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Abstract: Maxwell’s equations are a set of partial differential equations which relates the electric and magnetic fields that are 

generated by charges and currents. Maxwell’s equations represent and relate the fundamentals of electricity and magnetism 

produced due to lightning discharge.  The major consequence of these equations is that they visualize how varying electric and 

magnetic fields propagate at the speed of light. In Maxwell's electrodynamics, formulated as it is in terms of charge and current 

densities, a point charge must be regarded as the limit of an extended charge, when the size goes to zero, the retardation by a F- 

factor i. e. (1 – r. 
v

c
)–1 of the charge.  
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1. Introduction 

Maxwell’s equations are a set of partial differential equations that describe how electric and magnetic fields are produced due to 

lightning discharge. The major consequence of these equations is that they visualize how varying electric and magnetic fields 

produced due to lightning discharge propagate at the speed of light. These equations are named after the physicists and 

mathematician James Clerk Maxwell. He first purposed the electromagnetic phenomenon of light and published an early form of 

these equations. Maxwell’s equations represent one of the most elegant and concise ways to state the fundamentals of electricity 

and magnetism. Volume charge density (𝜌) and Volume current density (J) generate the electric and magnetic field. Let E(r, t) and 

B(r, t) are the electric and magnetic field intensity, 𝜇° and 𝜀° are the permeability and permittivity. The general form of Maxwell’s 

equations are: 

∇ ∙ 𝑬(𝒓, 𝑡) =
𝜌(𝒓′, 𝑡𝑟)

𝜀°
                                                 (1) 

          ∇ ∙ 𝑩(𝒓, 𝑡) = 0                                                     (2)  

∇ × 𝑬(𝒓, 𝑡) = −
𝜕𝑩(𝒓, 𝑡)

𝜕𝑡
                                          (3) 

∇ × 𝑩(𝒓, 𝑡) = 𝜇°𝑱(𝒓′, 𝑡𝑟) +
1

𝑐2

𝜕𝑬(𝒓, 𝑡)

𝜕𝑡
                (4) 

Where c is the speed of light which relates  𝑐2 =
1

𝜇°𝜀°
 

So the electric and magnetic fields are   𝑬(𝒓, 𝑡) = −∇𝑉(𝒓, 𝑡) 𝑎𝑛𝑑 𝑩(𝒓, 𝑡) = ∇ × 𝑨(𝒓, 𝑡).    

Hence      ∇ × 𝑬(𝒓, 𝑡) +
𝜕𝑨(𝒓,𝑡)

𝜕𝑡
= 0      and        ∇2𝑉(𝒓, 𝑡) +

𝜕∇∙𝑨(𝒓,𝑡)

𝜕𝑡
= −

𝜌(𝒓′,𝑡𝑟)

𝜀°
                    (5)  

Substituting equations of  𝑬(𝒓, 𝑡) and 𝑩(𝒓, 𝑡) into Faraday’s law and as the term whose curl gives zero can be written as the gradient 

of scalar. Here tr is the retarded time in the above equation (5) which is the combined form of the Maxwell’s equations.  
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Again from the Maxwell’s fourth relation, 

∇2𝑨(𝒓, 𝑡) − 𝜇°𝜀°
𝜕2𝑨(𝒓, 𝑡)

𝜕𝑡2
− ∇ (∇ ∙ 𝑨(𝒓, 𝑡) + 𝜇°𝜀°

𝜕𝑉(𝒓, 𝑡)

𝜕𝑡
) = −𝜇°𝑱(𝒓′, 𝑡𝑟)                     (6) 

Hence these two equation (5) and equation (6) combine contain all the information of Maxwell’s equation. 

