GENERALSED CLOSED SETS GENERATED BY MULTIFUNCTIONS

Dr. Nandini Bandyopadhyay, Assistant Professor, Department of Mathematics, Panskura Banamali College, Panskura R. S. , Purba Medinipur, West Bengal, India.
Prof. Paritosh Bhattacharyya, Professor, Department of Mathematics, University of Kalyani, Kalyani, Nadia, West Bengal, India.

Abstract

Semi-precontinuous multifunction generates semi-preclosed sets under certain condtitions.This property of the semi precontinuous multifunction has been exhibited in this paper.

Key Words: spo, spc, α - set.
AMS subject classification. 54C99

1. Introduction.

In 1932, Kuratowski [5] and Bouligand [3] independently introduced two kinds of semi-continuity of a multifunction which are termed as upper semi-continuous and lower semi-continuous multifunctions. In 1986, Andrijević [1] introduced the notion of semi-preopen sets. In 1992, Przemski [8] defined semiprecontinuous function with the aid of semi-preopen sets. Bandyopadhay [2] defined semi-precontinuous multifunction as an extension of single valued function to multivalued function and carried further investigation in [2]. In course of the invesitgaton it has been found that semi -precontinuous multifunction can generate semi-preclosed sets.These observations have been incorporated in this paper.

2. PRELIMNARIES

Throughout the paper (X, τ) or simply X always denotes nontrivial topological spaces. The closure and interior of the subset A is denoted by $\mathrm{Cl}(\mathrm{A})($ resp. $\mathrm{Clx}(\mathrm{A}))$ and $\operatorname{Int}(\mathrm{A})(\operatorname{resp} . \operatorname{Intx}(\mathrm{A})$ respectively.The family of all open sets containing a is denoted by $\quad \Sigma$ (a) The following definitions and results have been frequently utilised in this paper.

Definition 2.1. [1] In (X, τ), $\mathrm{A} \subset \mathrm{X}$ is called a semi-preopen set (briefly s.p.o. set) (resp. α - set) iff $\mathrm{A} \subset \mathrm{Cl}$ $(\operatorname{Int}(\mathrm{Cl}(\mathrm{A})))($ resp. $\mathrm{A} \subset \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(\mathrm{A}))))$.The family of all s.p.o. sets (resp. $\alpha-$ sets) is denoted by $\operatorname{SPO}(X)\left(\right.$ resp. $\left.\tau^{\alpha}\right)$. For each $x \in X$, the family of all s.p.o. sets containing x is denoted by $\operatorname{SPO}(X, x)$.

Definition 2.2. [1] The complement of a s.p.o. set is called semi-preclosed. Equivalently a set F is semipreclosed iff $\operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(\mathrm{A}))) \subset \mathrm{F}$. The family of all semi-preclosed sets is denoted by $\operatorname{SPF}(\mathrm{X})$.

Definition 2.3. [8] A single valued function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be semi- precontinuous if the inverse image of every open set in Y is semi-preopen in X .

Definition 2.4.[1] The semi-preclosure of $A \subset X$ is denoted by $\operatorname{spcl}(A)$ and is defined by $\operatorname{spcl}(A)=\cap$ $\{B: B$ is semi-preclosed and $B \supset A\}$.
Definition 2.5.[4] A space X is called sp- T_{2} if for every pair of dstinct points x, y of X there exist two disjoint s.p.o. sets U and V such that $x \in U$ and $y \in V$.

For a multifunction $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{F}^{+}[\mathrm{B}]$ and $\mathrm{F}^{-}[\mathrm{B}]$, respectively denote the upper and lower inverses of the set $B \subset Y$, where $F^{+}[B]=\{x \in X: F(x) \subset B\}$ and $F^{-}[B]=\{x \in X: F(x) \cap B \neq \phi\}$.

