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1 Introduction 
 
 

Let C
n
 be the space of complex complex vector in 

C
n
 from 0 to 

 
 

n -tuples. We shall index the components of a n − 1 . That is u = (u0, u1, u2, 

..., un−1). 

 
 
 

Let G  bethe Minkowski metric tensor definedby 

Gu = (u0, −u1, −u2, ..., −un−1). Clearly the Minkowski metric matrix 

 

G = 
[ 

1 0     

 0 −In−1 
]
 , G = G

∗
  and G

2
 = In.  (1.1) 

Minkowski inner product on C
n
 is defined by (u, v) =< u, Gv > where < . , . > denotes the conventional Hilbert space 

inner product. A space with Minkowski inner product is called a Minkowski space denoted as M. 

 

For A ∈  C
n×n

, x, y ∈  C
n
, by using(1.1), 

 

(Ax, y) = [Ax, Gy] = [x, A
∗

Gy] = [x, G(GA
∗

G)y] = [x, GA
∼

y] = (x, A
∼

y), 

 

where A
∼

 = GA
∗

G, A
∼

 is called the Minkowski adjoint of A in M (A
∗

 is the usual hermitian adjoint of A ). Suppose that 

the square matrix M written as 2 × 2 block matrix 

M = 
[

 A   B 
] 

(1.2) 
C D 

 

where A is a s ×s matrix and D is a t ×t matrix with n = s + t. Here A and 
 
D are square matrices, but B and C are not square unless n = m. Entries are generally assumed to be complex. If A 

is square and nonsingular, then M can be decomposed as 
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M = 
[ 

I
m 0 

] [ 

A 0 

] [ 

Im    A
−1

B 

CA−1 Il 0 D−CA
−1

B 0 Il 

 

] 
. (1.3) 

This decomposition is often called Aitken block-diagonalization formula in the literature, see Puntanen and Styan [12]. 

Moreover, if both M and A are nonsingular, then the Schur complement S = D − CA
−1

B is nonsingular too, and the 

inverse of M can be written in the following form 
 

M−1 = 
[ 

Im A
−1

B 

] 
[ 

A−1  0 Im 0 

] 0  
−

 Il 0 S−1 

] [ 
−CA

−1 
Il 

= 
[ 

 −1 +A
−1

BS
−1

CA
−1  A−1BS−1   

A  −S
−1

CA
−1  − S−1 ]  (1.4) 

This well-known formula is called the Banachiewicz inversion formula for the inverse of a nonsingular matrix in the 

literature, see Puntanen and Styan [12], and can be found in most linear algebra books. The two formulas in (1.3) and 

(1.4) 

 

and their consequences are widely used in manipulating partitioned matrices and their operations. When both A and M in 

(1.2) are singular, the two formulas in (1.3) and (1.4) can be extended to generalized inverses of matrices. 

 

2 Preliminaries 
 

 

Definition 2.1. If A is nonsingular, the Schur complement of M with respect to A is defined as 
 

M/A = D − CA
−1

B. 

 
If D is nonsingular, the Schur complement of M with respect to D is defined as 

 

M/D = A − BD
−1

C. 

 
Matrices of the above form are called the Schur complement of A in M and the Schur complement of D in M respectively. 

 

Definition 2.2. For A ∈  C
n×n

, A is said to be Hermitian positive semi-definite denoted as A ≥ 0 if A is Hermitian and 

[Ax, x] ≥ 0, for all X ∈  C
n
. 

 

Definition 2.3. For any A ∈  C
m×n

, A
m

 is the Minkowski inverse of A if AA
m

A = A, A
m

AA
m

 = A
m

, AA
m

 and A
m

A are m-

symmetric. 

 

For A ∈  C
m×n

, A
†
 exists but the Minkowski inverse A

m
  need not exists in  

m. The existence of A
m

  has been established by Meenakshi [9], by modifying 
 

the definition of Minkowski adjoint as A
∼

 = GA
∗

G, where G is the Minkowski metric matrix of order n. 
 
 

Theorem 2.4. (Theorem 1 [9]) For A ∈  C
m×n

, A
m

 exists if and only if rk(AA
∼

) = rk(A
∼

A) = rk(A). 

 

Definition 2.5. For A ∈  C
n×n

, A is said to be m -symmetric in Minkowski space M if A = A
∼

. 

 

Definition 2.6. A matrix A ∈  C
n×n

 is said to be range symmetric in m if and only if N(A) = N(A
∼

). 
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Theorem 2.7. (Theorem 2.2.8([7])) For A ∈  C
m×n

, if A
m

 exists then (GA)
m

 exists and A
m

G is the Minkowski metric 

tensor of order m . Conversely if (GA)
m

 exists, then A
m

 exists. 

