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1. Introduction.  

In 1932, Kuratowski [5 ] and Bouligand [ 3] independently introduced two kinds of semi-continuity of a 

multifunction which are termed as upper semi-continuous and lower semi-continuous multifunctions. In 

1986, Andrijević [1] introduced the notion of semi-preopen sets. In 1992, Przemski [8] defined semi-

precontinuous   function  with the aid of semi-preopen sets. Bandyopadhay [2 ] defined semi-precontinuous 

multifunction as an extension of single valued function to multivalued function and carried further 

investigation in [ 2]. In course of the invesitgaton it has been found that semi -precontinuous multifunction 

can generate semi-preclosed sets.These observations have been incorporated in this paper. 

 

2. PRELIMNARIES 

Throughout the paper (X, τ) or simply X always denotes nontrivial topological spaces. The closure 

and interior of the subset A is denoted by Cl(A)(resp.Clx(A)) and Int(A)(resp.Intx(A) respectively.The 

family of all open sets containing a is denoted by          Σ (a)  The following definitions and results have 

been frequently utilised in this paper. 

Definition 2.1. [ 1]  In (X, τ), A  X is called a semi-preopen set (briefly s.p.o. set) (resp. - set) iff A  Cl 

(Int (Cl (A))) (resp. A Int (Cl(Int (A))) ).The family of all s.p.o.  sets (resp.- sets) is denoted by 

SPO(X)(resp. τ). For each x  X, the family of all s.p.o. sets containing x is denoted by   SPO(X, x). 

Definition 2.2. [1]  The complement of a s.p.o. set is called semi-preclosed.  Equivalently a set F is   semi-

preclosed  iff Int (Cl (Int (A)))  F. The family of all  semi-preclosed sets is denoted by  SPF (X). 
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Definition 2.3. [8 ]  A single valued function f :X  Y is said to be semi- precontinuous if the inverse 

image of every open set in Y is semi-preopen in X. 

Definition 2.4 .[ 1 ]  The  semi-preclosure of A  X is denoted by  spcl (A) and is defined by spcl (A) =∩

{B : B is semi-preclosed and  B  A}. 

Definition 2.5 .[ 4 ] A space X is called sp-T2 if for every pair of dstinct points x,y of X there exist two 

disjoint s.p.o. sets U and V such that x  U and y  V. 

       For a multifunction F : X  Y, F+ [B] and F‾ [B],   respectively denote the upper and lower inverses of 

the set B  Y, where   F+ [B] = {x  X : F (x)  B}and F‾ [B] = {x  X : F (x) ∩ B ≠ }.  

Definition 2.6. [2 ] A multifunction F : X  Y is termed upper semi-precontinuous (resp. lower semi-

precontinuous), briefly uspc (resp. lspc), iff for each closed (resp. open) set 

   A  Y, F‾ [A]  SPF (X) (resp. F‾ [A]  SPO (X)). 

Definition 2.7. [ 2] A multifunction F : X  Y is semi-precontinuous (briefly spc) iff F is both uspc and 

lspc. 

Definition 2.8. [ 9] . A space (X, τ) will be said to have the property P if the closure is preserved under 

finite intersection. 

Definition 2.9. [ 6] A subset A of X is said to be generalised closed set (briefly g-closed set) iff  Cl (A)  O 

whenever A  O  τ. 

 

 

3.Results and discussions. 

  An interesting property enjoyed by this multifunction is that it can, under certain conditions, generate 

semi-preclosed sets. To prove the next theorem the following lemma is required. 

Lemma 3.1.  If A and B are two disjoint compact subsets of a Hausdorff space X, then there exist open sets 

U, V such that A  U,   B  V and U ∩ V = . 

Proof.  Let a  A .  Then the Hausdorffness of X indicates there exist Ga  Σ (a), Hx  Σ (x) such that Ga ∩ 

Hx =  …(1). Clearly {Hx : x  B} is an open cover of  B.  Since B is compact there exists a finite 

subfamily {HX1  , HX2  , …, HXn  }such that  

B   U  {HXi   : i=1,2,…,n}. Let   Ga
1, Ga

2, …, Ga
n be the corresponding sets containing a and satisfying (1). 

Let U (a) =  ∩  {G a 
i  : i=1,2,…n}and V = ∪{HXi  : i=1,2,…,n}.    Clearly U (a)  Σ (a) and V  Σ 
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(B).Then the family {U (a) : a  A} is an open cover of A.  Since A is compact there exists a finite 

subfamily {U (a1), U (a2),…,U (at)} such that A   ∪{ U (ak) :k=1,2,…t}= U (say).Then U  Σ (a).Now U

∩ V = ∪ ({U(ak):k=1,2,…,t} ) ∩ V =∪ ({ ( U (ak) ∩ V ): k=1,2,…,t})…(1). Again U (ak) ∩ V = 

( ∩{ Gi
ak :k=1,2,…,n} ) ∩ (∪Hx) =∪(∩{  Gi

a ;i=1,2,…,n}∩ HX  ) =∪  (Ga
1  ∩ Ga

2  ∩ … ∩ Ga 
n  ∩ 

HX  ) =. So from above U ∩ V = . Thus there exist  two open sets U, V such that  

   A  U, B  V and U ∩ V = . 