For the non-static cases,   𝑉(𝒓, 𝑡) =
1

4𝜋𝜀°
∫

𝜌(𝒓′,𝑡𝑟)

𝑟
𝑑𝜏  𝑎𝑛𝑑  𝑨(𝒓, 𝑡) =

𝜇°

4𝜋
∫

𝑱(𝒓′,𝑡𝑟)

𝑟
𝑑𝜏 

Where 𝜌(𝒓′, 𝑡) is the charge density that prevailed at point r’ at the retarded time where  

𝑡𝑟 = 𝑡 −
|𝒓 − 𝒓′|

𝑐
 

We know from the Lorentz condition, 

∇ ∙ 𝑨(𝒓, 𝑡) + 𝜇°𝜀°
𝜕𝑉(𝒓, 𝑡)

𝜕𝑡
= 0 

For any scalar function in the operation of addition is possible. Hence there is no effect by addition or subtraction on the electric 

and magnetic field (E and B). Griffiths, (1999), described such changes in scalar potentials are called gauge transformation [1]. 

Hence the gradient of scalar potential gives,  

∇𝑉(𝒓, 𝑡) =
1

4𝜋𝜀°
∫ [−

ρ̇(𝐫′, 𝑡𝑟)

c

𝒓̂

r
− 𝜌(𝒓′, 𝑡𝑟)

𝒓̂

𝑟2
] 𝑑𝜏 

By substituting    ∇𝜌(𝒓′, 𝑡𝑟) = ρ̇(𝐫′, 𝑡𝑟)  ∇𝑡𝑟 = −
1

c
ρ̇(𝐫′, 𝑡𝑟)∇r, ∇r = 𝒓̂   and  ∇

1

r
= −

𝒓̂

r2  , 𝒓̂ =
𝐫

r
 

On taking the divergence of the gradient of scalar potential we know, 

∇2𝑉(𝒓, 𝑡) =
1

4𝜋𝜀°
∫ [

1

c2

ρ̈(𝐫′, 𝑡𝑟)

r
− 4π𝜌(𝒓′, 𝑡𝑟)𝛿3(𝒓̂)] 𝑑𝜏 

∇2𝑉(𝒓, 𝑡) =
1

𝑐2

𝜕2𝑉(𝒓, 𝑡)

𝜕𝑡2
−

1

𝜀°
𝜌(𝒓′, 𝑡𝑟) 

By substituting    ∇ρ̇(𝐫′, 𝑡𝑟) = −
1

c
ρ̈(𝐫′, 𝑡𝑟)∇r  , ∇ ∙  

𝒓̂

r
=

1

r2   ∇ ∙
r

r2 = 4π𝛿3(𝒓̂) 

Where,  𝛿3(𝒓̂)   is a three dimensional Dirac delta function. The time derivative of scalar potential A is     
𝜕𝑨(𝒓,𝑡)

𝜕𝑡
=

𝜇°

4𝜋
∫

𝐣(𝒓′,𝑡𝑟)

𝑟
𝑑𝜏  

Hence,  𝑬(𝒓, 𝑡) =
1

4𝜋𝜀°
∫ [

ρ(𝐫′,t)

r2 𝒓̂̂ +
ρ̇(𝐫′,t)

cr
𝒓̂ −

𝐣(𝒓′,𝑡𝑟)

𝑟𝑐2 ] 𝑑𝜏                                      (7) 

This is the time dependent generalization of coulombs law. Hence, equation (7) is known as the Jefimenko electric field equation 

derived from Maxwell’s equation [2 - 4]. 

2.  Theory and Discussion 

 In Maxwell's electrodynamics, formulated as it is in terms of charge and current densities, a point charge must be regarded as the 

limit of an extended charge, when the size goes to zero, the retardation by a factor (1 – r. 
v

c
)–1 of the charge [ 5 - 10].  
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r( ', t )d  r = 

 
q

1 .
c


v

r
 

Where v is the velocity of the charge at the retarded time. 

 Then, V(r, t) = r

0

( ', t )1
. d

4




 
r

r
 = 

 0

1 q

4
. 1

c




v.
r

r
 

 V (r, t) = 
0

1 qc

4 c )  v(r .r
 

where r  is the vector from the retarded position to the field point r. 

