# ON SCHUR M- POWER CONVEXITY FOR PROPORTION OF DISTINCTION OF SOME SPECIAL MEANS IN TWO VARIABLES 

SREENIVASA REDDY PERLA AND S PADMANABHAN

Abstract. In this paper, we discuss the Schur m-power convexity on $(0, \infty) \times(0, \infty)$. For proportion of distinction of some special means in two variables, such as arithmetic, geometric, harmonic, root-square means and the like, and obtain some inequalities related to proportion of distinction of means.

## 1. MEAN OF ORDER $t$

Let us consider the following well known mean of order $t$ :

$$
B_{t}(a, b)=\left\{\begin{array}{l}
\left(\frac{a^{t}+b^{t}}{2}\right)^{1 / t}, t \neq 0  \tag{1.1}\\
\sqrt{a b}, \quad t=0 \\
\max \{a, b\}, t=\infty \\
\\
\min \{a, b\}, t=-\infty
\end{array}\right.
$$

for all $a, b, t \in R, a, b>0$.
In particular, we have

$$
\begin{aligned}
& B_{-1}(a, b)=H(a, b)=\frac{2 a b}{a+b} \\
& B_{0}(a, b)=G(a, b)=\sqrt{a b} \\
& B_{1 / 2}(a, b)=N_{1}(a, b)=\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2} \\
& B_{1}(a, b)=A(a, b)=\frac{a+b}{2} \\
& B_{2}(a, b)=S(a, b)=\sqrt{\frac{a^{2}+b^{2}}{2}}
\end{aligned}
$$

The means, $H(a, b), G(a, b), A(a, b)$ and $S(a, b)$ are known in the literature as harmonic, geometric, arithmetic and root-square means respectively. For simplicity we can call the measure, $N_{l}(a, b)$ as square-root mean. It is well know that [1] the mean of order s given in (1.1) is monotonically increasing in $s$, then we can write

$$
\begin{equation*}
H(a, b) \leq G(a, b) \leq N_{1}(a, b) \leq A(a, b) \leq S(a, b) \tag{1.2}
\end{equation*}
$$

Dragomir and Pearce [3] (page 242) proved the following inequality:

$$
\begin{equation*}
\frac{a^{r}+b^{r}}{2} \leq \frac{b^{r+1}-a^{r+1}}{(r+1)(b-a)} \leq\left(\frac{a+b}{2}\right)^{r} \tag{1.3}
\end{equation*}
$$

Let us consider two parameter

$$
\begin{gather*}
\frac{a^{r}+b^{r}}{2} \leq \frac{\frac{b^{r+1}-a^{r+1}}{(r+1)(b-a)}}{\frac{b^{s+1}-a^{s+1}}{(s+1)(b-a)}} \leq\left(\frac{a+b}{2}\right)^{r} \\
\frac{a^{r}+b^{r}}{2} \leq \frac{(s+1)\left(b^{r+1}-a^{r+1}\right)}{(r+1)\left(b^{s+1}-a^{s+1}\right)} \leq\left(\frac{a+b}{2}\right)^{r} \tag{1.4}
\end{gather*}
$$

For all $a, b>0, a, b>0, a \neq b, r \in(0,1)$, and $s \in(0,1)$. in particular take $r=\frac{1}{2}$ we get

$$
\frac{\sqrt{ } a+\sqrt{ } b}{2} \leq \frac{2(s+1)\left(b^{3 / 2}-a^{3 / 2}\right)}{3\left(b^{s+1}-a^{s+1}\right)} \leq\left(\frac{a+b}{2}\right)^{1 / 2}
$$