Definition 2.6. [2] A multifunction F : X $\rightarrow \mathrm{Y}$ is termed upper semi-precontinuous (resp. lower semiprecontinuous), briefly uspc (resp. lspc), iff for each closed (resp. open) set

$$
\mathrm{A} \subset \mathrm{Y}, \mathrm{~F}^{-}[\mathrm{A}] \in \operatorname{SPF}(\mathrm{X})\left(\text { resp. } \mathrm{F}^{-}[\mathrm{A}] \in \mathrm{SPO}(\mathrm{X})\right)
$$

Definition 2.7. [2] A multifunction $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is semi-precontinuous (briefly spc) iff F is both uspe and lspc.

Definition 2.8. [9] . A space (X, τ) will be said to have the property P if the closure is preserved under finite intersection.

Definition 2.9. [6] A subset A of X is said to be generalised closed set (briefly g-closed set) iff $\mathrm{Cl}(\mathrm{A}) \subset \mathrm{O}$ whenever $\mathrm{A} \subset \mathrm{O} \in \tau$.

3.Results and discussions.

An interesting property enjoyed by this multifunction is that it can, under certain conditions, generate semi-preclosed sets. To prove the next theorem the following lemma is required.

Lemma 3.1. If A and B are two disjoint compact subsets of a Hausdorff space X, then there exist open sets U, V such that $\mathrm{A} \subset \mathrm{U}, \mathrm{B} \subset \mathrm{V}$ and $\mathrm{U} \cap \mathrm{V}=\phi$.

Proof. Let $a \in A$. Then the Hausdorffness of X indicates there exist $G_{a} \in \Sigma(a), H_{x} \in \Sigma(x)$ such that $G_{a} \cap$ $H_{x}=\phi \ldots$ (1). Clearly $\left\{H_{x}: x \in B\right\}$ is an open cover of B. Since B is compact there exists a finite subfamily $\left\{\mathrm{H}_{\mathrm{X} 1}, \mathrm{H}_{\mathrm{X} 2}, \ldots, \mathrm{H}_{\mathrm{Xn}}\right\}$ such that $B \subset U\left\{H_{X i}: i=1,2, \ldots, n\right\}$. Let $G_{a}{ }^{1}, \mathrm{G}_{\mathrm{a}}{ }^{2}, \ldots, \mathrm{G}_{\mathrm{a}}{ }^{\mathrm{n}}$ be the corresponding sets containing a and satisfying (1). Let $U(a)=\cap\left\{\mathrm{G}_{\mathrm{a}}{ }^{\mathrm{i}}: \mathrm{i}=1,2, \ldots \mathrm{n}\right\}$ and $\mathrm{V}=\mathrm{U}\left\{\mathrm{H}_{\mathrm{Xi}}: \mathrm{i}=1,2, \ldots, \mathrm{n}\right\}$. Clearly $\mathrm{U}(\mathrm{a}) \in \Sigma(\mathrm{a})$ and $\mathrm{V} \in \Sigma$
(B).Then the family $\{U(a): a \in A\}$ is an open cover of A. Since A is compact there exists a finite subfamily $\left\{U\left(a_{1}\right), U\left(a_{2}\right), \ldots, U\left(a_{t}\right)\right\}$ such that $A \subset U\left\{U\left(a_{k}\right): k=1,2, \ldots t\right\}=U$ (say).Then $U \in \Sigma$ (a).Now U $\cap \mathrm{V}=\mathrm{U}\left(\left\{\mathrm{U}\left(\mathrm{a}_{\mathrm{k}}\right): \mathrm{k}=1,2, \ldots, \mathrm{t}\right\}\right) \cap \mathrm{V}=\mathrm{U}\left(\left\{\left(\mathrm{U}\left(\mathrm{a}_{\mathrm{k}}\right) \cap \mathrm{V}\right): \mathrm{k}=1,2, \ldots, \mathrm{t}\right\}\right) \ldots(1)$. Again $\mathrm{U}\left(\mathrm{a}_{\mathrm{k}}\right) \cap \mathrm{V}=$ $\left(\cap\left\{\mathrm{G}_{\mathrm{ak}}^{\mathrm{i}}: \mathrm{k}=1,2, \ldots, \mathrm{n}\right\}\right) \cap(\cup \mathrm{Hx})=\cup\left(\cap\left\{\mathrm{G}_{\mathrm{a}}^{\mathrm{i}} ; \mathrm{i}=1,2, \ldots, \mathrm{n}\right\} \cap \mathrm{H}_{\mathrm{X}}\right)=\cup\left(\mathrm{G}_{\mathrm{a}}{ }^{1} \cap \mathrm{G}_{\mathrm{a}}{ }^{2} \cap \ldots \cap \mathrm{G}_{\mathrm{a}}{ }^{\mathrm{n}} \cap\right.$ $\left.H_{X}\right)=\phi$. So from above $U \cap V=\phi$. Thus there exist two open sets U, V such that

