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CONVEXITY FOR THE PROPORTION OF ONE 

MEAN WITH RESPECT TO ANOTHER 

PROPORTION OF MEAN 
 

SREENIVASA REDDY PERLA AND S PADMANABHAN 

 

Abstract: Convexity/Concavity nature proportion of contrast of means are for the most part 

discussed. In any case, in this paper relative investigation of Convexity/Concavity between 

proportion of distinction of means are found and these outcomes are deciphered in Vander 

Monde determinants. 

 

1. Introduction 
 

The outstanding means in writing, for example, Arithmetic mean, Geometric mean, Harmonic mean 
and Contra Harmonic mean are displayed by Pappus of Alexandria. In Pythagorean School based on 
extent and furthermore a portion of alternate means like Heron mean and Centriodal Mean are 
characterized as takes after [1, 2] and some intriguing outcomes on above said implies are talked about in 
[3-8].  
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are respectively called Arithmetic mean, Geometric mean, Harmonic mean, Heron mean, Contra 
Harmonic Mean and Centriodal Mean 
J.Rooin and M Hassni , introduced the homogeneous functions, the function  
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In [16], authors studied the convexity(concavity) of the following proportion of difference of 

means. 
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Some fruitful results related to Schur convexities were also found in [15-22]. In this paper, we study the 
convexity of proportion of difference of means. ),( baMCAGH , ),( baM GHAHe

, ),( baM GHCH e
 and 

),( baM AGHCd
 and some applications of these proportion of difference of means. 

In[21],[22] Taneja has established chain of inequality for the binary means as follows 
 

(1.8)         H(a, b)  G(a, b)   N1(a, b)   He(a, b)   N2(a, b)   A(a, b)   S(a, b) 
 
are respectively called arithmetic mean, geometric mean, harmonic mean, Heron mean, root square mean, 
square-root. where For 0, ba  be two real numbers. Many proportion of difference of well known means 

are studied in [16]  
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( ) ( ) ( ) ( )baGbaAbaM AG ,,,16.1 −=  
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−=  

( ) ( ) ( ) ( )baGbaNbaM GN ,,,19.1 22
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( ) ( ) ( ) ( )baAbaSbaM SA ,,,9.1 −=
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The above difference of means are nonnegative and convex in ( ) ( ).,0,02 = + We set of 

this section with the difference of means defined in the equations [1.9] to [1.19] The difference 
between of two means are as follows, 
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The above difference of means are convex for all positive real value of  't'. 
 
Now, we established the proportion of difference of above means as follows: 
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Results on convexity of one function with respect to another function were in detail discussed by Bullen 
[1] and also some convexity results on various important means and their applications to mean inequalities 
were found in [9, 11, 12, 14]. 

 
Zhen-Gang Xiao et al. [15] and various other authors have obtained some interesting and valuable results 
on generalization of heron mean, centriodal mean, root square means using the generalized Vander 
Monde's determinants. These type of generalizations and applications have generated an impressive 
amount of work in this field.  

Let   be a continuous function on an interval I    R, ( )nxxxx ,......., 10= and Ixi  , ji xx  for 

ji  (see[6]) Setting 
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Suppose that ( ) xxx krn ln+=  then we have  
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2. Definitions and Lemma 
 

In this section, we presented some definitions and lemmas ,which are necessary to develop this paper. 
 

Definition 2.1. A mean is defined as a function 
2:M R R
+ +
→   

which has the property  
( ), , , 0a b M a b a b a b      ,  

where  ( ) ( )min , max ,a b a b and a b a b =  = . 

Lemma 2.1: For ( ) 2xx = and ( )nxxxx ,......., 10=  Eq.(1.2) is the Vander Monde’s determinant of order 
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Lemma 2.2: For ( ) 2
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Setting a = x and b = 1 in arithmetic mean, geometric mean, harmonic mean, Heron mean, Contra 
Harmonic Mean and Centriodal Mean takes the following functions form; 
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Lemma 2.3: Let  ( )xf and ( )xg are two functions, then ( )xf is said to be convex with respect to ( )xg  

for a ≤ b ≤ c if and only if 
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3. MAIN RESULTS 
 

In this area, the fundamental and sufficient conditions for convexity proportion of contrast mean with 
deference to another distinction of means are talked about and the conditions are communicated as far as 
Vander Monde’s determinants. 