Multiply by $\frac{\sqrt{ } a+\sqrt{ } b}{2}$

$$
\left(\frac{\sqrt{ } a+\sqrt{b}}{2}\right)^{2} \leq \frac{(s+1)\left(b^{\frac{3}{2}}-a^{\frac{3}{2}}\right)(\sqrt{a}+\sqrt{b})}{3\left(b^{s+1}-a^{s+1}\right)} \leq\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{ } b}{2}
$$

$$
\begin{equation*}
\left(\frac{\sqrt{ } a+\sqrt{ } b}{2}\right)^{2} \leq \frac{(s+1)(b-a)(a+b+\sqrt{a b})}{3\left(b^{s+1}-a^{s+1}\right)} \leq\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{b}}{2} \tag{1.5}
\end{equation*}
$$

$$
\text { If } s=0
$$

$$
\begin{equation*}
\left(\frac{\sqrt{ } a+\sqrt{ } b}{2}\right)^{2} \leq \frac{(a+b+\sqrt{a b})}{3} \leq\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{a+\sqrt{ } b}}{2} \tag{1.6}
\end{equation*}
$$

$$
\text { i.e., } \quad N_{1}(a, b) \leq H_{e}(a, b) \leq N_{2}(a, b)
$$

If $s=1 / 2$ from (1.5)

$$
\begin{align*}
& \left(\frac{\sqrt{ } a+\sqrt{ } b}{2}\right)^{2} \leq \frac{(b-a)}{2(\sqrt{b}-\sqrt{ } a)} \leq\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{ } b}{2} \\
& \left(\frac{\sqrt{ } a+\sqrt{ } b}{2}\right)^{2} \leq \frac{\sqrt{a}+\sqrt{ } b}{2} \leq\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{ } b}{2} \tag{1.7}
\end{align*}
$$

If $s=1$ from (1.5)

$$
\begin{array}{r}
\left(\frac{\sqrt{ } a+\sqrt{ } b}{2}\right)^{2} \leq \frac{2(b-a)(a+b+\sqrt{a b})}{3\left(b^{2}-a^{2}\right)} \leq\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{ } b}{2} \\
\left(\frac{\sqrt{ } a+\sqrt{ } b}{2}\right)^{2} \leq \frac{2(a+b+\sqrt{a b})}{3(a+b)} \leq\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{ } b}{2}
\end{array}
$$

On the other side we can easily check that

$$
\begin{gathered}
\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{ } b}{2} \leq \frac{a+b}{2} \\
\left(\frac{\sqrt{ } a+\sqrt{ } b}{2}\right)^{2} \leq \frac{N_{3}}{A} \leq\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{ } b}{2}
\end{gathered}
$$

Here $\quad N_{1}=\left(\frac{\sqrt{ } a+\sqrt{ } b}{2}\right)^{2}, N_{2}=\left(\frac{a+b}{2}\right)^{1 / 2} \frac{\sqrt{ } a+\sqrt{ } b}{2}, N_{3}=\frac{a+b+\sqrt{ } a b}{3}$, and $\quad N_{4}=\frac{N_{3}}{A}$
Finally the expressions (1.5), (1.6) lead us to the following inequalities [7]

$$
H(a, b) \leq G(a, b) \leq N_{1}(a, b) \leq H_{e}(a, b) \leq N_{2}(a, b) \leq A(a, b) \leq S(a, b)
$$

Let us consider the following distinction of means was studied in [17].

$$
\begin{align*}
& M_{S A}(a, b)=S(a, b)-A(a, b)  \tag{1.8}\\
& M_{S N_{2}}(a, b)=S(a, b)-N_{2}(a, b)  \tag{1.9}\\
& M_{S H_{e}}(a, b)=S(a, b)-H_{e}(a, b)  \tag{1.10}\\
& M_{S N_{1}}(a, b)=S(a, b)-N_{1}(a, b)  \tag{1.11}\\
& M_{S G}(a, b)=S(a, b)-G(a, b)  \tag{1.12}\\
& M_{S H}(a, b)=S(a, b)-H(a, b)  \tag{1.13}\\
& M_{A N_{2}}(a, b)=A(a, b)-N_{2}(a, b)  \tag{1.14}\\
& M_{A G}(a, b)=A(a, b)-G(a, b)  \tag{1.15}\\
& M_{A H}(a, b)=A(a, b)-H(a, b)  \tag{1.16}\\
& M_{N_{2} N_{1}}(a, b)=A(a, b)-N_{2}(a, b)  \tag{1.17}\\
& M_{N_{2} G}(a, b)=N_{2}(a, b)-G(a, b) \tag{1.18}
\end{align*}
$$

