GENERALSED CLOSED SETS GENERATED BY MULTIFUNCTIONS

Dr. Nandini Bandyopadhyay, Assistant Professor, Department of Mathematics, Panskura Banamali College, Panskura R. S., Purba Medinipur,West Bengal, India.

Prof . Paritosh Bhattacharyya, Professor, Department of Mathematics, University of Kalyani, Kalyani, Nadia, West Bengal, India.

Abstract. Semi-precontinuous multifunction generates semi-preclosed sets under certain conditions. This property of the semi precontinuous multifunction has been exhibited in this paper.

Key Words: spo, spc, α- set.

AMS subject classification. 54C99

1. Introduction.

In 1932, Kuratowski [5] and Bouligand [3] independently introduced two kinds of semi-continuity of a multifunction which are termed as upper semi-continuous and lower semi-continuous multifunctions. In 1986, Andrijević [1] introduced the notion of semi-preopen sets. In 1992, Przemski [8] defined semi-precontinuous function with the aid of semi-preopen sets. Bandyopadhay [2] defined semi-precontinuous multifunction as an extension of single valued function to multivalued function and carried further investigation in [2]. In course of the investigaton it has been found that semi -precontinuous multifunction can generate semi-preclosed sets. These observations have been incorporated in this paper.

2. PRELIMNARIES

Throughout the paper (X, τ) or simply X always denotes nontrivial topological spaces. The closure and interior of the subset A is denoted by Cl(A)(resp.Clx(A)) and Int(A)(resp.Intx(A) respectively.The family of all open sets containing a is denoted by Σ (a) The following definitions and results have been frequently utilised in this paper.

Definition 2.1. [1] In (X, τ), A \subset X is called a semi-preopen set (briefly s.p.o. set) (resp. α - set) iff A \subset Cl (Int (Cl (A))) (resp. A \subset Int (Cl(Int (A)))).The family of all s.p.o. sets (resp. α - sets) is denoted by SPO(X)(resp. τ^{α}). For each x \in X, the family of all s.p.o. sets containing x is denoted by SPO(X, x).

Definition 2.2. [1] The complement of a s.p.o. set is called semi-preclosed. Equivalently a set F is semi-preclosed iff Int (Cl (Int (A))) \subset F. The family of all semi-preclosed sets is denoted by SPF (X).

Definition 2.3. [8] A single valued function $f: X \to Y$ is said to be semi- precontinuous if the inverse image of every open set in Y is semi-preopen in X.

Definition 2.4.[1] The semi-preclosure of $A \subset X$ is denoted by spcl (A) and is defined by spcl (A) = \cap

 $\{B : B \text{ is semi-preclosed and } B \supset A\}.$

Definition 2.5 [4] A space X is called sp-T₂ if for every pair of dstinct points x,y of X there exist two disjoint s.p.o. sets U and V such that $x \in U$ and $y \in V$.

For a multifunction $F : X \to Y$, $F^+[B]$ and $F^-[B]$, respectively denote the upper and lower inverses of the set $B \subset Y$, where $F^+[B] = \{x \in X : F(x) \subset B\}$ and $F^-[B] = \{x \in X : F(x) \cap B \neq \phi\}$.

Definition 2.6. [2] A multifunction $F : X \to Y$ is termed upper semi-precontinuous (resp. lower semi-precontinuous), briefly uspc (resp. lspc), iff for each closed (resp. open) set

$$A \subset Y, F^{-}[A] \in SPF(X) \text{ (resp. } F^{-}[A] \in SPO(X)\text{).}$$

Definition 2.7. [2] A multifunction $F : X \to Y$ is semi-precontinuous (briefly spc) iff F is both uspc and lspc.

Definition 2.8. [9] . A space (X, τ) will be said to have the property P if the closure is preserved under finite intersection.

Definition 2.9. [6] A subset A of X is said to be generalised closed set (briefly g-closed set) iff $Cl(A) \subset O$ whenever $A \subset O \in \tau$.