 
 

 

3 Schur complement of m-symmetric matrices using Minkowski inverse 

 

In this section I have obtained Schur-complement of m-symmetric matrices using Minkowski Inverse. 

 
Theorem 3.1. Let M be a block matrix with r(M) = r(A) + r(D). If 

AA
m

B = BDD
m

  and CAA
m

 = DD
m

C, then M has the Minkowski inverse 

M
m

  and          

M = 
[ 

A
m

+A
m

B(D−CA
m

B)
m

CA
m 

− 

A
m

B(D−CA
m

B)
m 

] −(D−CA
m

B)
m

CA
m 

(D−CA
m

B)
m  

(A−BD
m

C)
m 

 −(A−BD
m

C)
m

BD
m 

   

= 
[
 −DmC(A−BDmC)m Dm+DmC(A−BDmC)mBDm 

] 
 (3.1) 

Proof : Using linear transformation        

I 0 A   B I A
m

B  A 0   

[
 −CAm I ] [ C   D ] [ 0 − I 

]
 = 

[
 0    D−CAmB 

] 

From the rank additivity condition r(M) = r(A) + r(D) and r(D) = r(D − 

CA
m

B). Also since B = BDD
m

 and C = DD
m

C.     

If we demonstrate A
m

 + A
m

B(SD)
m

CA
m

 satisfies the Minkowski inverses, then we can say that (SA)
m

 = A
m

 + 

A
m

B(SD)
m

CA
m

. In fact, 
 

(A − BD
m

C)(A
m

B(D − CA
m

B)
m

CA
m

) = AA
m

 + AA
m

B(D − CA
m

B)
m

CA
m

 − BD
m

CA
m

 − BD
m

CA
m

B(D − CA
m

B)
m

CA
m

. 
 

= AA
m

 + (D − CA
m

B)
m

(AA
m

BCA
m

 − BD
m

CA
m

BCA
m

) − BD
m

CA
m

 
 

= AA
m

 − BD
m

CA
m

 + (B − BD
m

CA
m

B)(D − CA
m

B)
m

CA
m

 
 

= AA
m

 − BD
m

CA
m

 + BD
m

(D − CA
m

B)(D − CA
m

B)
m

CA
m

 
 

= AA
m

 − BD
m

CA
m

 + BD
m

CA
m

 = AA
m

. 
 
Therefore 
 

((A−BD
m

C)(A
m

 +A
m

B(D−CA
m

B)
m

CA
m

))
∼

 = (A−BD
m

C)(A
m

 +A
m

B(D− 

CA
m

B)
m

CA
m

). 

 

On the other hand, 
 

(A
m

 + A
m

B(D − CA
m

B)
m

CA
m

)(A − BD
m

C) = A
m

A + A
m

B(D − CA
m

B)
m

CA
m

A − A
m

BD
m

 − A
m

B(D − 

CA
m

B)
m

CA
m

BD
m

C 
 

= A
m

A − A
m

BD
m

C + A
m

B(D − CA
m

B)
m

(D − CA
m

B)D
m

C 
 

= A
m

A − A
m

BD
m

C + A
m

BD
m

C = A
m

A. 
 

Hence, ((A
m

 + A
m

B(D − CA
m

B)
m

)(A − BD
m

C))
∼

 = (A
m

 + A
m

B(D − CA
m

B)
m

CA
m

)(A − BD
m

C.) 

From the above two equalities, we have (A − BD
m

C)(A
m

 + A
m

B(D − CA
m

B)
m

CA
m

)(A − BD
m

C) = AA
m

(A − BD
m

C) 
 

= A − BD
m

C(A
m

 + A
m

B(D − CA
m

B)
m

CA
m

)(A − BD
m

C)(A
m

 + A
m

B(D −  

CA
m

B)
m

CA
m

) 
 

= A
m

A(A
m

 + A
m

B(D − CA
m

B)
m

)CA
m

 
 

= A
m

 + A
m

B(D − CA
m

B)
m

CA
m

. 
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Hence (3.1) holds. Next to show that the matrix 
 

        

[ 

A
m

+A
m

B(D−CA
m

B)
m

CA
m 

− 

A
m

B(D−CA
m

B)
m 

] 

         

         −(D−CA
m

B)
m

CA
m    (D−CA

m
B)

m             
is the m-inverse of M. Since                                

  