$$
\mathrm{A} \subset \mathrm{U}, \mathrm{~B} \subset \mathrm{~V} \text { and } \mathrm{U} \cap \mathrm{~V}=\phi .
$$

Theorem 3.1.If $\mathrm{F}_{\mathrm{i}}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ are punctually compact uspc multifunction from X with property P to the Hausdorff space Y, then the set $A=\left\{x: F_{1}(x) \cap F_{2}(x) \neq \phi\right\} \quad \in \operatorname{SPF}(X)$.

Proof. Let $\mathrm{x} \notin \mathrm{A}$. Then $\mathrm{F}_{1}(\mathrm{x}) \cap \mathrm{F}_{2}(\mathrm{x})=\phi$. Since $\mathrm{F}_{\mathrm{i}}(\mathrm{i}=1,2)$ are punctually compact, $\mathrm{F}_{1}(\mathrm{x}), \mathrm{F}_{2}(\mathrm{x})$ are each compact. By (1), these compact sets are disjoint. The Hausdorffness of Y, by Lemma 3.1, gives the existence of $\mathrm{V}_{1} \in \Sigma\left(\mathrm{~F}_{1}(\mathrm{x})\right), \mathrm{V}_{2} \in \Sigma\left(\mathrm{~F}_{2}(\mathrm{x})\right)$ in Y such that $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\phi$. Again the uspc of F_{1} and F_{2} assures the existence of $\mathrm{U}_{1}, \mathrm{U}_{2} \in \mathrm{SPO}(\mathrm{X})$ such that $\mathrm{F}_{1}(\mathrm{z}) \subset \mathrm{V}_{1} \forall \mathrm{z} \in \mathrm{U}_{1}$ and $\mathrm{F}_{2}(\mathrm{z}) \subset \mathrm{V}_{2} \forall \mathrm{z} \in \mathrm{U}_{2}$. Thus F_{1} (z) $\cap \mathrm{F}_{2}(\mathrm{z}) \subset \mathrm{V}_{1} \cap \mathrm{~V}_{2}=\phi \Rightarrow \mathrm{F}_{1}(\mathrm{z}) \cap \mathrm{F}_{2}(\mathrm{z})=\phi$. Let $\mathrm{U}=\mathrm{U}_{1} \cap \mathrm{U}_{2}$. Since X enjoys the property $\mathrm{P}, \mathrm{U} \in$ $\operatorname{SPO}(X)$. Now each $z \in U$ is a member of both U_{1} and U_{2} for which $F_{1}(z) \cap F_{2}(z)=\phi \Rightarrow z \notin A$. So, $\mathrm{U} \cap \mathrm{A}=\phi$. Therefore, $\mathrm{x} \notin \operatorname{spcl}(\mathrm{A}) \Rightarrow \operatorname{spcl}(\mathrm{A}) \subset \mathrm{A} \Rightarrow \mathrm{A} \in \mathrm{SPF}(\mathrm{X})$.