3. Results and discussions.

An interesting property enjoyed by this multifunction is that it can, under certain conditions, generate semi-preclosed sets. To prove the next theorem the following lemma is required.

Lemma 3.1. If A and B are two disjoint compact subsets of a Hausdorff space X, then there exist open sets U, V such that $A \subset U$, $B \subset V$ and $U \cap V = \phi$.

Proof. Let $a \in A$. Then the Hausdorffness of X indicates there exist $G_a \in \Sigma(a)$, $H_x \in \Sigma(x)$ such that $G_a \cap$

 $H_x = \phi \dots (1)$. Clearly $\{H_x : x \in B\}$ is an open cover of B. Since B is compact there exists a finite subfamily $\{H_{x1}, H_{x2}, \dots, H_{xn}\}$ such that

 $B \subset U \{H_{Xi} : i=1,2,...,n\}$. Let $G_a^{-1}, G_a^{-2}, ..., G_a^{-n}$ be the corresponding sets containing a and satisfying (1).

Let U (a) = $\cap \{G_a^i : i=1,2,...n\}$ and $V = \cup \{H_{Xi} : i=1,2,...,n\}$. Clearly U (a) $\in \Sigma$ (a) and $V \in \Sigma$

(B). Then the family {U (a) : $a \in A$ } is an open cover of A. Since A is compact there exists a finite subfamily {U (a₁), U (a₂),...,U (a_t)} such that $A \subset \cup$ { U (a_k) :k=1,2,...,t}= U (say). Then U $\in \Sigma$ (a). Now U $\cap V = \cup (\{U(a_k):k=1,2,...,t\}) \cap V = \cup (\{(U(a_k)\cap V):k=1,2,...,t\})...(1))$. Again U (a_k) $\cap V = ((\bigcap \{G_{a_k}^i:k=1,2,...,n\}) \cap (\bigcup H_X) = \cup (\cap \{G_{a_k}^i:i=1,2,...,n\} \cap H_X) = \cup (G_{a_k}^1 \cap G_{a_k}^2 \cap ... \cap G_{a_k}^n \cap G_{a_k}^n)$

 H_X) = ϕ . So from above U \cap V = ϕ . Thus there exist two open sets U, V such that

$$A \subset U, B \subset V \text{ and } U \cap V = \phi.$$

Theorem 3.1.If $F_i : (X, \tau) \to (Y, \sigma)$ are punctually compact uspc multifunction from X with property P to the Hausdorff space Y, then the set $A = \{x : F_1(x) \cap F_2(x) \neq \phi\} \in SPF(X)$.

Proof. Let $x \notin A$. Then $F_1(x) \cap F_2(x) = \phi$.Since $F_i(i = 1, 2)$ are punctually compact, $F_1(x)$, $F_2(x)$ are each compact. By (1), these compact sets are disjoint. The Hausdorffness of Y, by Lemma 3.1, gives the existence of $V_1 \in \Sigma$ ($F_1(x)$), $V_2 \in \Sigma$ ($F_2(x)$) in Y such that $V_1 \cap V_2 = \phi$. Again the uspc of F_1 and F_2 assures the existence of $U_1, U_2 \in SPO(X)$ such that $F_1(z) \subset V_1 \forall z \in U_1$ and $F_2(z) \subset V_2 \forall z \in U_2$. Thus $F_1(z) \cap F_2(z) \subset V_1 \cap V_2 = \phi \Rightarrow F_1(z) \cap F_2(z) = \phi$.Let $U = U_1 \cap U_2$.Since X enjoys the property P, $U \in V_1 \cap V_2 = \phi$.

SPO (X).Now each $z \in U$ is a member of both U_1 and U_2 for which $F_1(z) \cap F_2(z) = \phi \Rightarrow z \notin A$. So,

 $U \cap A = \phi$. Therefore, $x \notin spcl(A) \Rightarrow spcl(A) \subset A \Rightarrow A \in SPF(X)$.

