 is an 𝑟 −graph on n vertices with |𝐺| >

(𝜋(ℱ) + 𝜀)(𝑛
𝑟
). Then an averaging argument [2] implies that at 

least 𝛾(𝑛
𝑚
) of the 𝑚 −sets of vertices in 𝐺 induce an 𝑟 −graph 

with more than (𝜋(ℱ) + 𝜀/2)(𝑚
𝑟
) edges, where 0 < 𝛾 = 𝛾(𝜀). 

Each of these 𝑚−sets contains a copy of some member of ℱ. 

Therefore there is an 𝑖 for which at least (𝛾/𝑡)(𝑛
𝑚
) of the 

𝑚 −sets contain 𝐻𝑖 . Consequently the number of copies of 𝐻𝑖  
in 𝐺 is at least 

 

(𝛾/𝑡)(𝑛
𝑚
)

(𝑛−ℎ𝑖
𝑚−ℎ𝑖

)
=
𝛾

𝑡

(𝑛)ℎ𝑖
(𝑚)ℎ𝑖

, 
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      Where ℎ𝑖 = |𝑉(𝐻𝑖)|. Now, since 𝑛 > > 𝑚, a result of 

Erdős [3] implies that 𝐺 contains a copy of 𝐻𝑖(𝑘). 
Consequently, 𝐻 ⊂ 𝐻𝑖(𝑘) ⊂ 𝐺, and therefore 𝜋(𝐻) ≤ 𝜋(ℱ). 
 

Theorem 2.2 Let n, l, r ≥ 2. Then ex(n, Kl+1
(r)
) = tr(n, l), and 

the unique r −graph on n vertices containing no copy of a 

member of Kl+1
(r)

 for which equality holds is Tr(n, l).  
 

Proof. 1  We proceed by induction on 𝑙, with 𝑙 < 𝑟 being 

trivial. When 𝑟 = 2, the result is Turán’s theorem. We 

therefore assume that 𝑙 ≥ 𝑟 > 2. Let 𝐺 be an 𝑛 −vertex 

𝐾𝑙+1
(𝑟)
−free 𝑟 −graph. If 𝑛 ≤ 𝑙, the result is again trivial, so 

from now on we assume that 𝑛 ≥ 𝑙 + 1 ≥ 𝑟 + 1 > 3.  
 

        Pick a vertex 𝑥 ∈ 𝑉(𝐺) of maximum degree 𝛥. Let 𝑁 =
𝑁(𝑥) be the set of vertices 𝑦 for which codeg 𝐺(𝑥, 𝑦) > 0. 
Consider the 𝑟 −graph 𝐺[𝑁] induced by 𝑁, and suppose that it 

contains a copy 𝐻 of a member of 𝐾𝑙
(𝑟)
. Let 𝑆 ⊂ 𝑉(𝐻) be the 

core of 𝐻. Form 𝐻′ from 𝐻 by adding the vertex 𝑥 and one 

edge containing each pair 𝑥, 𝑣 with 𝑣 ∈ 𝑆. These edges exist by 

the definition of 𝑁. Altogether we have added at most 𝑙 edges, 

giving |𝐻′| ≤ |𝐻| + 𝑙 ≤ (𝑙
2
) + 𝑙 = (𝑙+1

2
). Therefore 𝐻′ ∈ 𝐾𝑙+1

(𝑟)
 

which is a contradiction. Consequently, 𝐺[𝑁] is 𝐾𝑙
(𝑟)
−free.  

 

       Next consider the (𝑟 − 1) −graph 𝐿(𝑥). If 𝐿(𝑥) contains a 

copy 𝐻 of a member of 𝐾𝑙
(𝑟−1)

 then by enlarging every edge of 

𝐻 to contain 𝑥, we obtain a copy of an 𝐻′ ∈ 𝐾𝑙+1
(𝑟)
, since |𝐻′| =

|𝐻| < (𝑙+1
2
). Therefore 𝐿(𝑥) is 𝐾𝑙

𝑟−1)
−free. Set 𝑘 = 𝑛 − |𝑁|. 

By the induction hypothesis, |𝐺[𝑁]| ·≤ 𝑡𝑟(𝑛 − 𝑘, 𝑙 − 1) and 

𝛥 = |𝐿(𝑥)| ≤ 𝑡𝑟−1(𝑛 − 𝑘, 𝑙 − 1). 
 