[ 

A
m

+A
m

B(D−CA
m

B)
m

CA
m   

− 

A
m

B(D−CA
m

B)
m 

] M = [ 

AA
m   0  

] 

   

     −(D−CA
m

B)
m

CA
m     (D−CA

m
B)

m     0   DD
m    

Further,                                          

M 
[ 

A
m

+A
m

B(D−CA
m

B)
m

CA
m   A

m
B(D−CA

m
B)

m   A   B   AA
m  0 

] 

A   B  

  −(D−CA
m

B)
m

CA
m    −  (D−CA

m
B)

m   
]
 M = 

[
 C   D 

] [ 
0  D

m
D = 

[
 C   D 

]
 = M 

and                                             

 A
m

+A
m

B(D−CA
m

B)
m

CA
m  −A

m
B(D−CA

m
B)

m M  A
m

+A
m

B(D−CA
m

B)
m

CA
m 

−A
m

B(D−CA
m

B)
m  

      

CA
m

B)
m

CA
m 

         

CA
m

B)
m 

   

−(D−CA
m

B)
m

CA
m 

 

(D−CA
m

B)
m 

 

[ 
 

− 

(D 

− 

     (D 

− 

  

] m [ 
 

]     m   m ] [ m    m      m   m  m       m   m ]    
     [    

A  +A  B(D−CA  B)  CA 
  

−A  B(D−CA  B) 
     

    =  A  A  0            

       0   D
m

D    −(D−CA
m

B)
m

CA
m 

  (D−CA
m

B)
m 

      

        

= [ 

A  +A 
m 

B(D−CA 
m 

B) 
m 

CA 
m  

−A 
m 

B(D−CA 
m 

B) 
m 

] 

        
                          

         −(D−CA
m

B)
m

CA
m      (D−CA

m
B)

m            
From the above, we can say that M has Minkowski inverse. 

 

Theorem 3.2. Let M be of the form 
[ ] 
A B 

M = , 
C D 
 

then M is m-symmetric in M iff A is m-symmetric and B = −C
∼

G1, C = −G1B
∼

 and D = D
∗

, where G is the Minkowski 

metric tensor of order as that 

of A. 

 

Proof : Since A is m-symmetric in M, then A = A
∼

, where A
∼

 = GA
∗

G. 

A is m-symmetric iff AG is Hermitian iff GA is Hermitian. 
 

A is m-symmetric iff (Ax, x) = (x, A
∼

x) for every X ∈  C
n
. AG is Hermitian implies that (AG)

∗
 = AG 

G(AG)
∗

G = GAGG 

(AG)
∼

 = GA.  

By a theorem(Theorem 3.3 [8]), B = AA
m

B and C = CA
m

A and D = CA
m

B. Taking Minkowski adjoint and by using G
∼

1 

= G1 and by a theorem, we get C = −G1(A
m

B)
∼

A. 

 

= −G1B
∼

(A
m

)
∼

A 
 

= −G1B
∼

A
m

A  

= −G1B
∼

. 

 

= (−G1(A
m

B)
∼

A)
∼

 
 

= −A
∼

A
m

BG
∼

1  

= −AA
m

BG1 
 

   B = −BG1    

   B
∼

 = −(BG1)
∼

 = −G1
∼

B
∼

 = −G1B
∼

 = C. 
Also  D 

− 
CA

m
B 

≥ 
0.  D  = CA

m
B D

∗
  =  (CA

m
B)
∗

  =  B
∗

(A
m

)
∗

C
∗  

       

= (BA
m

C)
∗  

= D. Thus by using the above M
∼ 

can be expressed in the form 
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M∼  = [ 

A
∼ 

C
∼

G 

1 

]
 ,      −G1B

∼ − 
D∗  

 

4 Partitioned Inverses of the Schur complement in Minkowski space 

 

If A
∼

 is non-singular, then 

    

(M∼)m = 
[ 

A
∼  

− 

C
∼

G 

] 

m    

 
[ 
  −G1B

∼  D∗   1    
]    ] [ 

(A
∼

)
m 

  ] [     

= I    (A
∼

)
m

C
∼

G1  0    I  0  

0 
 

I 
   

0 (M
∼

/A
∼

)
m 

(G1B
∼

)(A
∼

)
m I 

 

      

 

= 
[ 

(A
∼

) m (A
∼

) m C
∼

G1 (M
∼

/A
∼

) m    
I 0 

] 

 
         

 0    (M
∼

/A
∼

)
m  

] [
 (G1B∼)(A∼)m I  

 

 