Definition 3.1. A Multifunction F: $X \to Y$ is upper α -continuous (briefly u α c) at $x \in X$ if for every $V \in \Sigma(F(x))$ there is a $U \in \tau^{\alpha}$ such that $F(y) \subset V \forall y \in U$. F is u α c if it is so at each $x \in X$.

Theorem 3.2. Let $F_i : X \to Y$, i = 1, 2 be a multifunction where Y is a normal space with the following properties: (a) F_i is punctually closed, i = 1, 2,; (b) F_1 is uac; (c) F_2 is uspc.

Then the set $A = \{x : F_1(x) \cap F_2(x) \neq \phi\} \in SPF(X)$.

Proof. Let $x \notin A$. Then $F_1(x) \cap F_2(x) = \phi \dots (1)$. Since F's (i = 1, 2) are punctually closed $F_1(x)$, $F_2(x)$ are each closed. By (1), these closed sets are disjoint. Hence by the normality of Y there exists $V_i \in \Sigma$ (F_i (x)) i = 1, 2 with $V_1 \cap V_2 = \phi \dots (2)$. Again the uac of F_1 at x gives a $U_1 \in \tau^{\alpha}$ containing x such that $F_1(z) \subset V_1 \forall z \in U_1 \Rightarrow F_1[U_1] \subset V_1$. Since F_2 is uspec at x and $F_2(x) \subset V_2$ there exists a $U_2 \in SPO(X, x)$ such that $F_2(U_2) \subset V_2$. Now let $U = U_1 \cap U_2$. Since every open set is an α -set it follows that $U \in SPO(X, x)$. Again if $y \in U$, then above $F_1(y) \subset V_1$ and $F_2(y) \subset V_2$ whence $F_1(y) \cap F_2(y) \subset V_1 \cap V_2 = \phi \Rightarrow F_1(y)$.

 $\cap F_2(y) = \phi \Rightarrow F_1[U] \cap F_2[U] = \phi \Rightarrow y \in X - A \Rightarrow U \subset X - A. \text{ Thus } x \in U \subset X - A \Rightarrow X - A \text{ is sp-nbd}$ of each of its points $\Rightarrow X - A \in SPO(X) \Rightarrow A \in SPF(X).$

Theorem 3.3. If $F : X \to Y$ is a punctually compact uspc multifunction into a Hausdorff space Y, then $G_F \in SPF(X \times Y)$.

Proof. Let $(x, y) \in X \times Y - G_F$. Clearly $y \notin F(x)$. The Hausdorffness of Y ensures the existence of $G_Z \in \Sigma$ (z) and $H_Z \in \Sigma(y)$ in Y such that $G_Z \cap H_Z = \phi$(1)

The family $C = \{G_Z : Z \in F(x)\}$ is an open cover of F(x). Since F is punctually compact, F(x) is compact. Therefore there exists a finite subfamily of C such that

 $\{G_z \ , G_z \ , ..., G_z \ \}. \ F(x) \subset \ \cup \ \{G_z \ : k = 1, 2, \, ..., n\}. Let \ U = \ \cup \ \{G \ : k = 1, 2, \, ..., n\}.$

and $V = \cap \{G : k = 1, 2, ..., n\}$.where H (k = 1, 2, ..., n) corresponds to G

satisfying (1). Then $V \in \Sigma$ (y) in Y and $U \cap V = \phi$...(2). Obviously, $U \in \Sigma$ (F (x)), $V \in \Sigma$ (y) in Y. Now the uspc-ness of F gives a $W \in SPO$ (X, x) such that F [W] \subset U, which, in its turn, implies by (2) that F [W] $\cap V = \phi$. Again (x, y) $\in W \times V \in SPO$ (X \times Y) whence one observes that (x, y) $\in W \times V \subset X \times Y - G_F \Rightarrow$ X $\times Y - G_F$ contains a sp-nbd of each of its points $\Rightarrow X \times Y - G_F \in SPO$ (X $\times Y$) $\Rightarrow G_F \in SPF$ (X $\times Y$).

