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ON SCHUR M- POWER CONVEXITY FOR
PROPORTION OF DISTINCTION OF SOME
SPECIAL MEANS IN TWO VARIABLES

SREENIVASA REDDY PERLA AND S PADMANABHAN

Abstract. In this paper, we discuss the Schur m-power convexity on (0,00)x(0,0). For proportion of

distinction of some special means in two variables, such as arithmetic, geometric, harmonic, root-square
means and the like, and obtain some inequalities related to proportion of distinction of means.

1. MEAN OF ORDER t

Let us consider the following well known mean of ordert :

t t 1/t
( [a +b] 120

2

Jab | t=0
(1.1) B,(a,b) = { max {a, b}, t=o0

min{a, b}, t=-
forall a,b,teR, a,b>0.
In particular, we have \

2ab
Bil(a, b) = H (a, b) = m

5, a0t (a5

2

a+b

Bl(a, b) = A(a,b) — T
2 2

B,(a,b) =S (a,b)= |2 ;b

The means, H (a, b), G(a, b), A(a, b) and S(a, b) are known in the literature as harmonic, geometric,
arithmetic and root-square means respectively. For simplicity we can call the measure, Ni(a, b) as
square-root mean. It is well know that [1] the mean of order s given in (1.1) is monotonically
increasing in s, then we can write

(1.2) H(a,b) <G(a,b) <N, (a,b) <A(a,b) <S(a,b)

Dragomir and Pearce [3] (page 242) proved the following inequality:
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r

(1.3)

ar+br< br+1_ar+1 <<a+b)
2 T (@r+Db-a)"\ 2

Let us consider two parameter

br+1 _ar+1
a+b" _G+Db-a) _(ath "
2 - bs+1_as+1 - 2
s+1Dbh—-a)

a” + b" - s+ 1Bt —a™) - (a + b)r

2 T+t —asth) T\ 2
Foralla,b>0,a,b > 0,a # b,r € (0,1),and s € (0,1). in particular take r = %
we get

(1.4)

Va+ Vb _2s+ 1)(b3/? — a3/?) - (a + b)l/2

2 - 3(bs+1 — as+1) 2
Va+Vb
2

3 3
Vasvby' G+D(02-a2)(E+VB) gy 1/ 4
( 2 > y 30571 — o) S( 2 ) 2

Multiply by

2 v 1/2
(1.5) (M) LGEtDb-a)ath ++ab) - <a + b> Va + Vb

2 - 3(bs+1 S as+1) 2 2
If s=0
2 1/2
(16) <x/aJ2r\/b> S(a+b;\/E)S<aJ2rb> \/aJZm/b
ie., N, (a,b) <H,(a,b) <N, (a,b)

If s=1/2 from (1.5)

<\/a+\/b>2 - (b—a) <<a+b>1/2\/a+\/b

2 “20Wb—=Va) "\ 2 2
1.7 (\/a;-\/b)zS\/a-;\/bs(a;b)lﬂ\/a;\/b

If s=1 from (1.5)

Va + b 2<2(b—a)(a+b+\/%)< a+ b\"*Va++b
< 2 > = 3(b? — a?) —( 2 ) 2

Va ++b 2<2(a+b+\/%)<(a+b)1/2\/a+\/b
2 =~ 3(a+b) ~\ 2 2
On the other side we can easily check that
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(a+b)1/2\/a+\/b<a+b
2 2 - 2

<\/a+\/b>2 - N; - <a+b>1/2\/a+\/b

2 T AT\ 2 2
2 1/2
Here N, = (\/anr\/b) N, = (aTer) \/a42-\/b’ N, = a+b-3|-\/ab’ and N, = %

Finally the expressions (1.5), (1.6) lead us to the following inequalities [7]

H(a,b) < G(a,b) < N,(a,b) < H,(a,b) <N, (a,b)< A(a,b) <S (a,b)

Let us consider the following distinction of means was studied in [17].

(1.8) M, (a,b)=S(a,b)- A(a,b)
(1.9) Mgy, (a.b)=S(a,b)- N, (a,b)
(1.10) Mgy, (a,b)=S(a,b)-H, (a,b)
(1.12) Mg, (a,b)=S(a,b)- N, (a,b)
(1.12) M. (a,b)=S(a,b)-G(a,b)
(1.13) Mg, (a,b)=S(a,b)-H (a,b)
(1.14) M ., (a,b)= A(a,b)- N, (a,b)
(1.15) M ,.(a,b)= A(a,b)-G(a,b)
(1.16) M, (a,b)= A(a,b)—H(a,b)
(2.17) M, (a,b)= A(a,b)- N, (a,b)
(1.18) M, . (a,b)= N,(a,b)-G(a,b)

Clearly the above distinction of means are nonnegative and convex in -~ R?, =(0,00)x (0, ).