 
Theorem 3.1. In the proportion of difference of means 
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then by Lemma 2.3 we have 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

1

1

1



−−

−−

agcgafcf

agbgafbf

agaf

 

or 
 

( ) ( )  ( ) ( )  ( ) ( )  ( ) ( )  0−−−−− agbgafcfagcgafbf  

 
 

on simplifying the determinant leads to 
 

( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  0−+−+− cgbgafagbgcfagcgbf  

 
 

( ) ( ) ( )  − 0agcgbf  

 

( )
( )

( )
( )( ) 









++

−
−−

+

−

11

2

12

1
2

cb

cb
cb

a

a
 

 
 

( )
( ) ( )
( )( )( )

( )( ) ( )  0211
1112

1
1.3

2

+−++
+++

−−
 cbcb

cba

cba
 

 
From Lemma 2.2 
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By combining equations 3.2 and 3.3 ,the proof of Theorem 3.1 is completes. 
 
 
Theorem 3.2. In the proportion of difference of means 

),(),(

),(),(
),(

baHbaG

baHbaA
baM e

GHAHe −

−
=  

the difference of mean ),(),( baHbaA e− is convex(concave) with respect to another difference of mean 

),(),( baHbaG − if and only if ( ) ( )00,
2

3; =−= krxv  

 

Proof. Consider the difference of mean )1,()1,( xHxA e−  and )1,()1,( xHxG −  in the form; 

http://www.jetir.org/


© 2019 JETIR  May 2019, Volume 6, Issue 5                                         www.jetir.org  (ISSN-2349-5162) 
 

JETIR1905G44 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 7 

 

 

6

21
)1,()1,(

xx
xHxA e

−+
=−  and    

1

2
)1,()1,(

+
−=−

x

x
xxHxG  

Let 

( )
6

21 xx
xf

−+
=  and    ( )

1

2

+
−=

x

x
xxg  

 

then by Lemma 2.3 we have 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

1

1

1



−−

−−

agcgafcf

agbgafbf

agaf

 

or 
 

( ) ( )  ( ) ( )  ( ) ( )  ( ) ( )  0−−−−− agbgafcfagcgafbf  

 
 

on simplifying the determinant leads to 
 

( ) ( ) ( )  ( ) ( ) ( )  ( ) ( ) ( )  0−+−+− cgbgafagbgcfagcgbf  

 
 

( ) ( ) ( )  − 0agcgbf  

 

( ) ( )
( )( ) 









++

−
−−

−

11

2

6

1
2

cb

cb
cb

a
 

( )
( ) ( )

( )( )
( )( ) ( )  0211

116

1
4.3

2

+−++
++

−−
 cbcb

cb

cba
 

From Lemma 2.2 
 

( ) ( ) ( )( )( ) ( )  ( ) 00,
2

3;21115.3
2

=−==+−++−− kravcbcbcba  

 
similarly by considering 

    ( )
1

2

+
−=

x

x
xxf  and ( )

6

21 xx
xg

−+
=  

 
 

( ) ( ) ( )( )( ) ( )  ( ) 00,
2

3;21112.3
2

=−==+−++−− kravcbcbcba  

 
By combining equations 3.4 and 3.5,the proof of Theorem 3.2 is completes. 
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Theorem 3.3. In the proportion of difference of means 
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By combining equations 3.8 and 3.9,the proof of Theorem 3.3 is completes. 
 
Theorem 3.4. In the proportion of difference of means 
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From Lemma 2.2 
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By combining equations 3.11 and 3.12,the proof of Theorem 3.4 is completes. 
 
Theorem 3.5. In the proportion of difference of means 
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on simplifying the determinant leads to 
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By combining equations 3.16 and 3.17,the proof of Theorem 3.5 is completes. 
 

 

4. Conclusion 
 

Therefore, for various mixes of standard means communicated in practical shape, it has been conceivable to 

express concavity or convexity conditions as far as Vander monde determinants. It would hold any importance 

with think about more capacities at once and the conditions communicated regarding Vander monde 

determinants, might be diminished to inclining structure or triangular shape. This will help in promptly utilizing 

them as conditions at whatever point required in advance applications. Pertinence of these conditions in 

computational work must be investigated and there is a degree for additionally think about. 
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