Clearly the above distinction of means are nonnegative and convex in $\quad \mathfrak{R}^{2}+=(0, \infty) \times(0, \infty)$.
In this paper, we defined new distinction of means and by using these we define some special means, then we discussed "Schur m-power convexities for special means ".

## 2.Special Means

From the distinction of means defined in the equations 1.8 to 1.18 , we define the following difference between the means

$$
\begin{align*}
M_{S N_{2}}(a, b)-M_{S A}(a, b) & =A-N_{2}  \tag{2.1}\\
M_{S H_{e}}(a, b)-M_{S N_{2}}(a, b) & =N_{2}-H_{e}  \tag{2.2}\\
M_{S H_{e}}(a, b)-M_{S A}(a, b) & =A-H_{e}  \tag{2.3}\\
M_{S N_{1}}(a, b)-M_{S H_{e}}(a, b) & =H_{e}-N_{1}  \tag{2.4}\\
M_{S N_{1}}(a, b)-M_{S N_{2}}(a, b) & =N_{2}-N_{1}  \tag{2.5}\\
M_{N_{1} H}(a, b)-M_{G H}(a, b) & =N_{1}-G  \tag{2.6}\\
M_{S H}(a, b)-M_{S G}(a, b) & =G-H \tag{2.7}
\end{align*}
$$

Clearly, the above difference of the means are convex for all positive real value of ' $t$ '.
Now, by using the (2.1) to (2.7) difference of means, we establish the special means as follows:

$$
\begin{align*}
& \frac{M_{S N_{2}}-M_{S A}}{M_{S H_{e}}-M_{S N_{2}}}=\frac{A-N_{2}}{N_{2}-H_{e}}  \tag{2.8}\\
& \frac{M_{S N_{1}}-M_{S H_{e}}}{M_{N H}-M_{G H}}=\frac{H_{e}-N_{1}}{N_{1}-G} \tag{2.9}
\end{align*}
$$

Lemma 2.1. In [14] J.Rooin and M Hassni , introduced the homogeneous functions, the function

$$
\begin{equation*}
f(x)=\frac{a^{x}-b^{x}}{c^{x}-d^{x}} \text { and } g(x)=\frac{a^{x}-b^{x}}{c^{x}-d^{x}} \text {. For } a>b \geq c>d>0 \text { where } x \in(-\infty, \infty) \text { is } \tag{2.10}
\end{equation*}
$$

(i) Convex, if $a d-b c>0$
(ii) Concave, if $a d-b c<0$ and
(iii) Equality holds, if $a d-b c=0$

## 3. Preliminaries

We begin with recalling some basic concepts and notations in the theory of majorization.
For more details, we refer the reader to [1,2].
Definition 3.1. Let $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \in R^{n}$
i) $x$ is said to be majorized by $y$ (in symbols $\mathrm{x}<\mathrm{y}$ ), $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for $k=1,2,3 \ldots, n-1$ and $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}=$ $\sum_{\mathrm{i}=1}^{\mathrm{n}} y_{\mathrm{i}}$ where $x_{[1]} \geq \ldots \geq x_{[n]}$ and $y_{[1]} \geq \ldots \geq y_{[n]}$ are rearrangement of $x$ and $y$ in a descending order.
ii) $\Omega \subset R^{n}$ is called a convex set, if $\left(\alpha x_{1}+\beta y_{1}, \alpha x_{2}+\beta y_{2}, \ldots, \alpha x_{n}+\beta y_{n}\right) \in \Omega$, for any $x$ and $y \in \Omega$, where $\alpha$ and $\beta \in[0,1]$ with $\alpha+\beta=1$
iii) Let $\Omega \subset R^{n}$, the function $\varphi: \Omega \rightarrow R^{n}$ is said to be schur convex function on $\Omega$ if $x \prec y$ on $\Omega$ implies $\varphi(x) \leq \varphi(y) . \varphi$ is said to be a Schur concave function on $\Omega$, if and only if $-\varphi$ is Schur convex function.