 Again, A (r, t) = 
0 r r( ', t ) (t )

4

 

 
r v

r
d= 

0
r( ', t )

4




 
v

r
r

d 

 

0 qc

4 ( c )



 

v

vr .r
 

2c

v
V(r, t) 

 Gradient of V = V = 
0

1 qc

4 c )

 
 

  v(r .r
 

 = 
2

0

qc 1
. . ( c )

4 ( c )


 

 
v

v
r .

r .
r

r
 

 Since r = c (t – tr) and tr = t – 
c

r
,  r = –c. tr 

 ( ) v.r  = ( ) ( . ) ( )      v v v v. +  r r r r  

Evaluating these terms (one by one) 

 ( ) v.r  = 
x y z r(t )

x y z

   
     

vr r r  

 = r r r
x y z

r r r

t t t
. . . .

t x t y t z

    
 

     

v v v
r r r  

 = r r r
x y z

r

t t t

t x y z

    
      

v
r r r  

 = 
x y z r

r

t
t x y z

    
      

v
r r r = 

r( . t )a r  

where a  v is the acceleration of the particle at the retarded time. 
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 ( . )v r  = ( . ) ( . )  v r v w  [  r wr ] 

 and  ( . )v r  = 
x y zv v v (X Y Z )

x y z

   
       

x y z  

 = x y z(V V V ) x y z  = v  

 While  ( . )v w  = 
x y z rv v v .(t )

x y z

   
     

w  

 = r r r
x y z

r r r

t t t
v . . v v

t x t y t z

    
 

     

w w w
 

 = r r r
x y z

r

t t t
v v v

t x y z

    
      

w
 = 

r( . t )v v  

 Hence,  ( . )v r  = 
r( . t ) v v v  

 For third term,   v  = –
rta  

 Similarly,  w  = –
rtv  

 Again,   r  = ( ) r w  =  r w  

 = 0 – w  = –
rtv  

Substituting these all values then we get, 

 ) v . r  = a
r r r r( . t ) ( . t ) t t         v v v a v vr r  

 = 
2

r( ) t  v a v. r  

 Hence,   v  = 2 2
r2

0

qc 1
. [ (c v . ) t ]

4 ( c . )
   

 
v a

v
r

rr
 

 Now, for tr, r = –ctr 

 So, –ctr = r =  ,r r  = 
1 1

. )
2 .

r r
r r

 

 = 
1

. )]   
r

r r r r  

 But ( r .)r = r – v ( r . tr) 

Same as above,   r  = 
rtv  
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 Thus, –ctr =  r r

1
( . t ) ( t )    v v

r
r r r  =  r

1
( . ) t ) v

r
r r  

 tr = 
c .



 vr
r
r

 

 Hence, the gradient of V = V  

 = 2 2

3
0

1 qc
[( c ) (c v ) ( . ) ]

4 ( c . )
   

 
v v a

v
r .

r
r r r

r
 

 Similarly, for  
t





A
 = 

2 2

3
0

1 qc
[( c ) {c v ( . )} ]

4 c cˆ( c .v)

 
      

  

a
v v a v

r r
r .

r r
r r  

 Then  u  c vr  

 Then, E (r, t) = 2 2

3
0

q
c v ( )]

4 ( )
     

 
u u a

u

r
r

r
 

 Meanwhile,   A(r, t) = 
2 2

1 1
(v ) [v( ) v]

c c
    v v v  

or,  A (r, t) = 2 2

3
0

1 q 1
c v ) ( ) ( ) ]

c 4 ( . )
   


v a v u a

u
. .r r r

r
 

 Hence, B (r, t) = 
1

( , t)
c

E rr  

 

3.    Conclusion 

There is a relation between electric and magnetic fields produced due to lightning discharge. In electromagnetism, the 

movement of electric field gives magnetic field and the movement of magnetic field produces electric field. In this paper, the 

cross-product of simply vector   r and the electric field vector E produce the magnetic field. i. e.  

 
B (r, t) = 

1
( , t)

c
E rr
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