= 
[ 

(A
∼

)
m

+(A
∼

)
m

C
∼

G1(M
∼

/A
∼

)
m

(G1B
∼

)(A
∼

)
m 

(A
∼

)
m

C
∼

G1(M
∼

/A
∼

)
m 

]  (M
∼

/A
∼

)
m

G1B
∼

(A
∼

)
m   (M

∼
/A
∼

)
m  

Suppose that D
∗

 is non-singular, then      
  A∼ C

∼
G 

1 

] 
m   

  (M
∼

)
m

 = 
[
 −G1B∼ 

− 
D∗   

] 

 
  (M

∼
/D
∗

)
m 

(M
∼

/D
∗

)
m

C
∼

G1(A
∼

)
m  

=
 
[

 (D
∗

)
m

G1B
∼

(M
∼

/D
∗

)
m

    (D
∗

)
m

+(D
∗

)
m

G1B
∼

(M
∼

/D
∗

)
m

C
∼

G1(D
∗

)
m  

If A
∼

 and D
∗

 are both Schur complements then M
∼

/A
∼

 and M
∼

/D
∗

 are all invertible. By comparing the above two 

expressions for (M
∼

)
m

, we get the (non-obvious) formula 

 

(A
∼

 − C
∼

(D
∼

)
m

B
∼

)
m 

 

= (A
∼

)
m

 −(A
∼

)
m

G1B
∼

(D
∗

 −G1B
∼

(A
∼

)
m

C
∼

G1)
m

(−G1B
∼

)(A
∼

)
m

. 

Using this formula, we obtain another expression for the inverse of M
∼

 involving the Schur complements of A
∼

 and D
∗

 

, 
 

 [ m 
A∼ 

m 
−C

∼
G1 

] 
m 

m m  
       

= 
[ 

−G1B
∼ 

D
∗      

] 

(A
∼

−C
∼

(D
∼

)  B
∼

)    (A
∼

)  C
∼

G1(D
∗

−G1B
∼

(A
∼

)  C
∼

G1) 

−(D
∗

−G1B
∼

(A
∼

)
m

C
∼

G1)
m

(−G1B
∼

)(A
∼

)
m   (D

∗
−G1B

∼
(A
∼

)
m

C
∼

G1)
m 

If we set D
∗

 = I and −C
∼

G1 to C
∼

G1  we get    
 

(A
∼

−C
∼

(D
∼

)
m

B
∼

)
m

 = (A
∼

)
m

+(A
∼

)
m

C
∼

G1(I+G1B
∼

(A
∼

)
m

C
∼

G1)
m

(−G1B
∼

)(A
∼

)
m

, 

 
a formula known as the Matrix Inversion formula. 
 
 
 

Theorem 4.1. For any m-symmetric matrix M
∼

 of the form 
 

M∼  = [ 
A
∼ 

−C
∼

G1 

] , −G1C    −G1B
∼ 

http://www.jetir.org/
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If −G1B
∼

 is invertible then the following properties hold.  

(i) If M
∼

 ≻ 0 if and only if (−G1B
∼

) ≻ 0 and A
∼

+C
∼

G1(G1B
∼

)
m

(G1C) ≻ 0 (ii)If (−G1B
∼

) ≻ 0, then M
∼

 ≥ 0 if 

and only if A
∼

 + C
∼

G1(G1B
∼

)
m

(G1C) ≥ 

0. 
 

 

Proof : We know that for any m-symmetric matrix T and any invertible matrix N , the matrix T is positive definite (T ≻ 

0) if and only if N T N
∼

 is positive definite. That is N T N
∼

 ≻ 0. But a block diagonal matrix is positive definite if 

8 
 

 

and only if each diagonal block is positive definite. Hence (i) satisfied. Similarly we can show that for any m-symmetric 

matrix T and any invertible matrix N , we have T ≥ 0 if and only if N T N
∼

 ≥ 0. 

 

Theorem 4.2. For any m-symmetric matrix M
∼

 of the form 
 

M∼  = [ 
A
∼ 

−C
∼

G1 

] , −G1C    −G1B
∼ 

If A
∼

 is invertible then the following properties hold.  

(i) M
∼

 ≻ 0 if and only if A
∼

 ≻ 0 and −G1B
∼

 − G1C(A
∼

)
m

C
∼

G1 ≻ 0 (ii)If A
∼

 ≻ 0, then M
∼

 ≥ 0 if and only if 

−G1B
∼

 − G1C(A
∼

)
m

C
∼

G1 ≥ 0. 