Definition 3.2. Let $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \in R^{n}{ }_{+}$.
$\Omega \subset R^{n}$ is called geometrically convex set, if $\left(x_{1}{ }^{\alpha} y_{1}{ }^{\beta}, x_{2}{ }^{\alpha} y_{2}{ }^{\beta}, \ldots, x_{n}{ }^{\alpha} y_{n}{ }^{\beta}\right) \in \Omega$, for any $\boldsymbol{x}$ and $y \in \Omega$, where $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$.

A generalization of Schur convex functions was introduced by Yang [14], as follows
Definition 3.3. Let $f: R_{++} \rightarrow R$ be defined by

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{m}-1}{m} \\
\ln r, \quad m=0
\end{array}, m \neq 0\right.
$$

Lemma 2.4. Let $\varphi: \Omega \rightarrow R_{+}$be continuous on $\Omega$ and differentiable on $\Omega^{0}$. Then $\varphi$ is Schur mpower convex on function $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \in \Omega^{0}$ if and only if $\varphi$ is symmetric on $\Omega$ and

$$
\frac{x_{1}{ }^{m}-x_{2}{ }^{m}}{m}\left[x_{1}{ }^{m-1} \frac{\partial \varphi(x)}{\partial x_{1}}-x_{2}{ }^{m-1} \frac{\partial \varphi(x)}{\partial x_{2}}\right] \geq 0 \text { if } m \neq 0
$$

and

$$
\left(\log x_{1}-\log x_{2}\right)\left[x_{1}{ }^{m} \frac{\partial \varphi(x)}{\partial x_{1}}-x_{2}^{m} \frac{\partial \varphi(x)}{\partial x_{2}}\right] \geq 0 \text { if } m=0
$$

## 4. Main Results

In this paper, we discuss the Schur m-power Convexity of the distinguishes special means, in the following theorems.
Theorem 4.1. For $\mathrm{m} \neq 0$, the proportion of distinction of means $\frac{M_{S N_{2}}-M_{S A}}{M_{S H_{e}}-M_{S N_{2}}}$ is Schur m-power convex function in $R_{+}^{2}$.
Proof. Let

$$
f(a, b)=\frac{M_{S N_{2}}-M_{S A}}{M_{S H_{e}}-M_{S N_{2}}}=\frac{A-N_{2}}{N_{2}-H_{e}}
$$

By Lemma 2.1

$$
\begin{gathered}
f(a, b)=A H_{e}-N_{2}^{2} \\
f(a, b)=\frac{a^{2}+b^{2}+2 a b-2 a \sqrt{a b}-2 b \sqrt{a b}}{24}
\end{gathered}
$$

by finding the partial derivatives of $f(a, b)$ and simple manipulation gives we have

$$
\frac{\partial f}{\partial a}=\frac{2 a+2 b-3 \sqrt{a b}-b\left(\frac{\sqrt{b}}{\sqrt{a}}\right)}{24}
$$

$$
\frac{\partial f}{\partial b}=\frac{2 b+2 a-3 \sqrt{a b}-a\left(\frac{\sqrt{a}}{\sqrt{b}}\right)}{24}
$$

