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ON SCHUR M- POWER CONVEXITY FOR 

PROPORTION OF DISTINCTION OF SOME 

SPECIAL MEANS IN TWO VARIABLES 
 

SREENIVASA REDDY PERLA AND S PADMANABHAN 

 

Abstract. In this paper, we discuss the Schur m-power convexity on ( ) ( ).,0,0   For proportion of 

distinction of some special means in two variables, such as arithmetic, geometric, harmonic, root-square 

means and the like, and obtain some inequalities related to proportion of distinction of means. 

 

1. MEAN OF  ORDER   t 
 

Let us consider the following well known mean of order t : 
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The means, H (a, b), G(a, b), A(a, b) and S(a, b) are known in the literature as harmonic, geometric, 
arithmetic and root-square means respectively. For simplicity we can call the measure, N1(a, b) as 
square-root mean. It is well know that  [1] the mean of order s given in  (1.1) is monotonically 
increasing in s, then we can write 

  
(1.2)                               ),(),(),(),(),( 1 baSbaAbaNbaGbaH   

 

Dragomir and Pearce  [3] (page 242) proved the following inequality:                                  
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Let us consider two parameter  
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For all a, b > 0, 𝑎, 𝑏 > 0, 𝑎 ≠ 𝑏, 𝑟 ∈ (0,1), 𝑎𝑛𝑑 𝑠 ∈ (0,1). in particular take 𝑟 =
1

2
  

we get 
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If  s=0                    
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If  s =1/2    from  (1.5)                    
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If  s =1   from  (1.5)   
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On the other side we can easily check that  
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Finally the expressions (1.5), (1.6) lead us to the following inequalities [7] 

 

),(),(),(),(),(),(),( 21 baSbaAbaNbaHbaNbaGbaH e   
 

Let us consider the following distinction of means was studied in [17]. 
 
 

( ) ( ) ( ) ( )baNbaSbaM SN ,,,9.1 22
−=

( ) ( ) ( ) ( )baHbaSbaM eSHe
,,,10.1 −=

( ) ( ) ( ) ( )baNbaSbaM SN ,,,11.1 11
−=

( ) ( ) ( ) ( )baGbaSbaM SG ,,,12.1 −=

( ) ( ) ( ) ( )baHbaSbaM SH ,,,13.1 −=

( ) ( ) ( ) ( )baNbaAbaM AN ,,,14.1 22
−=

( ) ( ) ( ) ( )baGbaAbaM AG ,,,15.1 −=  

( ) ( ) ( ) ( )baHbaAbaM AH ,,,16.1 −=  

( ) ( ) ( ) ( )baNbaAbaM NN ,,,17.1 212
−=  

( ) ( ) ( ) ( )baGbaNbaM GN ,,,18.1 22
−=  

       Clearly the above distinction of means are nonnegative and convex in ( ) ( ).,0,02 = +  

 In this paper, we defined new distinction of means and by using these we define some special means, then   
 we discussed "Schur  m - power convexities for special means ". 

 

2.Special Means 
 
From the distinction of means defined in the equations 1.8 to 1.18, we define the following difference 
between the means 

( ) ( ) ( ) 2,,1.2
2

NAbaMbaM SASN −=−  

( ) ( ) ( ) eSNSH HNbaMbaM
e

−=− 2,,2.2
2

 

( ) ( ) ( ) eSASH HAbaMbaM
e

−=− ,,3.2  

( ) ( ) ( ) 1,,4.2
1

NHbaMbaM eSHSN e
−=−  

( ) ( ) ( ) 12,,5.2
21

NNbaMbaM SNSN −=−  

( ) ( ) ( ) GNbaMbaM GHHN −=− 1,,6.2
1

 

( ) ( ) ( ) HGbaMbaM SGSH −=− ,,7.2  

 

Clearly, the above difference of the means are convex for all positive real value of `t'.  
Now, by using the (2.1) to (2.7) difference of means, we establish the special means as follows:  
 

( ) ( ) ( ) ( )baAbaSbaM SA ,,,8.1 −=
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Lemma 2.1. In [14]  J.Rooin and M Hassni , introduced the homogeneous functions, the function   

       ( )10.2    ( )
x x

x x

a b
f x

c d

−
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−
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xx
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dc
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−

−
=  .  For 0a b c d    where ( ),x −   is  

(i) Convex,  if 0ad bc−   

(ii)      Concave, if 0ad bc−    and  

             (iii)     Equality holds, if 0ad bc− =  
 

3. Preliminaries 
 

We begin with recalling some basic concepts and notations in the theory of majorization. 