 

Proof : When −G1B
∼

 is singular ( (or) A
∼

 is singular), it is still possible to characterize when a symmetric matrix M
∼

, 

as above is positive semidefinite but this requires using a version of the Schur complement involving the Minkowski 

inverse of −G1B
∼

, namely A
∼

+C
∼

G1(G1B
∼

)
m

G1C (or the Schur complement, −G1B
∼

 + G1C(A
∼

)
m

C
∼

G1 of A
∼

). 

 

 

5 Singular Value Decomposition using 
 

Minkowski Inverses 
 
 

Every square n ×n matrix M
∼

 has a singular value decomposition (SV D). We can write M
∼

 = UΣV 
∼

, where U and V 

are orthogonal matrices and Σ is a diagonal matrix of the form Σ = diag(σ1, σ2, ..., σr, 0, ..., 0) and r is the rank of M
∼

. 

The (σi)′s are called the singular values of M
∼

 and they are the positive square roots of the non zero eigenvalues of M
∼

M 

and M M
∼

. Also U and V are not unique. Furthermore, the columns of V are eigenvectors of M M
∼

 and the columns of U 

are eigenvectors of M
∼

M. Hence M
∼

 = UΣV 
∼

 is a singular value decomposition of M
∼

. 

 

 

If rk(M
∼

M) = rk(M
∼

) = rk(M M
∼

), then (M
∼

)
m

 exists. It is easy to check that M
∼

(M
∼

)
m

M
∼

 = M
∼

, 

(M
∼

)
m

M
∼

(M
∼

)
m

 = (M
∼

)
m

 and both M
∼

(M
∼

)
m

 and (M
∼

)
m

M
∼

 are symmetric matrices.  

In fact  M
∼

(M
∼

)
m

  = UΣV 
∼

V Σ
∼

U
∼ 

= UΣΣ
∼

U
∼ = U 

[ 

Ir 0 

] 
U∼  0 

0
n−r 

             9 

and  (M
∼

)
m

M
∼ 

= V Σ
∼

U
∼

UΣV 
∼ 

= UΣ
∼

ΣV 
∼ 

= 
 I

r 0 
V 
∼

.  We V 

0n−r 
] 

immediately get (M
∼

(M
∼

) m 2 = M ∼(M
∼

) m , ((M
∼

) m 
[

 0 2  m M
∼

. 

 
[ 

Z∼ ] 
 

0 
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)   M
∼

) = (M
∼

)  

So both M
∼

(M
∼

)
m

 and (M
∼

)
m

M
∼

 are orthogonal projections. (since they both are symmetric). We claim that M
∼

(M
∼

)
m

 

is the orthogonal projection onto ker(M
∼

)
⊥

, the orthogonal complement of ker(M
∼

). Obviously, range(M
∼

)(M
∼

)
m

 ⊆ 

range(M
∼

) and for any y = M
∼

x ∈  range(M
∼

), as M
∼

(M
∼

)
m

M
∼

 = M
∼

, we have M
∼

(M
∼

)
m

y = M
∼

(M
∼

)
m

M
∼

x = M
∼

x 

= 
 

y. Therefore  M
∼

(M
∼

)
m

y = y. so the image of  M
∼

(M
∼

)
m

  is indeed the 

range of M
∼

 . It is also clear that Ker(M
∼

) ⊆ ker((M
∼

)
m

M
∼

) and since M
∼

(M
∼

)
m

M
∼

 = M
∼

 . 
 

We       also   

have ker((M
∼

)
m

M
∼

) ⊆ ker(M
∼

) and so Ker((M
∼

)
m

M
∼

) = ker(M
∼

). Since   

(M
∼

)
m

M
∼

 is Hermitian, range ((M
∼

)
m

M
∼

) = ker((M
∼

)
m

M
∼

)
⊥

 = ker(M
∼

)
⊥    

as claimed. It will also be useful to see that range(M
∼

) = range(M
∼

(M
∼

)
m

)   

consists of all vector y ∈  C
n such that U∼ y = [ Z

0
∼  ] with Z ∈  C

r
, Indeed if 

Z
∼ 

] , 

      Σ 0 

y = M
∼

x, then U
∼

y = U
∼

M
∼

x = U
∼

UΣV 
∼

x = ΣV 
∼

x = 
[
 0r 

0n−r 
]
 V 
∼

x = 
[ 

0 

where Σr  is the r × r diagonal matrix diag(σ1, ..., σr) .    
Conversely, if 

[
 Z0

∼ 
] 

  

[
 Z0

∼
 
] 

   

U
∼

y = then y = U    
and    

0  ] 
U∼y 

   

M∼(M∼)my = U 
[

 
Ir    

   0 
0

n−r      

 Ir  0       

= U 
[
 0  0n−r 

]
 U
∼

U 
[
 
Z

0∼ 
] 

    
I
r 0         

= U 
[
 0 0n−r 

] [
 
Z

0∼ 
]
 = U 

[
 
Z

0∼ 
]
 = y.    