Definition 3.1. A Multifunction $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is upper α-continuous (briefly $\mathrm{u} \alpha \mathrm{c}$) at $\mathrm{x} \in \mathrm{X}$ if for every $\mathrm{V} \in \Sigma(\mathrm{F}$ (x)) there is a $\mathrm{U} \in \tau^{\alpha}$ such that $\mathrm{F}(\mathrm{y}) \subset \mathrm{V} \forall \mathrm{y} \in \mathrm{U} . \mathrm{F}$ is u$\alpha \mathrm{c}$ if it is so at each $\mathrm{x} \in \mathrm{X}$.

Theorem 3.2. Let $\mathrm{F}_{\mathrm{i}}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{i}=1,2$ be a multifunction where Y is a normal space with the following properties: (a) F_{i} is punctually closed, $\mathrm{i}=1,2$,; (b) F_{1} is $u \alpha c$; (c) F_{2} is uspc.

Then the set $\mathrm{A}=\left\{\mathrm{x}: \mathrm{F}_{1}(\mathrm{x}) \cap \mathrm{F}_{2}(\mathrm{x}) \neq \phi\right\} \in \operatorname{SPF}(\mathrm{X})$.
Proof. $\mathrm{F}_{\mathrm{i}} \mathrm{t} x \notin \mathrm{~A}$. Then $\mathrm{F}_{1}(\mathrm{x}) \cap \mathrm{F}_{2}(\mathrm{x})=\phi \ldots$ (1). Since $\mathrm{F} ’ \mathrm{~s}(\mathrm{i}=1,2)$ are punctually closed $\mathrm{F}_{1}(\mathrm{x}), \mathrm{F}_{2}(\mathrm{x})$ are each closed. By (1), these closed sets are disjoint. Hence by the normality of Y there exists $V_{i} \in \Sigma\left(F_{i}\right.$ (x)) $i=1,2$ with $V_{1} \cap V_{2}=\phi \ldots$ (2).Again the $u \alpha c$ of F_{1} at x gives a $U_{1} \in \tau^{\alpha}$ containing x such that $F_{1}(z)$ $\subset \mathrm{V}_{1} \forall \mathrm{z} \in \mathrm{U}_{1} \Rightarrow \mathrm{~F}_{1}\left[\mathrm{U}_{1}\right] \subset \mathrm{V}_{1}$. Since F_{2} is uspc at x and $\mathrm{F}_{2}(\mathrm{x}) \subset \mathrm{V}_{2}$ there exists a $\mathrm{U}_{2} \in \mathrm{SPO}(\mathrm{X}, \mathrm{x})$ such that $\mathrm{F}_{2}\left(\mathrm{U}_{2}\right) \subset \mathrm{V}_{2}$. Now let $\mathrm{U}=\mathrm{U}_{1} \cap \mathrm{U}_{2}$.Since every open set is an α-set it follows that $\mathrm{U} \in \operatorname{SPO}(\mathrm{X}$, x).Again if $y \in U$, then above $F_{1}(y) \subset V_{1}$ and $F_{2}(y) \subset V_{2}$ whence $F_{1}(y) \cap F_{2}(y) \subset V_{1} \cap V_{2}=\phi \Rightarrow F_{1}(y)$
$\cap \mathrm{F}_{2}(\mathrm{y})=\phi \Rightarrow \mathrm{F}_{1}[\mathrm{U}] \cap \mathrm{F}_{2}[\mathrm{U}]=\phi \Rightarrow \mathrm{y} \in \mathrm{X}-\mathrm{A} \Rightarrow \mathrm{U} \subset \mathrm{X}-\mathrm{A}$. Thus $\mathrm{x} \in \mathrm{U} \subset \mathrm{X}-\mathrm{A} \Rightarrow \mathrm{X}-\mathrm{A}$ is sp-nbd of each of its points $\Rightarrow \mathrm{X}-\mathrm{A} \in \mathrm{SPO}(\mathrm{X}) \Rightarrow \mathrm{A} \in \mathrm{SPF}(\mathrm{X})$.