In this paper, we defined new distinction of means and by using these we define some special means, then
we discussed "Schur m - power convexities for special means "

2.Special Means

From the distinction of means defined in the equations 1.8 to 1.18, we define the following difference
between the means
(2-1) MSNZ(a’b) - MSA(a’b): A =N,

(2-2) MSHe (a'b) - MSN2 (a’b) =N,-H,
(2.3) Mg, (a,b) — Mg, (ab) = A-H,
(2.4) Mg, (a,b) -Mg, (ab) =H,-N,
(2'5) M SN, (avb) - MSN2 (a1b) =N,-N,
(2.6) My (ab) Mg, (ab) =N, -G
(2.7) Mg, (a,b) -Mg(a,b) =G-H

Clearly, the above difference of the means are convex for all positive real value of 't'.
Now, by using the (2.1) to (2.7) difference of means, we establish the special means as follows:
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(28) MSN2 _MSA A—Nz

MSHE_MSNZ Nz_H

e

(29) MSNl_MSHe _ He—Nl

MNH_MGH Nl_G

Lemma 2.1. In [14] J.Rooin and M Hassni , introduced the homogeneous functions, the function

(2.10) f(x)::x :gx and g(x):zlX :gx . For a>b>c>d >0where X (—0,) is

(i) Convex, if ad—bc>0
(i)  Concave, if ad —bc <0 and
(iif)  Equality holds, if ad —bc=0
3. Preliminaries

We begin with recalling some basic concepts and notations in the theory of majorization.
For more details, we refer the reader to [1,2].

Definition 3.1. Let X=(X, X, X3, X,) and Y =(¥4, Yo, Yares Yo ) € R

k k
i) x is said to be majorized by y (in symbols x < y), Zx[i] < Zy[i] for k=1,2,3...,n—1 and ¥, x; =
i=1

i=1

i-1yi Where Xy 2 ... 2 Xy and Yp; 2...2 Y, are rearrangement of X and y in a descending order.

i) Q c R"is called a convex set, if(ozx1 + LYy, 0% + BY,, ..., aX, +,Byn)eQ ,for any x and y € Q, where

a and S e[O,l] with o + =1

iii) Let Q c R", the function ¢:Q — R" is said to be schur convex function on Q if x<y on Q implies

@(X) < p(y). @ issaid to be a Schur concave function on Q, if and only if — ¢ is Schur convex function.

Definition 3.2 . Let X =(%, Xy, X;,.., %, ) and Y =(¥,, Y5, V.-, Yo ) € R, .

Q c R" is called geometrically convex set, if (x,“y,”,x,“y,”,... x,“y,” )€ Q, for any x and y €Q,

where ¢, f€[0,1] with a + B =1.
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A generalization of Schur convex functions was introduced by Yang [14], as follows

Definition 3.3. Let f :R,, &R be defined by

x™m—1

f(x)={ m ,m#0

Inr, m=0

Lemma 2.4. Let ¢:Q— R, be continuous on Q and differentiable on Q°. Then ¢ is Schur m-

power convex on function x=(x,X,, X,,... X, )€ Q’ ifand only if ¢ is symmetric on Q and

xM—x,™ [ m—199(x) m—1 6<p(x)] ]
_— —_ | >
X1 P oy | 2 0Oifm#0

and

_ moe(x) 1 deX) , _
(logx; —logxy) [x1 or. %2 am ] =>0ifm=0

4, Main Results
In this paper, we discuss the Schur m-power Convexity of the distinguishes special means, in the

following theorems.

MSN2 _MSA

Theorem 4.1. For m # 0, the proportion of distinction of means is Schur m-power

SH, ~ 'VIsN,

convex function in R?.

Proof. Let

By Lemma 2.1
f(a,b)= AH, —N?

a? +b? + 2ab — 2a+/ab — 2b+/ab
24

f(a,b)=

by finding the partial derivatives of f(a,b) and simple manipulation gives we have

Jb
8f_2a+2b—3\/%—b(\/aj

oa 24
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2b +2a-3+ab - a[\/\/g)

ob 24

By m -power Schur convexity,

A

— a" —b |:a1—m q_ abl—m i}
m oa ob

a"—b" abvb abva |
= 2a+2b-3+Vab fa"™™ -b* " )-
24m {("“ bJa ) a"Ja_ b"b_

= 8 b fon 4 2b—3Jab)ab™ ba")- Jab (o™ —a™)

~ 24ma™b"

- ﬁ [2a+ 20 -3/ab fab™-ba™ ) /ab (b™* —a™)

- % (2 + 26 —3+/ab Jab™—ba™ )+ /ab (a™* —b™* |

Thus A>0. From Lemma 3.2 ,it follows that the proportion of distinction of mean is Schur 'm'-power
convex functions in R%, .

My, —M
Theorem 4.2. For m # 0, the proportion of distinction of means — B A s Schur m-power
sN, — WisH,

convex function in R?.

Mg, —M A-H
Proof. Let f(ab)= —He A _ :
MSN1 _MSHe He =N,

By Lemma 3.2
f(a,b)= AN, —HZ?
a? +b%6ab—2a+/ab + 2b/ab
f(a,b)

72
by finding the partial derivatives of f(a,b)and simple manipulation gives we have

Jb
2a—6b+3\/%+b[£]

o
oa 72
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=157

f 2b—6a+3\/%+a[]
0

El 72
By m -power Schur convexity,

A= a"-b a‘l—m i_ abl—mq
m oa ob

_ am_bm I-m _ RK1-m 1-m 1-m) 1-m 1-m ab\/B_ab\/a
_( Zom (SJEXa b )+a(2a +6b )b(6a +2b )+am\/5 bm\/B}

_ (a 72‘:]’ aim(za2 +\/%(3a+b)—6ab)+bim(2b2 —Jab(3b+a)+ 6ab)}

. (ﬂJ[bm(Zaz +/ab(3a+b))+a" (202 — Jab(30 + a))+ 6ab(a™ —b" )} 0

72ma™b™

Thus A>0. From Lemma 3.2 ,it follows that the proportion of distinction of mean is Schur 'm'-power
convex functions for x eR’, .

5.Conclusion

In this paper, we distinguished special means and discussed about the Schur properties of Schur “m'-
power convexities on the proportion of distinction of special means.
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