Since all vertices outside 𝑁 have degree at most 𝛥, we 

conclude that 

|𝐺| ≤ |𝐺[𝑁]| + 𝑘 ⋅ 𝛥 𝑡𝑟(𝑛 − 𝑘, 𝑙 − 1) + 𝑘 ⋅ 𝑡𝑟−1 (𝑛 − 𝑘, 𝑙 − 1)
≤ 𝑡𝑟(𝑛, 𝑙), 

 

where the last inequality followed by 

 

𝑡𝑟(𝑛 − 𝑘, 𝑙 − 1) + 𝑘 ⋅ 𝑡𝑟−1(𝑛 − 𝑘, 𝑙 − 1) ≤ 𝑡𝑟(𝑛, 𝑙). 
 

     If equality holds above, then no edge of 𝐺 contains two 

vertices in 𝑉(𝐺) − 𝑁, since this would result in over-counting 

edges in the first inequality. Also, by the discussion after (3.1), 

we may assume that 𝑘 = ⌊𝑛/𝑙⌋ or ⌈𝑛/𝑙⌉. Further, by induction 

we conclude that 𝐺[𝑁] is a copy of 𝑇𝑟(𝑛 − 𝑘, 𝑙 − 1) and the 

link of each vertex outside 𝑁 is a copy of 𝑇𝑟−1(𝑛 − 𝑘, 𝑙 − 1). 
Let us first assume that 𝑙 > 𝑟, and fix 𝑧 ∉ 𝑁. We have already 

argued that 𝐿(𝑧) (which is isomorphic to 𝑇𝑟−1(𝑛 − 𝑘, 𝑙 − 1)) 
has vertex set 𝑁. Next we argue that its vertex partition 𝑉1 ∪
⋯∪ 𝑉𝑙−1 respects that of 𝐺[𝑁].  
 

     Suppose to the contrary that 𝐺[𝑁] has (𝑙−) −partition 𝑊1 ∪
⋯∪𝑊𝑙−1, and {𝑣1, 𝑣2} ∈ 𝑊1, where 𝑣𝑖 ∈ 𝑉𝑖 . Note that since 𝑣1 

and 𝑣2 lie in different parts of 𝐿(𝑧), there is an edge of 𝐺 

containing them both. Now pick a vertex 𝑤𝑗 ∈ 𝑊𝑗 for each 𝑗 >

1, and consider 𝑆 = {𝑤2, … , 𝑤𝑙−1, 𝑣1, 𝑣2}. In order for 𝐺[𝑁] to 

contain at least one edge, we need 𝑛 − 𝑘 ≥ 𝑙 − 1 ≥ 𝑟. This 

follows since 𝑛 − 𝑘 ≥ 𝑛 − ⌈𝑛/𝑙⌉ ≥ (𝑙 + 1) − 2 = 𝑙 − 1 ≥ 𝑟. 
Therefore every two vertices in different parts of 𝐺[𝑁] lie in an 

edge of 𝐺[𝑁]. Consequently, for 𝑗 ≠ 𝑗′, we have 

 𝑐𝑜𝑑𝑒𝑔 𝐺[𝑁](𝑤𝑗 , 𝑤𝑗′) > 0, and codeg 𝐺[𝑁](𝑤𝑗 , 𝑣𝑖) > 0 for 𝑖 =

1,2. Since 𝑣1 and 𝑣2 also lie in an edge of 𝐺 (that also contains 

𝑧), this produces a copy of a member of 𝒦𝑙
(𝑟)

 with core 𝑆. 

Together with 𝑧, we obtain a copy of a member of 𝒦𝑙+1
(𝑟)
, with 

core 𝑆 ∪ 𝑧, a contradiction. Therefore each 𝐿(𝑧) respects the 

(𝑙 − 1) −partition of 𝐺[𝑁], and 𝐺 is 𝑇𝑟(𝑛, 𝑙) as required.  

 

     If 𝑙 = 𝑟, then 𝐺[𝑁] has no edges, so we cannot use the 

argument above. In this case we must show that for any two 

𝑧, 𝑧′ ∉ 𝑁, the (𝑟 − 1) −partitions of 𝐿(𝑧) and 𝐿(𝑧′) are the 

same.  