Theorem 3.3. If $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is a punctually compact uspc multifunction into a Hausdorff space Y , then G_{F} $\in \operatorname{SPF}(\mathrm{X} \times \mathrm{Y})$.
Proof. Let (x, y) $\in \mathrm{X} \times \mathrm{Y}-\mathrm{G}_{\mathrm{F}}$. Clearly y $\notin \mathrm{F}$ (x). The Hausdorffness of Y ensures the existence of $\mathrm{G}_{\mathrm{z}} \in \Sigma$ (z) and $\mathrm{H}_{\mathrm{z}} \in \Sigma(\mathrm{y})$ in Y such that $\mathrm{G}_{\mathrm{Z}} \cap \mathrm{H}_{\mathrm{z}}=\phi$.

The family $C=\left\{\mathrm{G}_{\mathrm{Z}}: Z \in \mathrm{~F}(\mathrm{x})\right\}$ is an open cover of $\mathrm{F}(\mathrm{x})$. Since F is punctually compact, $\mathrm{F}(\mathrm{x})$ is compact. Therefore there exists a finite subfamily of C such that
$\left\{\mathrm{G}_{\mathrm{z}}, \mathrm{G}_{\mathrm{z}}, \ldots, \mathrm{G}_{\mathrm{z}}\right\} . \mathrm{F}(\mathrm{x}) \subset \cup\left\{\mathrm{G}_{\mathrm{z}}: \mathrm{k}=1,2, \ldots, \mathrm{n}\right\} . \operatorname{Let} \mathrm{U}=\cup\{\mathrm{G}: \mathrm{k}=1,2, \ldots, \mathrm{n}\}$.
and $\mathrm{V}=\cap\{\mathrm{G}: \mathrm{k}=1,2, \ldots, \mathrm{n}\}$. where $\mathrm{H} \quad(\mathrm{k}=1,2, \ldots, \mathrm{n})$ corresponds to G
satisfying (1). Then $\mathrm{V} \in \Sigma(\mathrm{y})$ in Y and $\mathrm{U} \cap \mathrm{V}=\phi \ldots$ (2). Obviously, $\mathrm{U} \in \Sigma(\mathrm{F}(\mathrm{x})), \mathrm{V} \in \Sigma(\mathrm{y})$ in Y . Now the uspc-ness of F gives a $\mathrm{W} \in \mathrm{SPO}(\mathrm{X}, \mathrm{x})$ such that $\mathrm{F}[\mathrm{W}] \subset \mathrm{U}$, which, in its turn, implies by (2) that $\mathrm{F}[\mathrm{W}]$ $\cap \mathrm{V}=\phi$.Again $(\mathrm{x}, \mathrm{y}) \in \mathrm{W} \times \mathrm{V} \in \mathrm{SPO}(\mathrm{X} \times \mathrm{Y})$ whence one observes that $(\mathrm{x}, \mathrm{y}) \in \mathrm{W} \times \mathrm{V} \subset \mathrm{X} \times \mathrm{Y}-\mathrm{G}_{\mathrm{F}} \Rightarrow$ $X \times Y-G_{F}$ contains a sp-nbd of each of its points $\Rightarrow X \times Y-G_{F} \in S P O(X \times Y) \Rightarrow G_{F} \in S P F(X \times Y)$.

Lemma 3.2. If (X, τ) is a normal space and $F \cap A=\phi$ where F is closed and A is g-closed then there exist disjoint open sets O_{1} and O_{2} such that $\mathrm{F} \subset \mathrm{O}_{1}$ and $\mathrm{F} \subset \mathrm{O}_{2}$.

It is known that a multifunction $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be punctually compact (resp.closed) iff for each $\mathrm{x} \in$ $\mathrm{X}, \mathrm{F}(\mathrm{x})$ is compact (resp.closed).

Definition 3.2. A multifunction $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be punctually g -closed if $\mathrm{F}(\mathrm{x})$ is g -closed for every x $\in \mathrm{X}$.

Theorem 3.4. Let $\mathrm{F}_{\mathrm{i}}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{i}=1,2$ be a multifunction into the normal space Y with the following properties;
(a) F_{1} is punctually closed,
(b) F_{2} is punctually g -closed,
(c) F_{i} is uspc $(\mathrm{i}=1,2)$.