Therefore M
∼

(M
∼

)
m

y = y which shows that y belongs to the range of M
∼

. 
Similarly, we claim that range((M

∼
)mM

∼
) = ker(M

∼
)
⊥

 consists of all vector 

 

y ∈  C
n
 such that 

 
V ∼y = , with Z ∈  C

r
. 

 

 

If y = (M
∼

)
∼

M
∼

u, then y = (M
∼

)
∼

M
∼

u = V 
[ 

Ir 0 

] 
V ∼ u = V 

[
 Z0

∼ 
]
 , f or some Z ∈  C

r
. 0 

0
n−r 

 

 

Conversely, if 

V ∼y = [ Z
0
∼ 

] 

    

and so, then y = V [ Z∼ 0 ]   
[

 Z0
∼ 

]
 = V [ 0 

 

0n−r 
] 
V ∼ V [ Z

0
∼  ] = V 

[
 Z0

∼ 
]  

(M
∼

)
m

M
∼

V  = y, 
   Ir  0    

 
 

which shows that y ∈  range((M
∼

)
m

M
∼

). If M
∼

 is a symmetric matrix, then in general there is no SV D, UΣV 
∼

 of M
∼

 

with U = V. However, if M
∼

 ≥ 0, then the eigenvalues of M
∼

 are nonnegative and so the nonzero eigenvalues of M
∼

 are 
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equal to the singular values of M
∼

 and singular value decompositions of M
∼

 of the form M
∼

 = UΣV 
∼

. In this case U 

and V are unitary matrices, M
∼

M and M M
∼

 are Hermitian orthogonal projections. If M
∼

 is a normal matrix which 

means that M
∼

M = M M
∼

, then there is an intimate relationship between singular value decompositions of M
∼

 and block 

diagonalization of M
∼

. If M
∼

 is a normal matrix, then it can be block diagonalized with respect to an orthogonal matrix 

U, as M
∼

 = UΛU
∼

, where Λ is the block diagonal matrix, where Λ = diag(B1, B2, ..., Bn), consisting either of 2 × 2 

blocks of the form 

 

Bj = 
[ 

λj −µj 

] µj λj 

with  µj ̸= 0 or one dimensional blocks Bk = λk. Assume that B1, B2, ..., Bp 

are 2 × 2 blocks and that λ2p+1, ..., λn are the scalar entries. We know that the 
 

numbers λj±iµj, and the λ2p+k  are the eigenvalues of A.   

Let ρ2j−1 = ρ2j 

      

=   (λj)
2
 + (µj)

2
  for j = 1, 2, ..., p.    

  1, 2, ..., n 
− 

2p and assume that the blocks are ordered so that 
ρ2p+j = λj for j =

√ 
        

ρ1 ≥ ρ2 ≥ ... ≥ ρn. Then it is easy to see that    

U U
∼

 = U
∼

U = UΛU
∼

UΛ
∼

U
∼

 = UΛΛ
∼

U
∼

, with ΛΛ
∼

 = diag(ρ1
2
, ..., ρn

2
).   

So, the singular values σ1 ≥ σ2 ≥ ... ≥ σn  of A which are the nonnegative 

square roots of the eigenvalues of AA
∼

, are such that σj = ρj,  1 ≤ j ≤ n.  
For any  A 

∈  
Cn×n in m, If  A  is m-normal if and only if  A

∼
GA = 

            

AGA
∼

 (By Theorem 2.1.3.  [7]).  We can define the diagonal matrices Σ = 

diag(σ1, ..., σr, 0, ..., 0) where r =  rk(A), σ1  ≥ ... ≥ σr  ≥ 0,  and B = 

diag(σ1
−1

B1, ..., σ2
−

p
1
Bp, 1, ..., 1) so that B is an orthogonal matrix and Λ = BΣ = (B1, ..., Bp, λ2p+1, ..., λr, 0, ..., 0). But 

then, we can write A = UΛU
∼

 = UBΣU
∼

 and if we let V = UB, as U is orthogonal and B is also orthogonal, V is also 

11 
 

 

orthogonal and A = V ΣU
∼

 is an SV D for A. Now, we get A
m

 = UΣ
m

V 
∼

 = UΣ
m

B
∼

U
∼

. However, since B is an 

orthogonal matrix, (B)
∼

 = (B)
m

 and a simple calculation shows that Σ
m

B
∼

 = Σ
m

B
−1

 = Λ
m

, which yields the formula 

A
m

 = UΛ
m

U
∼

. Also observe that if we write Λr = (B1, ..., Bp, λ2p+1, ..., λr), 
then Λr  is invertible and     