Theorem 3.1.If Fi : (X, τ)  (Y, σ) are punctually compact uspc multifunction from X with property P to 

the Hausdorff space Y, then the set A = {x : F1 (x) ∩ F2 (x) ≠ }          SPF (X). 

Proof.  Let x  A. Then F1 (x) ∩ F2 (x) = .Since Fi (i = 1, 2) are punctually compact, F1 (x), F2 (x) are 

each compact. By (1), these compact sets are disjoint.  The Hausdorffness of Y, by Lemma 3.1, gives the 

existence of V1  Σ (F1 (x)), V2  Σ (F2 (x)) in Y such that V1 ∩ V2 = . Again the uspc of F1 and F2 

assures the existence of U1,U2  SPO (X) such that F1 (z)  V1  z  U1and F2 (z)  V2   z  U2. Thus F1 

(z) ∩ F2 (z)  V1 ∩ V2 =    F1 (z) ∩ F2 (z) = .Let U = U1 ∩ U2.Since X enjoys the property P, U  

SPO (X).Now each z  U is a member of both U1 and U2 for which F1 (z) ∩F2 (z) =   z  A. So,          

U∩A = .Therefore, x  spcl(A)  spcl (A)  A A  SPF(X). 

Definition 3.1.  A Multifunction F: X  Y is upper -continuous (briefly uc) at x  X if for every V  Σ (F 

(x)) there is a U  τ such that F (y)  V  y  U.F is uc if it is so at each x  X.   

Theorem 3.2.  Let Fi : X  Y, i = 1, 2 be a multifunction where Y is a normal space with the following 

properties: (a)Fi is punctually closed, i = 1, 2,; (b)F1 is uc; (c)F2 is uspc. 

Then the set A = {x : F1 (x) ∩ F2 (x) ≠ }  SPF (X). 

Proof.  Let x  A.  Then F1 (x) ∩ F2 (x) =  .…(1) .Since F’s (i = 1, 2) are punctually closed F1 (x), F2 (x) 

are each closed.  By (1), these closed sets are disjoint.  Hence by the normality of Y there exists Vi  Σ (Fi 

(x))   i = 1, 2 with V1 ∩ V2 =  …(2).Again the uc of F1 at x gives a U1  τ containing x such that F1 (z) 

 V1 z  U1  F1 [U1]  V1. Since F2 is uspc at x and F2 (x)  V2 there exists a U2  SPO (X, x) such 

that F2 (U2)  V2. Now let U = U1 ∩U2.Since every open set is an -set it follows that USPO (X, 

x).Again if y  U, then above F1 (y)  V1 and F2 (y)  V2 whence F1 (y) ∩ F2 (y)  V1∩ V2 =   F1 (y) 

 i 

  i 
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∩ F2 (y) =   F1 [U] ∩ F2 [U] =   y  X – A  U  X – A. Thus   x  U  X – A X – A is sp-nbd 

of each of its points  X – A  SPO (X) A  SPF (X). 

Theorem 3.3.  If F : X  Y is a punctually compact uspc multifunction into a Hausdorff space Y, then GF 

 SPF (X  Y). 

Proof.  Let (x, y)  X  Y – GF.  Clearly y  F (x).The Hausdorffness of Y ensures the existence of GZ  Σ 

(z) and HZ  Σ (y) in Y such that GZ ∩ HZ = . …(1) 

The family C  = {GZ : Z  F (x)} is an open cover of F (x).  Since F is punctually compact, F(x) is compact.  

Therefore there exists a finite subfamily of C  such that  

{Gz  , Gz  , …, Gz   }. F (x)  ∪ {Gz   : k = 1, 2, …, n}.Let U = ∪ {G    : k = 1, 2, …, n}. 

and V = ∩ {G    : k = 1, 2, …, n}.where H    (k = 1, 2, …, n) corresponds to G   

satisfying (1).  Then V  Σ (y) in Y and U ∩ V =  …(2).Obviously, U  Σ (F (x)),  V  Σ (y) in Y. Now 

the uspc-ness of F gives a W  SPO (X, x) such that F [W]  U, which, in its turn, implies by (2) that F [W] 

∩ V = .Again (x, y)  W  V  SPO (X  Y) whence one observes that (x, y)  W  V  X  Y – GF 

X  Y – GF contains a sp-nbd of each of its points  X  Y – GF  SPO (X  Y)  GF  SPF (X  Y). 

Lemma 3.2.   If (X , τ) is a normal space and F ∩ A =  where F is closed and A is g-closed then there 

exist disjoint open sets O1 and O2 such that F  O1 and F  O2. 

 It is known that a multifunction F : X  Y is said to be punctually compact (resp.closed ) iff for each x  

X, F (x) is compact (resp.closed ).   