Then the set $A=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right): \mathrm{F}_{1}\left(\mathrm{x}_{1}\right) \cap \mathrm{F}_{2}\left(\mathrm{x}_{2}\right) \neq \phi\right\} \in \operatorname{SPF}(\mathrm{X} \times \mathrm{X})$.
Proof. Let $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \notin \mathrm{A}$. Then $\mathrm{F}_{1}\left(\mathrm{x}_{1}\right) \cap \mathrm{F}_{2}\left(\mathrm{x}_{2}\right)=\phi \ldots(1)$ Since F_{1} is punctually closed, $\mathrm{F}_{1}\left(\mathrm{x}_{1}\right)$ is closed in Y . Also punctual g-closedness of F_{2} indicates that $\mathrm{F}_{2}\left(\mathrm{x}_{2}\right)$ is g -closed in Y . By (1), the sets $\mathrm{F}_{1}\left(\mathrm{x}_{1}\right)$ and $\mathrm{F}_{2}\left(\mathrm{x}_{2}\right)$
are disjoint.Hence there exist open sets $\mathrm{V}_{1} \in \Sigma\left(\mathrm{~F}_{1}\left(\mathrm{x}_{1}\right)\right), \mathrm{V}_{2} \in \Sigma\left(\mathrm{~F}_{2}\left(\mathrm{x}_{2}\right)\right)$ such that $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\phi$. Now uspcness of $\mathrm{F}_{\mathrm{i}}(\mathrm{i}=1,2)$ ensures the existence of $\mathrm{U}_{\mathrm{i}} \in \mathrm{SPO}\left(\mathrm{X}, \mathrm{x}_{\mathrm{i}}\right)(\mathrm{i}=1,2)$ such that $\mathrm{F}_{1}(\mathrm{x}) \subset \mathrm{V}_{1} \forall \mathrm{x} \in \mathrm{U}_{1}$ and $\mathrm{F}_{2}(\mathrm{x}) \subset \mathrm{V}_{2} \forall \mathrm{x} \in \mathrm{U}_{2}$.Set $\mathrm{U}=\mathrm{U}_{1} \times \mathrm{U}_{2}$. Then $\mathrm{U} \in \mathrm{SPO}(\mathrm{X} \times \mathrm{X})$ and $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{U}$. Let $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in \mathrm{U}$ be any arbitrary point. Then one observes that $\mathrm{F}_{1}\left(\mathrm{y}_{1}\right) \subset \mathrm{V}_{1}$ and $\mathrm{F}_{2}\left(\mathrm{y}_{2}\right) \subset \mathrm{V}_{2} \Rightarrow \mathrm{~F}_{1}\left(\mathrm{y}_{1}\right) \cap \mathrm{F}_{2}\left(\mathrm{y}_{2}\right) \subset \mathrm{V}_{1} \cap \mathrm{~V}_{2}=\phi \Rightarrow$ $\mathrm{F}_{1}\left(\mathrm{y}_{1}\right) \cap \mathrm{F}_{2}\left(\mathrm{y}_{2}\right)=\phi \Rightarrow\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \in \mathrm{X} \times \mathrm{X}-\mathrm{A} \Rightarrow \mathrm{U} \subset \mathrm{X} \times \mathrm{X}-\mathrm{A}$ whence $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{U} \subset \mathrm{X} \times \mathrm{X}-\mathrm{A}$ i.e. $\mathrm{X} \times$ $X-A$ contains a sp-nbd of each of its points. Hence $X \times X-A \in S P O(X \times X)$. In otherwords $A \in S P F(X$ $\times \mathrm{X}$).

Theorem 3.5. If $\mathrm{F}_{\mathrm{i}}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma) \mathrm{i}=1,2$ are punctually compact uspc multifunctions from a space X with the property P to the Hausdorff space Y such that $\mathrm{F}_{1}(\mathrm{x}) \cap \mathrm{F}_{2}(\mathrm{x}) \neq \phi$ for all $\mathrm{x} \in \mathrm{X}$ then the multifunction $\mathrm{F}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ defined by $\mathrm{F}(\mathrm{x})=\mathrm{F}_{1}(\mathrm{x}) \cap \mathrm{F}_{2}(\mathrm{x})$ is uspc.