  

Proof. 2  For this proof, we need the recurrence 

 

𝑡𝑟(𝑛 − 1, 𝑙) + 𝑡𝑟−1(𝑛 − ⌈𝑛/𝑙⌉, 𝑙 − 1) = 𝑡𝑟(𝑛, 𝑙). 
 

     This follows by removing one vertex from 𝑇𝑟(𝑛, 𝑙) and 

counting edges among the remaining 𝑛 − 1 vertices, together 

with edges containing the removed vertex.  

 

     Again we proceed by induction on 𝑙. Let 𝐺 be an 𝑛 −vertex 

𝒦𝑙+1
(𝑟)
−free 𝑟 −graph with |𝐺| ≥ 𝑡𝑟(𝑛, 𝑙). As in the first proof, 

we may assume that 𝑛 ≥ 𝑙 + 1 ≥ 𝑟 + 1 > 3. We know that 

𝑡𝑟(𝑛, 𝑙) > 𝑡𝑟(𝑛, 𝑙 − 1), so by induction we may assume that 

𝐻 ⊂ 𝐺 for some 𝐻 ∈ 𝒦𝑙
(𝑟)
. Let 𝑆 = {𝑤1, … , 𝑤𝑙} be the core of 

𝐻. For each 𝑣 ∈ 𝑉(𝐺), let 𝑠(𝑣) be the number of 𝑖 for which 

codeg(𝑣, 𝑤𝑖) > 0. If 𝑠(𝑣) = 𝑙 for some 𝑣, then 𝑆 ∪ 𝑣 is the 

core of a copy of some member of 𝒦𝑙+1
(𝑟)
. We may therefore 

assume that 𝑠(𝑣) < 𝑙 for each 𝑣. Recall that for a vertex 𝑥, 
|𝑁(𝑥)| is the number of 𝑦 for which codeg(𝑥, 𝑦) > 0. By 

double counting,  

 

∑𝑙𝑖=1 |𝑁(𝑤𝑖)| = ∑𝑣∈𝑉(𝐺) 𝑠(𝑣) ≤ 𝑛(𝑙 − 1).  

 

     Consequently, there is an 𝑖, for which |𝑁(𝑤𝑖)| ≤ ⌊𝑛(𝑙 −
1)/𝑙⌋ = 𝑛 − ⌈𝑛/𝑙⌉. As in Proof 1, we know that 𝐿(𝑤𝑖) is 

𝒦𝑙
(𝑟−1)

−free. Therefore by induction 

 

|𝐺| ≤ |𝐿(𝑤𝑖)| + |𝐺[𝑉(𝐺) − 𝑤𝑖]| ≤ 𝑡𝑟−1(𝑛 −
⌈𝑛/𝑙⌉, 𝑙 − 1) + 𝑡𝑟(𝑛 − 1, 𝑙) = 𝑡𝑟(𝑛, 𝑙).  

 

     Although this proof can be extended to give the case of 

equality, the arguments are not as clean as in      Proof 1.  

 

Proof. 3  This proof only gives the bound on the number of 

edges when 𝑙|𝑛, however for this purpose it is ideally suited. 

Given an 𝑛 −vertex 𝑟 −graph 𝐺, define the polynomial 

 

𝑓(𝐺, 𝑥1, … , 𝑥𝑛) = ∑

𝐸∈𝐺

  ∏

𝑖∈𝐸

𝑥𝑖 . 

The Lagrange function of 𝐺 is  

 

𝜆(𝐺) = max {𝑓(𝐺, 𝑥1, … , 𝑥𝑛): 𝑥𝑖 ≥ 0  𝑎𝑛𝑑 ∑

𝑛

𝑖=1

𝑥𝑖 = 1}. 

 

     Now let 𝐺 be an 𝑛 −vertex 𝒦𝑙+1
(𝑟)
−free 𝑟 −graph, and let 

𝑥𝑖 , 𝑖 ∈ [𝑛] be chosen for which 𝑓(𝐺, 𝑥1, … , 𝑥𝑛) = 𝜆(𝐺). Define 

the support of 𝐺 by 𝑠𝑢𝑝𝑝(𝐺) = {𝑖: 𝑥𝑖 > 0}. It follows from a 

lemma of Frankl and Rödl [7] (proved earlier for 𝑟 = 2 by 
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Motzkin and Straus [14]) that if {𝑖, 𝑗} ⊂ 𝑠𝑢𝑝𝑝(𝐺), then 