For more details, we refer the reader to [1,2]. 

Definition 3.1 .  Let  ( )1 2 3, , ,..., nx x x x x=  and ( )1 2 3, , ,..., n

ny y y y y R=   

i) x is said to be majorized by y  (in symbols x ≺ y),     
1 1

k k

i i
i i

x y
= =

   for 1,2,3..., 1k n= −  and ∑ xi =n
i=1

∑ yi
n
i=1   where    1

...
n

x x   and    1
...

n
y y 

 
are rearrangement of x  and y  in a descending order. 

ii) 
nR  is called a convex set, if ( )1 1 2 2, ,..., ,n nx y x y x y     + + +  for any x and y  , where 

 and 0,1    with 1=+                                                                                                                                                                                                                                                                                                

iii) Let 
nR  ,  the function 

nR→:  is said to be schur convex function on   if x y   on   implies 

).()( yx      is said to be a Schur concave function on  ,  if and only if −  is Schur convex function. 

Definition 3.2 . Let  ( )1 2 3, , ,..., nx x x x x=  and ( )1 2 3, , ,..., n

ny y y y y R +=  . 

nR   is called geometrically convex set, if ( )1 1 2 2, ,..., ,n nx y x y x y        for any x and y  , 

where  , 0,1    with 1=+  .  
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A generalization of Schur convex functions was introduced by Yang [14], as follows 

Definition 3.3. Let RRf →++:   be defined by 

 

𝑓(𝑥) = {
𝑥𝑚 − 1

𝑚
  ln  𝑟 ,     𝑚 = 0

, 𝑚 ≠ 0 

 

Lemma 2.4.  Let 
+→ R:  be continuous on    and differentiable on 0 . Then   is  Schur m- 

power convex on  function ( ) 0

1 2 3, , ,..., nx x x x x=   if and only if    is symmetric on   and  

𝑥1
𝑚−𝑥2

𝑚

𝑚
[𝑥1

𝑚−1 𝜕𝜑(𝑥)

𝜕𝑥1
− 𝑥2

𝑚−1 𝜕𝜑(𝑥)

𝜕𝑥2
]  ≥ 0 𝑖𝑓 𝑚 ≠ 0                                

and                             

(log 𝑥1 − log 𝑥2) [𝑥1
𝑚 𝜕𝜑(𝑥)

𝜕𝑥1
− 𝑥2

𝑚 𝜕𝜑(𝑥)

𝜕𝑥2
]  ≥ 0 𝑖𝑓 𝑚 = 0                              

 

4. Main Results 

In this paper, we discuss the Schur m-power Convexity of the distinguishes special means, in the 

following theorems. 

Theorem 4.1. For m ≠ 0, the proportion of distinction of means 
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By Lemma 2.1 
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,

22 abbabaabba
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−−++
=  

by  finding the partial derivatives of  ( )baf ,  and simple manipulation gives we have 
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By m -power Schur convexity, 
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Thus  .0  From Lemma 3.2 ,it follows that the proportion of distinction of mean is Schur 'm'-power 

convex functions in 𝑅++
𝑛  . 

 

Theorem 4.2. For m ≠ 0, the proportion of distinction of means 
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 By Lemma 3.2 
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    by finding the partial derivatives of ( )baf , and simple manipulation gives we have 
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By m -power Schur convexity, 
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Thus  .0  From Lemma 3.2 ,it follows that the proportion of distinction of mean is Schur 'm'-power 

convex functions for .nRx ++  

 

5.Conclusion 

 

In this paper, we distinguished special means and discussed about the Schur properties of Schur `m'- 
power convexities on the proportion of distinction of special means. 
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