Lemma 3.2. If (X, τ) is a normal space and $F \cap A = \phi$ where F is closed and A is g-closed then there exist disjoint open sets O₁ and O₂ such that $F \subset O_1$ and $F \subset O_2$.

It is known that a multifunction $F : X \to Y$ is said to be punctually compact (resp.closed) iff for each $x \in X$, F(x) is compact (resp.closed).

Definition 3.2. A multifunction $F : X \to Y$ is said to be punctually g-closed if F (x) is g-closed for every x $\in X$.

Theorem 3.4. Let $F_i : X \rightarrow Y$, i = 1, 2 be a multifunction into the normal space Y with the following properties;

- (a) F_1 is punctually closed,
- (b) F_2 is punctually g-closed,
- (c) F_i is uspc (i = 1, 2).

Then the set A = { (x_1, x_2) : F₁ $(x_1) \cap$ F₂ $(x_2) \neq \phi$ } \in SPF $(X \times X)$.

Proof. Let $(x_1, x_2) \notin A$. Then $F_1(x_1) \cap F_2(x_2) = \phi \dots (1)$ Since F_1 is punctually closed, $F_1(x_1)$ is closed in Y. Also punctual g-closedness of F_2 indicates that $F_2(x_2)$ is g-closed in Y. By (1), the sets $F_1(x_1)$ and $F_2(x_2)$ are disjoint. Hence there exist open sets $V_1 \in \Sigma$ (F₁ (x₁)), $V_2 \in \Sigma$ (F₂ (x₂)) such that $V_1 \cap V_2 = \phi$. Now uspcness of F_i (i = 1, 2) ensures the existence of U_i \in SPO (X, x_i) (i = 1, 2) such that F₁ (x) $\subset V_1 \forall x \in U_1$ and F₂ (x) $\subset V_2 \forall x \in U_2$. Set U = U₁ × U₂. Then U \in SPO (X × X) and (x₁, x₂) \in U. Let (y₁, y₂) \in U be any arbitrary point. Then one observes that F₁ (y₁) $\subset V_1$ and F₂ (y₂) $\subset V_2 \Rightarrow$ F₁ (y₁) \cap F₂ (y₂) $\subset V_1 \cap V_2 = \phi \Rightarrow$

 $F_{1}\left(y_{1}\right)\ \cap\ F_{2}\left(y_{2}\right)=\phi \Longrightarrow \left(y_{1},\,y_{2}\right)\in X\times X-A \Rightarrow U\subset X\times X-A \text{ whence } \left(x_{1},\,x_{2}\right)\in U\subset X\times X-A \text{ i.e. } X\times X-A = 0$

X − A contains a sp-nbd of each of its points. Hence $X \times X - A \in$ SPO (X × X). In other words $A \in$ SPF (X × X).

Theorem 3.5. If $F_i : (X, \tau) \to (Y, \sigma)$ i = 1, 2 are punctually compact uspc multifunctions from a space X with the property P to the Hausdorff space Y such that $F_1(x) \cap F_2(x) \neq \phi$ for all $x \in X$ then the multifunction $F : (X, \tau) \to (Y, \sigma)$ defined by $F(x) = F_1(x) \cap F_2(x)$ is uspc.