Proof. Let $\mathrm{x}_{0} \in \mathrm{X}$ and suppose $\mathrm{V} \in \Sigma\left(\mathrm{F}\left(\mathrm{x}_{0}\right)\right)$ in Y . Now $\mathrm{F}\left(\mathrm{x}_{0}\right) \subset \mathrm{V} \Rightarrow \mathrm{F}_{1}\left(\mathrm{x}_{0}\right) \cap \mathrm{F}_{2}\left(\mathrm{x}_{0}\right) \subset \mathrm{V}$. Set $\mathrm{A}=\mathrm{F}_{1}$ $\left(x_{0}\right)-V$ and $B=F_{2}\left(x_{0}\right)-V$. Then $A=F_{1}\left(x_{0}\right) \cap$ V.Since F_{1} is punctually compact $F_{1}\left(x_{0}\right)$ is compact and V $\in \mathrm{F}(\sigma)$. Therefore, A is compact.Pursuing the same reasoning we can show that B is compact. Moreover by construction $A \cap B=\phi$.Hence there exist $\mathrm{V}_{1} \in \Sigma(\mathrm{~A})$ and $\mathrm{V}_{2} \in \Sigma(\mathrm{~B})$ such that $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\phi$. Now $\mathrm{V}_{1} \cup \mathrm{~V}$ $\in \Sigma\left(\mathrm{F}_{1}\left(\mathrm{x}_{0}\right)\right)$. The uspc of F_{1} at x_{0} ensures the existence of $\mathrm{U}_{1} \in \mathrm{SPO}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ such that $\mathrm{F}_{1}\left[\mathrm{U}_{1}\right] \subset \mathrm{V}_{1} \cup \mathrm{~V} \Rightarrow$ $\mathrm{F}_{1}\left(\mathrm{x}_{0}\right) \subset \mathrm{V}_{1} \cup$ V.Pursuing the same argument we obtain $\mathrm{F}_{2}\left(\mathrm{x}_{0}\right) \subset \mathrm{F}_{2}\left[\mathrm{U}_{2}\right] \subset \mathrm{V}_{2} \cup$ Vwhere $\mathrm{U}_{2} \in \mathrm{SPO}(\mathrm{X}$. $\left.\mathrm{x}_{0}\right)$. Therefore $\mathrm{F}_{1}\left(\mathrm{x}_{0}\right) \cap \mathrm{F}_{2}\left(\mathrm{x}_{0}\right) \subset\left(\mathrm{V}_{1} \cup \mathrm{~V}\right) \cap\left(\mathrm{V}_{2} \cup \mathrm{~V}\right) \Rightarrow \mathrm{F}\left(\mathrm{x}_{0}\right) \subset\left(\mathrm{V}_{1} \cap \mathrm{~V}_{2}\right) \cup\left(\mathrm{V} \cap \mathrm{V}_{2}\right) \cup\left(\mathrm{V}_{1} \cap \mathrm{~V}\right)$ $U(V \cap V)$ Let $U=U_{1} \cap U_{2}$. Since X enjoys the property $P, U \in S P O(X)$. Now each $Z \in U$ is a member of both U_{1} and U_{2} for which $F(z) \subset\left(V_{1} \cap V_{2}\right) \cup\left(V \cap V_{2}\right) \cup\left(V_{1} \cap V\right) \cup(V \cap V)$. Suppose $y \in F(z)$. Hence the foregoing induces $y \in\left(V \cap V_{2}\right) \cup\left(V_{1} \cap V\right) \cup$ V.This in any case $y \in V$ and for any $y \in F(z)$, $\mathrm{y} \in \mathrm{V}$. Hence $\mathrm{F}(\mathrm{z}) \subset \mathrm{V} \quad \forall \mathrm{z} \in \mathrm{U} \Rightarrow \mathrm{F}$ is uspc.
Theorem 3.6. Let $\mathrm{F}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a punctually closed uspc multifunction into a normal space Y such that $\mathrm{F}\left(\mathrm{x}_{1}\right) \cap \mathrm{F}\left(\mathrm{x}_{2}\right)=\phi$ where $\mathrm{x}_{1} \neq \mathrm{x}_{2}$. Then X is a sp- T_{2} space.