Λm = 
[ 

(Λ
r0

) 

−1 0 

]
 .  0 

Therefore, the Minkowski inverse of a normal matrix can be computed directly from any block diagonalization of A, as 

claimed. Next we will use the Minkowski inverses to generalize the result to the symmetric matrices 
 

M∼  = [ 
A
∼

−C
∼

G1 

] −G1C   −G1B
∼ 

where −G1B
∼

 (orA
∼

) is singular.   
 
Theorem 5.1. If P is an invertible symmetrix matrix, then the function f(x) = 
 

1
2 x
∼

P x + x
∼

b has a minimum value if and only if P ≥ 0, in whihc case this optimal value is obtained for a unique value 

of x, namely x
∗

 = −P 
m

b, and with f(P 
m

b) = −
1

2 b
∼

P 
m

b. 
 

Proof : Observe that  1 (x + P 
m

b)
∼

P (x + P 
m

b) = 1 x
∼

P x + x
∼

b + 1 b
∼

P 
m

b. 
2 

  

         2  2   

Thus, f(x) = 1 
x
∼

P x + x
∼

b = 
1 
(x + P 

−1
b)
∼

P (x + P 
−1

b) − 
1 
b
∼

P 
m

b. 
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2 2 2  

If  P  has some negative eigenvalue, say −λ (with λ ≥ 0),  if we pick any 

eigenvector u of P associated with λ, then for any α ∈  ℜ with α ̸= 0, if 

we let x = αu − P 
−1

b, then as P u = −λu 
 
we get  

f(x) = 
1
2 (x + P 

m
b)
∼

P (x + P 
m

b) − 
1
2 b

∼
P 

m
b 

  

= 
1

2 αu
∼

P αu − 
1

2 b
∼

P 
m

b 
 

= −
1

2 α
2
λ||u||

2
2 − 

1
2 b

∼
P 

m
b, 

  
and as α can be made as large as we want and λ ≥ 0, we see that f has no minimum. Consequently, in order for f to have a 

minimum, we must have 
 

P ≥ 0. In this case, as (x + P 
m

b)
∼

P (x + P 
m

b) ≥ 0, it is clear that the minimum  

value of f is achieved when x + P 
m

b = 0. That is x = −P 
m

b. 

 

Theorem 5.2. If P is a symmetric matrix, then the function 
 

f(x)  =  
1

2 x
∼

P x + x
∼

b  has a minimum value if and only if  P  ≥ 0  and 

12 
 

 

(I − P P 
m

)b = 0, in which case this minimum value is P 
∗

 = −
1

2 b
∼

P 
m

b. Furthermore, if P = U
∼

ΣU is an SV D of P, 

then the optimal value is achieved 

by all x ∈  C
n of the form x = −P 

m
b + U

∼ 
[ 

0 ]
 , for any Z ∈  C

n−r
  where r Z 

is the rank of P .    

 

 

Proof : The case where P is invertible is taken care of by Theorem 4.1. so, we may assume that P is singular. If P has 

rank r ≺ n, then we can diagonalize 

P as [  ] 
  

 P = U∼  Σr 
0 U, 

 0 0  
 

where U is an orthogonal matrix and where Σr is an r × r diagonal invertible matrix. Then, we have 
 

 1 

x
∼

U
∼ 

[ 

Σ 0 

]
 U x + x

∼
U
∼

U b f(x) = 

 

0
r 

 

2 0 

= 1
 (U x)∼ 

[
 
Σ

r
0 ] 

U x + (U x)∼U b.  
200  
 

 

U x = 
[ 

y     c 

] with y, c ∈  C
r
 and z, d ∈  C

n−r
. z 

] 
and U b = 

[
 d 

    1    Σ  0 

we get f(x) = 

  

(U x)∼  
[ 

0r 

 

0 
]
 U x + (U x)

∼
U b 2  

  1    Σ  0 y  c 
 

= 

 

(y
∼

, z
∼

) [ 0r 

 

0 
] [

 z ] + [ y∼,  z∼ ] 
[ d ]  2  

= 
1

2 y
∼

Σry + y
∼

c + z
∼

d. 
 

For y = 0, we get f(x) = z
∼

d, so if d = 0, the function f has no minimum. 