Proof. Let $x_0 \in X$ and suppose $V \in \Sigma (F(x_0))$ in Y. Now $F(x_0) \subset V \Rightarrow F_1(x_0) \cap F_2(x_0) \subset V$. Set $A = F_1(x_0) - V$ and $B = F_2(x_0) - V$. Then $A = F_1(x_0) \cap V$.Since F_1 is punctually compact $F_1(x_0)$ is compact and $V \in F(\sigma)$. Therefore, A is compact.Pursuing the same reasoning we can show that B is compact. Moreover by construction $A \cap B = \phi$. Hence there exist $V_1 \in \Sigma (A)$ and $V_2 \in \Sigma (B)$ such that $V_1 \cap V_2 = \phi$. Now $V_1 \cup V \in \Sigma (F_1(x_0))$. The uspc of F_1 at x_0 ensures the existence of $U_1 \in SPO(X, x_0)$ such that $F_1[U_1] \subset V_1 \cup V \Rightarrow F_1(x_0) \subset V_1 \cup V$. Pursuing the same argument we obtain $F_2(x_0) \subset F_2[U_2] \subset V_2 \cup V$ where $U_2 \in SPO(X, x_0)$. Therefore $F_1(x_0) \cap F_2(x_0) \subset (V_1 \cup V) \cap (V_2 \cup V) \Rightarrow F(x_0) \subset (V_1 \cap V_2) \cup (V \cap V_2) \cup (V_1 \cap V) \cup (V \cap V)$. Let $U = U_1 \cap U_2$. Since X enjoys the property P, $U \in SPO(X)$. Now each $Z \in U$ is a member of both U_1 and U_2 for which $F(z) \subset (V_1 \cap V_2) \cup (V \cap V_2) \cup (V_1 \cap V) \cup (V \cap V)$. Suppose $y \in F(z)$. Hence the foregoing induces $y \in (V \cap V_2) \cup (V_1 \cap V) \cup V$. This in any case $y \in V$ and for any $y \in F(z)$, $y \in V$. Hence $F(z) \subset V \quad \forall z \in U \Rightarrow F$ is uspc.

Theorem 3.6. Let $F : (X, \tau) \to (Y, \sigma)$ be a punctually closed uspc multifunction into a normal space Y such that $F(x_1) \cap F(x_2) = \phi$ where $x_1 \neq x_2$. Then X is a sp-T₂ space.

Proof.Let $x_1 \neq x_2$. Then $F(x_1) \cap F(x_2) = \phi$. Since F is punctually closed $F(x_1)$, $F(x_2) \in F(\sigma)$. The normality of Y guarantees the existence of sets $V_i \in \Sigma$ (F (x_i)) in Y, i = 1, 2 with $V_1 \cap V_2 = \phi$. Since F is uspc for $x_1, x_2 \in X$ satisfying the relations $F(x_1) \subset V_1$, $F(x_2) \subset V_2$ there exist $U_i \in SPO(X, x_i)$, i = 1, 2

such that F [U₁] \subset V₁, F [U₂] \subset V₂whence F [U₁] \cap F [U₂] \subset V₁ \cap V₂ = $\phi \Rightarrow$ F [U₁ \cap U₂] = $\phi \Rightarrow$ U₁ \cap

 $U_2 = \phi$. Thus $x_1 \neq x_2$ implies there exist $U_1 \in SPO(X, x_1), U_2 \in SPO(X, x_2)$ such that $U_1 \cap U_2 = \phi$. So, X is sp-T₂.

References

- 1. D. Andrijević, Semi-preopen Sets, Mat. Vensik 38 (1986), 24 32.
- 2. N.Bandyopadhyay, Semi-precontinuous multifunction, Research review international journal of multidisciplinary, (2019), 157-159.
- 3. Bouligand , Ens. Math. (1932), p-14.
- 4. P. K.Ghosh, Ph.D. Thesis, University of Kalyani, Kalyani, West Bengal, 2005.
- 5. Kuratowski, Fund. Math. 18 (1932), p-148. (1983), 425 432.
- 6. N. Levine, Generalised closed sets in topology, rend, Circ, Mat, Palermo(2), 19(1970), 89-96.
- 7. O.Njåstad ,On some classes of nearly open sets, Pacific. J Math. 15 (3) (1965), 961 –970.
- Prezemeski M., On some forms of cliquishness on topological spaces, Serdica Bulgarieae mathematicae publications 18 (1992), 99 – 117.
- 9. R. Paul and P.Bhattacharyya, On pre-Urysohn spaces, Bull Malaysian Math. Soc. Second Series 22 (1999), 23 34.