codeg 𝐺(𝑖, 𝑗) > 0. Since 𝐺 is 𝒦𝑙+1
(𝑟)
−free, we conclude that 

|𝑠𝑢𝑝𝑝(𝐺)| ≤ 𝑙. An easy optimization now implies that 𝜆(𝐺) ≤

(𝑙
𝑟
)(1/𝑙)𝑟 . On the other hand, setting each 𝑥𝑖 = 1/𝑛 gives the 

lower bound 𝜆(𝐺) ≥ |𝐺|/𝑛𝑟 . Putting this together yields |𝐺| ≤

(𝑙
𝑟
)(1/𝑙)𝑟 as needed. 

 

Theorem 2.3    Let l ≥ r ≥ 2. Then 

𝜋(𝐻𝑙+1
(𝑟)
) =

(𝑙)𝑟
𝑙𝑟
, 

 

where (𝑙)𝑟 = 𝑙(𝑙 − 1)⋯ (𝑙 − 𝑟 + 1).  
 

Proof.   We first show that 𝐻𝑙+1
(𝑟)

⊂ 𝐻((𝑙+1
𝑟
) + 1) for every 𝐻 ∈

𝒦𝑙+1
(𝑟)
.  

 

    Pick 𝐻 ∈ 𝒦𝑙+1
(𝑟)
, and let 𝐻′ = 𝐻((𝑙+1

𝑟
) + 1). For each vertex 

𝑣 ∈ 𝑉(𝐻), suppose that the clones of 𝑣 are 𝑣 =

𝑣1, 𝑣2, … , 𝑣(𝑙+1
2
) + 1. In particular, identify the first clone of 𝑣 

with 𝑣.  
 

     Let 𝑆 = {𝑤1, … , 𝑤𝑙+1} ⊂ 𝑉(𝐻) be the core of 𝐻. For every 

1 ≤ 𝑖 < 𝑗 ≤ 𝑙 + 1, let 𝐸𝑖𝑗 ∈ 𝐻 with 𝐸𝑖𝑗 ⊃ {𝑤𝑖 , 𝑤𝑗}. Replace 

each vertex 𝑧 of 𝐸𝑖𝑗 − {𝑤𝑖 , 𝑤𝑗} by 𝑧𝑞 where 𝑞 > 1, to obtain an 

edge 𝐸′𝑖𝑗 ∈ 𝐻′. Continue this procedure for every 𝑖, 𝑗, making 

sure that whenever we encounter a new edge it intersects the 

previously encountered edges only in 𝐻. Since the number of 

clones is (𝑙+1
𝑟
) + 1, this procedure can be carried out 

successfully and results in a copy of 𝐻𝑙+1
(𝑟)

 with core 𝑆. 

Therefore 𝐻𝑙+1
(𝑟)

⊂ 𝐻′ = 𝐻(𝑙+1
𝑟
) + 1). Consequently, Lemma 

3.2.1 implies that 𝜋(𝐻𝑙+1
(𝑟)
) ≤ 𝜋(𝒦𝑙+1

(𝑟)
).  

 

     As 𝐻𝑙+1
(𝑟)

 contains a core of size 𝑙 + 1, we conclude that 

𝐻𝑙+1
(𝑟)

⊂ 𝑇𝑟(𝑛, 𝑙). Therefore  

 

lim
𝑛→∞

𝑡𝑟(𝑛, 𝑙)

𝑛
𝑟

≤ 𝜋(𝐻𝑙+1
(𝑟)
) ≤ 𝜋(𝒦𝑙+1

(𝑟)
) ≤ lim

𝑛→∞

𝑡𝑟(𝑛, 𝑙)

𝑛
𝑟

, 

where the last inequality follows from Theorem 3.2.2. Since  

𝑡𝑟(𝑛, 𝑙) = [(𝑙)𝑟/(𝑙
𝑟)] (

𝑛

𝑟
) + 𝑜(𝑛𝑟). 

3 DIRECTED HYPERGRAPHS 

     A hypergraphis a pair 𝐻 = (𝑉, 𝐸), where 𝑉 =
{𝑣1, 𝑣2, … , 𝑣𝑛} is the set of vertices (or nodes) and 𝐸 =
{𝐸1, 𝐸2, … , 𝐸𝑚}, with 𝐸𝑖 ⊆ 𝑉 for 𝑖 = 1,2, … ,𝑚, is the set of 

hyperedges. Clearly, when |𝐸𝑖| = 2, 𝑖 = 1,2, … ,𝑚, the 

hypergraph is a standard graph.  