Proof.Let $\mathrm{x}_{1} \neq \mathrm{x}_{2}$. Then $\mathrm{F}\left(\mathrm{x}_{1}\right) \cap \mathrm{F}\left(\mathrm{x}_{2}\right)=\phi$. Since F is punctually closed $\mathrm{F}\left(\mathrm{x}_{1}\right), \mathrm{F}\left(\mathrm{x}_{2}\right) \in$ F (σ).The normality of Y guarantees the existence of sets $V_{i} \in \Sigma\left(F\left(x_{i}\right)\right)$ in $Y, i=1,2$ with $V_{1} \cap V_{2}=\phi$. Since F is uspc for $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$ satisfying the relations $\mathrm{F}\left(\mathrm{x}_{1}\right) \subset \mathrm{V}_{1}, \mathrm{~F}\left(\mathrm{x}_{2}\right) \subset \mathrm{V}_{2}$ there exist $\mathrm{U}_{\mathrm{i}} \in \mathrm{SPO}\left(\mathrm{X}, \mathrm{x}_{\mathrm{i}}\right), \mathrm{i}=1,2$
such that $\mathrm{F}\left[\mathrm{U}_{1}\right] \subset \mathrm{V}_{1}, \mathrm{~F}\left[\mathrm{U}_{2}\right] \subset \mathrm{V}_{2}$ whence $\mathrm{F}\left[\mathrm{U}_{1}\right] \cap \mathrm{F}\left[\mathrm{U}_{2}\right] \subset \mathrm{V}_{1} \cap \mathrm{~V}_{2}=\phi \Rightarrow \mathrm{F}\left[\mathrm{U}_{1} \cap \mathrm{U}_{2}\right]=\phi \Rightarrow \mathrm{U}_{1} \cap$ $\mathrm{U}_{2}=\phi$.Thus $\mathrm{x}_{1} \neq \mathrm{x}_{2}$ implies there exist $\mathrm{U}_{1} \in \mathrm{SPO}\left(\mathrm{X}, \mathrm{x}_{1}\right), \mathrm{U}_{2} \in \mathrm{SPO}\left(\mathrm{X}, \mathrm{x}_{2}\right)$ such that $\mathrm{U}_{1} \cap \mathrm{U}_{2}=\phi . \mathrm{So}, \mathrm{X}$ is $\mathrm{sp}-\mathrm{T}_{2}$.

References

1. D. Andrijević, Semi-preopen Sets, Mat. Vensik 38 (1986), 24 - 32.
2. N.Bandyopadhyay, Semi-precontinuous multifunction, Research review international journal of multidisciplinary, (2019), 157-159.
3. Bouligand, Ens. Math. (1932), p-14.
4. P. K.Ghosh, Ph.D. Thesis, University of Kalyani, Kalyani, West Bengal, 2005.
5. Kuratowski , Fund. Math. 18 (1932), p-148. (1983), 425 - 432.
6. N. Levine, Generalised closed sets in topology, rend,Circ,Mat,Palermo(2),19(1970),89-96.
7. O.Njåstad ,On some classes of nearly open sets, Pacific. J Math. 15 (3) (1965), 961-970.
8. Prezemeski M., On some forms of cliquishness on topological spaces, Serdica Bulgarieae mathematicae publications 18 (1992), 99 - 117.
9. R. Paul and P.Bhattacharyya, On pre-Urysohn spaces, Bull Malaysian Math. Soc. Second Series 22 (1999), 23 - 34.