By m -power Schur convexity,

$$
\begin{aligned}
\Delta=\frac{a^{m}-b^{m}}{m}\left[a^{1-m} \frac{\partial f}{\partial a}\right. & \left.-a b^{1-m} \frac{\partial f}{\partial b}\right] \\
& =\frac{a^{m}-b^{m}}{24 m}\left[(2 a+2 b-3 \sqrt{a b})\left(a^{1-m}-b^{1-m}\right)-\frac{a b \sqrt{b}}{a^{m} \sqrt{a}}+\frac{a b \sqrt{a}}{b^{m} \sqrt{b}}\right] \\
& =\frac{a^{m}-b^{m}}{24 m a^{m} b^{m}}\left[(2 a+2 b-3 \sqrt{a b})\left(a b^{m}-b a^{m}\right)-\sqrt{a b}\left(b^{m+1}-a^{m+1}\right)\right] \\
& =\frac{a^{m}-b^{m}}{24 m a^{m} b^{m}}\left[(2 a+2 b-3 \sqrt{a b})\left(a b^{m}-b a^{m}\right)-\sqrt{a b}\left(b^{m+1}-a^{m+1}\right)\right] \\
& =\frac{a^{m}-b^{m}}{24 m a^{m} b^{m}}\left[(2 a+2 b-3 \sqrt{a b})\left(a b^{m}-b a^{m}\right)+\sqrt{a b}\left(a^{m+1}-b^{m+1}\right)\right]
\end{aligned}
$$

Thus $\Delta \geq 0$. From Lemma 3.2 , it follows that the proportion of distinction of mean is Schur 'm'-power convex functions in $R_{++}^{n}$.

Theorem 4.2. For $\mathrm{m} \neq 0$, the proportion of distinction of means $\frac{M_{S H_{e}}-M_{S A}}{M_{S N_{1}}-M_{S H_{e}}}$ is Schur m-power convex function in $R_{+}^{2}$.

Proof. Let

$$
f(a, b)=\frac{M_{S H_{e}}-M_{S A}}{M_{S N_{1}}-M_{S H_{e}}}=\frac{A-H_{e}}{H_{e}-N_{1}}
$$

By Lemma 3.2

$$
\begin{gathered}
f(a, b)=A N_{1}-H_{e}^{2} \\
f(a, b)=\frac{a^{2}+b^{2} 6 a b-2 a \sqrt{a b}+2 b \sqrt{a b}}{72}
\end{gathered}
$$

by finding the partial derivatives of $f(a, b)$ and simple manipulation gives we have

$$
\frac{\partial f}{\partial a}=\frac{2 a-6 b+3 \sqrt{a b}+b\left(\frac{\sqrt{b}}{\sqrt{a}}\right)}{72}
$$

$$
\frac{\partial f}{\partial b}=\frac{2 b-6 a+3 \sqrt{a b}+a\left(\frac{\sqrt{a}}{\sqrt{b}}\right)}{72}
$$

By m -power Schur convexity,

$$
\begin{aligned}
& \Delta=\left(\frac{a^{m}-b^{m}}{m}\right)\left[a^{1-m} \frac{\partial f}{\partial a}-a b^{1-m} \frac{\partial f}{\partial b}\right] \\
&=\left(\frac{a^{m}-b^{m}}{72 m}\right)\left[(3 \sqrt{a b})\left(a^{1-m}-b^{1-m}\right)+a\left(2 a^{1-m}+6 b^{1-m}\right)-b\left(6 a^{1-m}+2 b^{1-m}\right)+\frac{a b \sqrt{b}}{a^{m} \sqrt{a}}-\frac{a b \sqrt{a}}{b^{m} \sqrt{b}}\right] \\
&=\left(\frac{a^{m}-b^{m}}{72 m}\right)\left[\frac{1}{a^{m}}\left(2 a^{2}+\sqrt{a b}(3 a+b)-6 a b\right)+\frac{1}{b^{m}}\left(2 b^{2}-\sqrt{a b}(3 b+a)+6 a b\right)\right] \\
&=\left(\frac{a^{m}-b^{m}}{72 m a^{m} b^{m}}\right)\left[b^{m}\left(2 a^{2}+\sqrt{a b}(3 a+b)\right)+a^{m}\left(2 b^{2}-\sqrt{a b}(3 b+a)\right)+6 a b\left(a^{m}-b^{m}\right)\right] \geq 0
\end{aligned}
$$

Thus $\Delta \geq 0$. From Lemma 3.2 ,it follows that the proportion of distinction of mean is Schur 'm'-power convex functions for $x \in R_{++}^{n}$.