    ̸        
Therefore, if f  has a minimum, then d = 0. However, d = 0 means that 
 c and we m  1    ∼  
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Ub = [  0 ]     

) which is    know that b is in the range of P (here U is U  

equivalent to (I − P P  )b = 0. If d = 0, then f(x) = 

 
y
∼

Σry + y
∼

c and as 2 

Σr is invertible, By Theorem 4.1, the function f has a minimum if and only if 
Σ

r ≥ 0, which is equivalent to P ≥ 0. Therefore, we proved that if f has a 

minimum, then (I − P P 
m

)b = 0 and P ≥ 0.        

Conversely, if (I −P P 
m

)b = 0 and P ≥ 0. To prove that f does have a minimum. 

When the above conditions hold, the minimum is achieved if y = −Σr
−1

c, z = 0 

and d = 0. That is For x  given by U x
∗

 = 

[ 

−Σr
−1

c and U b = c , 

 ∗  Σr
−1

c 0 ] Σr
−1

c 0 c [ 0 ] 

from which we deduce that x
∗

  = −U
∼

 
[
  0 ] = −U∼  [ 0 0 ] [ 0 ] = 

                13 

∼ 
 −1 

c ∼ 
     

∗  
    

∼ 
 

 Σr        1  m 
 

[ 

 

0n
]
 U b = −P 

 minimum value of f is f(x ) =  b P b, 

−U 0 b and the m 

b + U
∼ 

[ 

0 

] for any z ∈  C 

n r
− 

2    

for any x ∈  C  of the f orm x = −P  z  − .     
 

Our previous calculations shows that f(x) = −
1

2 b
∼

P 
m

b. When a symmetric 

matrix [ 

A
∼ 

−C
∼

G1 

] is positive semidefinite. Thus we want to know when −G1C −G1B
∼ 

the function 

f(x, y) = (x
∼

, y
∼

) 
[ 

  

] [ 

 

] 

   A
∼ 

−C
∼

G1 x 

   −G1C   −G1B
∼ 

y 

f(x, y) = x
∼

A
∼

x − 2x
∼

C
∼

G1y − y
∼

G1B
∼

y 
 

has a minimum with respect to both x and y. Holding y constant, Theorem 4.2 implies that f(x, y) has a minimum if and 

only if A ≥ 0 and (I − AA
∼

)By = 0 and then, the minimum value is 

 

f(x
∗

, y) = −y
∼

B
∼

A
m

By + y
∼

cy = y
∼

(c − B
∼

A
m

B)y. 

 
Since we want f(x, y)  to be uniformly bounded from below for all  x, y  we 

must have  (I 
− 

AA
m

)B = 0.  Now, f(x
∗

, y)  has a minimum if and only if 
    

C − B
∼

A
m

B ≥ 0. Therefore we established that A ≥ 0, (I − AA
m

)B = 0, 

f(x, y) has a minimum over all x, y if and only if A ≥ 0,  (I − AA
m

)B = 

0, C − B
∼

A
m

B ≥ 0. A similar reasoning applies if we first minimize with 

respect to y and then with respect to x, but this time, the Schur complement 

A
∼

 − C
∼

G1(G1B
∼

)
m

(C
∼

G1)
∼

, of −G1B
∼

 is involved. Putting all these facts 

together we get our main result.   

Theorem 5.3. Given any symmetric matrix 

    

M∼  = [ 
A∼ −C

∼
G1 

    −G1C    −G1B∼ 
]
 
, 

the        

following conditions are equivalent. (i) M
∼

 ≥ 0(M
∼

ispositivesemidef inite.) 
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(ii)  A
∼

 ≥ 0, (I − A
∼

(A
∼

)
m

)(−C
∼

G1) = 0,   − G1B
∼

 − G1C(A
∼

)
m

C
∼

G1 ≥ 0. 

(iii) − G1B
∼

 ≥ 0,  (I − G1B
∼

BG1)(−G1C)
∗

 = 0 

 

Proof : If M
∼

 ≥ 0, then by Theorem 4.1 and 4.2 it is clear that the above conditions are equivalent (using the fact A
m

AA
m

 

= A
m

 and C
m

CC
m

 = C
m

). 

14 
 

 

Example 5.4. 

M = 
[ 

1 0 0 

] 0 −1 −i 

 0 −i 2  
be the partitioned matrix of the form  

B 
] 

  

[ A   
C D 

 

where A and D are square and nonsingular matrices.Here M = M
∼

 then we say that the matrix M is m-symmetric. 
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