 

     While the size of a standard graph is uniquely defined by 𝑛 

and 𝑚, the size of a hypergraph depends also on the cardinality 

of its hyperedges; we define the size of 𝐻 as the sum of the 

cardinalities of its hyperedges: 

𝑠𝑖𝑧𝑒(𝐻) = ∑

𝐸𝑖∈𝐸

|𝐸𝑖|. 

  

     It is worth noting that there is a one-to-one correspondence 

between hypergraphs and Boolean matrices. Indeed, any 𝑛 ×

𝑚 matrix 𝐴 = [𝑎𝑖𝑗] such that 𝑎𝑖𝑗 ∈ {0,1} may be considered as 

the incidence matrix of a hypergraph 𝐻 where each row 𝑖 is 

associated with a vertex 𝑣𝑖 and each column 𝑗 with a 

hyperedge 𝐸𝑗 .  

 

      A directed hyperedge or hyperarcis an ordered pair, 𝐸 =
(𝑋, 𝑌), of (possibly empty) disjoint subsets of vertices; 𝑋 is the 

tail of 𝐸 while 𝑌 is its head. In the following, the tail and the 

head of hyperarc 𝐸 will be denoted by 𝑇(𝐸) and 𝐻(𝐸), 
respectively.  

 

     A directed hypergraph is a hypergraph with directed 

hyperedges. In the following, directed hypergraphs will simply 

be called hypergraphs. An example of hypergraph is 

illustrated. Note that hyperarc 𝐸5 has an empty head.  

 

     As for directed graphs, the incidence matrix of a 

hypergraph 𝐻 is a 𝑛 × 𝑚 matrix [𝑎𝑖𝑗] defined as follows:  

𝑎𝑖𝑗 =

{
 

 −1,  𝑖𝑓     𝑣𝑖 ∈ 𝑇(𝐸𝑗),

1,  𝑖𝑓     𝑣𝑖 ∈ 𝐻(𝐸𝑗),

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

     Clearly, there is a one-to-one correspondence between 

hypergraphs and (−1,0,1) matrices.  

 

     A Backward hyperarc, or simply 𝐵 −arc, is a hyperarc 𝐸 =
(𝑇(𝐸), 𝐻(𝐸)) with |𝐻(𝐸)| = 1 A Forward hyperarc, or simply 

𝐹 −arc, is a hyperarc 𝐸 = (𝑇(𝐸), 𝐻(𝐸)) with |𝑇(𝐸)| = 1  

 

     A 𝐵 −graph (or 𝐵 −hypergraph) is a hypergraph whose 

hyperarcs are 𝐵 −arcs. A 𝐹 −graph (or 𝐹 −hypergraph) is a 

hypergraph whose hyperarcs are 𝐹 −arcs. A 𝐵𝐹 −graph (or 

𝐵𝐹 −hypergraph) is a hypergraph whose hyperarcs are either 

𝐵 −arcs or 𝐹 −arcs.  

 

      Given a hypergraph 𝐻 = (𝑉, 𝐸), we define its symmetric 

image the hypergraph 𝐻 = (𝑉, �̃�), where �̃� =
{(𝑋, 𝑌): (𝑌, 𝑋) ∈ 𝐸}. Note that the symmetric image of a 

𝐵 −graph is a 𝐹 −graph, and viceversa.  

 

      Note that it is always possible to transform a general 

hypergraph into a 𝐵𝐹 −graph, by adding a dummy node to 

each hyperarc which is neither a 𝐵 −arc nor a 𝐹 −arc, and thus 

replacing the hyperarc by one backward and one forward 

hyperarc.  

 

       Let 𝐹𝑆(𝑣) = {𝐸 ∈ 𝐸: 𝑣 ∈ 𝑇(𝐸)} and 𝐵𝑆(𝑣) = {𝐸 ∈
𝐸: 𝑣 ∈ 𝐻(𝐸)} denote the Forward Star and the Backward Star 

of node 𝑣, respectively. 

CONCLUSION 

    In this paper, we have established some theorems on 

Hypergraph extensions of Turan’s theorem, theorems on 

Hypergraph and its applications.  
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