## 5.Conclusion

In this paper, we distinguished special means and discussed about the Schur properties of Schur 'm'power convexities on the proportion of distinction of special means.

## References

[1] B. Y. Wang, Foundations of majorization inequalities (Chinese), Beijing Normal University Press, Bei-jing, China, 1990.
[2] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and its Applications, 2rd Ed., Springer Verlag, New York-Dordrecht-Heidelberg-London, 2011; Available online at http://dx.doi.org/10.1007/978-0-387-68276-1.
[3] F. QI, Integral representations and properties of Sterling numbers of the first kind, J. Number Theory 133 (2013), no. 7, 23072319; Available online at http://dx.doi.org/10.1016/j.jnt.
[4] H.-N. ShI, J. Zhang, and D.-M. LI, Schur-geometric convexity for differences of means, Appl. Math. E-Notes 10 (2010), 275284.
[5] I. J. Taneja, Nested inequalities among divergence measures, Appl. Math. Inf. Sci. 7 (2013), No. 1 4972; Available online at http://dx.doi.org/10.12785/amis/070106.
[6] I. J. Taneja, On a difference of Jensen inequality and its applications to mean divergence measures, RGMIA Res. Rep. Coll. 7 (2004), no. 4, Art. 16; Available online at ttp://rgmia.org/v7n4.php.
[7] I.J.Taneja, Refinement of inequalities among means, J. Comb. Inf. Syst. Sci. 31 (2006), no. 1-4, 343364.
[8] I.J.Taneja, Sequence of inequalities among differences of Gini means and divergence measures, J. Appl. Math. Statist. Inform. 8 (2012), no. 2, 4965; Available online at http://dx.doi.org/ 10.2478/v10294-012-0014-2.
[9] I.J.Taneja, Seven means, generalized triangular discrimination, and generating divergence measures, Information (2013) no. 4, 198239; Available online at http://dx.doi.org/10.3390/ info4020198.
[10] B.-Y.Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, China, 1990. (Chinese)
[11] Y. Wu and F. QI, Schur-harmonic convexity for differences of some means, Analysis (Munich) 32 (2012), no. 4, 263270; Available online at http://dx.doi.org/10.1524/anly.2012.1171.
[12] Y. Wu, F. QI, and H.-N. Shi, Schur-harmonic convexity for differences of some special means in two variables, J. Math. Inequal. 8, 2 (2014), 321330; Available online at http://dx.doi.org/10.7153/jmi-08-23.
[13] W.-F. Xia and Y.-M. Chu, Schur-convexity for a class of symmetric functions and its applications J. Inequal. Appl. 2009 (2009), Article ID 493759, 15 pages; Available online at http://dx.doi.org/10.1155/2009/493759.
[14] Z.-H. Yang, Schur power convexity of Stolarsky means, Publ. Math. Debrecen 80 (2012), no. 12, 4366; Available online at http://dx.doi.org/10.5486/PMD.2012.4812.
[15] E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, New York, 1971.
[16] S.S.Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Research Report Collection, Monograph, 2002,
[17] I.J.Taneja, Refinement of inequalities among means, Journal of Combinatorics, Information and System Sciences, 31(2006), 343-364.
(sreenivasa Reddy Perla) Department of Mathematics, The Oxford College Of ENGG E-mail address: srireddy_sri@yahoo.co.in
(S Padmanabhan) Department of Mathematics, R N S I T, Uttarahalli-Kengeri Road, Bangalore 560 098, India