Definition 3.2. A multifunction F : X  Y is said to be punctually g-closed if F (x) is g-closed for every x 

 X. 

Theorem 3.4.  Let Fi : X  Y, i = 1, 2 be a multifunction into the normal space Y with the following 

properties;  

(a) F1 is punctually closed, 

(b) F2 is punctually g-closed, 

(c) Fi is uspc (i = 1, 2). 

Then the set  A = {(x1, x2) : F1 (x1) ∩ F2 (x2) ≠ }  SPF (X  X). 

Proof.  Let (x1, x2)  A.  ThenF1 (x1) ∩ F2 (x2) =  …(1)Since F1 is punctually closed, F1 (x1) is closed in Y.  

Also punctual g-closedness of F2 indicates that F2 (x2) is g-closed in Y. By (1), the sets F1 (x1) and F2 (x2) 
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are disjoint.Hence  there exist open sets V1  Σ (F1 (x1)), V2  Σ (F2 (x2)) such that V1 ∩ V2 = .Now uspc-

ness of Fi (i = 1, 2) ensures the existence of Ui  SPO (X, xi) (i = 1, 2) such that F1 (x)  V1   x  U1 and 

F2 (x)  V2    x  U2.Set U = U1  U2.Then U  SPO (X  X) and (x1, x2)  U. Let (y1, y2)  U be any 

arbitrary point.  Then one observes that F1 (y1)  V1 and F2 (y2)  V2 F1 (y1) ∩ F2 (y2)  V1 ∩ V2 =   

F1 (y1) ∩ F2 (y2) =   (y1, y2)  X  X – A  U  X  X – A whence (x1, x2)  U  X  X – A i.e. X  

X – A contains a sp-nbd of each of its points.  Hence X  X – A  SPO (X  X). In otherwords A  SPF (X 

 X). 

Theorem 3.5.  If Fi : (X, τ)  (Y, σ) i = 1, 2 are punctually compact uspc multifunctions from a space X 

with the property P to the Hausdorff space Y such thatF1 (x) ∩ F2 (x) ≠  for all x  X then the 

multifunction F : (X, τ)  (Y, σ) defined by F (x) = F1 (x) ∩ F2 (x) is uspc. 

Proof.  Let x0  X and suppose V  Σ (F (x0)) in Y.  Now F (x0)  V  F1 (x0) ∩ F2 (x0)  V. Set A = F1 

(x0) – V and B = F2 (x0) – V. Then A = F1 (x0) ∩ V.Since F1 is punctually compact F1 (x0) is compact and V  

 F (σ).  Therefore, A is compact.Pursuing the same reasoning we can show that B is compact. Moreover by 

construction A ∩ B = .Hence there existV1  Σ (A) and V2  Σ (B) such that V1 ∩ V2 = . Now V1 ∪ V 

 Σ (F1 (x0)).The uspc of F1 at x0 ensures the existence of U1  SPO (X, x0) such that F1 [U1]  V1 ∪ V 

F1 (x0)  V1 ∪ V.Pursuing the same argument we obtainF2 (x0)  F2 [U2]  V2 ∪ VwhereU2  SPO (X. 

x0).Therefore F1 (x0) ∩ F2 (x0)  (V1 ∪ V) ∩ (V2 ∪ V)  F (x0)  (V1 ∩ V2) ∪ (V ∩ V2) ∪ (V1 ∩ V) 

∪ (V ∩ V).Let U = U1 ∩ U2.Since X enjoys the property P, U  SPO (X).  Now each Z  U is a member 

of both U1 and U2 for which F (z)  (V1 ∩ V2) ∪ (V ∩ V2) ∪ (V1 ∩ V) ∪ (V ∩ V). Suppose y  F (z).  

Hence the foregoing induces y  (V ∩ V2) ∪ (V1 ∩ V) ∪ V.This  in any case y  V and for any y  F (z), 

y  V. Hence F (z)  V    z  U  F is uspc. 

Theorem 3.6.  Let F : (X, τ)  (Y, σ) be a punctually closed uspc multifunction into a normal space Y such 

that F (x1) ∩ F (x2) =  where x1 ≠ x2.  Then X is a sp-T2 space. 

Proof.Let x1 ≠ x2.Then F(x1)∩F(x2) = .Since F is punctually closed F(x1), F(x2)         F (σ).The 

normality of Y guarantees the existence of sets Vi  Σ (F (xi)) in Y, i = 1, 2 with V1 ∩ V2 = .  Since F is 

uspc for x1, x2  X satisfying the relations F (x1)  V1, F (x2)  V2 there exist  Ui  SPO (X, xi), i = 1, 2 
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such that F [U1]  V1, F [U2]  V2whence F [U1] ∩ F [U2]  V1 ∩ V2 =   F [U1 ∩ U2] =    U1 ∩ 

U2 = .Thus x1 ≠ x2 implies there exist U1  SPO (X, x1), U2  SPO (X, x2) such that U1 ∩ U2 = .So, X 

is sp-T2. 
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