Shehu Transform for Solving Abel's Integral Equation

Sudhanshu Aggarwal ${ }^{1 \text { * }}$, Anjana Rani Gupta ${ }^{2}$
${ }^{1 *}$ Assistant Professor, Department of Mathematics, National P.G. College, Barhalganj, Gorakhpur-273402, U.P., India
${ }^{2}$ Professor, Department of Mathematics, Noida Institute of Engineering \& Technology, Greater Noida-201306, U.P., India

Abstract

Abel's integral equation is an important singular integral equation and generally appears in many branches of sciences such as atomic scattering, mechanics, radio astronomy, physics, electron emission, X-ray radiography and seismology. In this paper, we use Shehu transform for solving Abel's integral equation and some numerical applications are given to demonstrate the effectiveness of Shehu transform for solving Abel's integral equation.

KEYWORDS: Abel's integral equation, Shehu transforms, Inverse Shehu transform, Convolution theorem.
AMS S UBJECT CLASSIFICATION 2010: 44A 05, 44A 35, 45E10.
I. INTRODUCTION: In 1823, Niels Henrik Abel discussed the motion of particle on smooth curve lying on a vertical plane using Abel's integral equation in mathematical form as [1-2]
$f(x)=\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t$
In equation (1), the kernel of integral equation, $K(x, t)=\frac{1}{\sqrt{x-t}}$ becomes ∞ at $t=x$, the function $f(x)$ is known function and the function $g(t)$ is unknown function.

Integral transforms are widely used mathematical techniques for solving advanced problems of science and engineering which mathematically express in terms of differential equations, partial differential equations, integral equations, partial integrodifferential equations, integro-differential equations etc. Many researchers used different integral transforms (Laplace transform [3-4], Fourier transform [3], Hankel transform [3], Kamal transfom [5, 16-19, 38], Mahgoub transform [8-12, 24], Elzaki transform [6-7, 30-31], Mohand transform [20-22, 36-37, 39-40], Aboodh transform [13-15, 23, 32-35], Su mudu transform [4142], Wavelet transform [3]) for solving many problems of science and engineering. Aggarwal and others [25-29] discussed the comparative study between these transforms. Aggarwal and Sharma [43] gave the solution of Abel's integral equation by Aboodh transform method.

The Shehu transform of the function $F(t)$ for all $t \geq 0$ is defined as [44]:
$S\{F(t)\}=\int_{0}^{\infty} F(t) e^{-\frac{v t}{u}} d t=H(v, u), v>0, u>0$,
where the operator S is called the Shehu transform operator.
The Shehu transform of the function $F(t)$ for $t \geq 0$ exist if $F(t)$ is piecewise continuous and of exponential order. These conditions are only sufficient conditions for the existence of Shehu transforms of the function $F(t)$. Aggarwal and Gupta [45] discussed Sumudu transform for the solution of Abel's integral equation. Application of Kamal transform for solving Abel's integral equation was given by Aggarwal and Sharma [46]. Aggarwal et al. [47] gave a new application of Mohand transform for handling Abel's integral equation. Application of Shehu transform for handling growth and decay problems was given by Aggarwal et al. [48]. Aggarwal et al. [49] gave a new application of Shehu transform for handling Volterra integral equations of first kind.

In this paper, we are giving the solution of Abel's integral equation using Shehu transform and explain all procedure by giving some numerical applications in application section.

II. SOME US EFUL PROPERTIES OF SHEHU TRANSFORM:

2.1 Linearity property of Shehu transforms [44, 48-49]:

If Shehu transform of functions $F_{1}(t)$ and $F_{2}(t)$ are $H_{1}(v, u)$ and $H_{2}(v, u)$ respectively then Shehu transform of $\left[a F_{1}(t)+b F_{2}(t)\right]$ is given by $\left[a H_{1}(v, u)+b H_{2}(v, u)\right]$, where a, b are arbitrary constants.

2.2Change of scale property of Shehu transform [44]:

If Shehu transform of function $F(t)$ is $H(v, u)$ then Shehu transform of function $F(a t)$ is given by $\frac{1}{a} H\left(\frac{v}{a}, u\right)$.

2.3 Shifting property of She hu transform:

If Shehu transform of function $F(t)$ is $H(v, u)$ then Shehu transform of function $e^{a t} F(t)$ is given by $H(v-a u, u)$.

2.4Shehu transform of the derivatives of the function $F(t)[44,49]$:

If $S\{F(t)\}=H(v, u)$ then
a) $S\left\{F^{\prime}(t)\right\}=\frac{v}{u} H(v, u)-F(0)$
b) $S\left\{F^{\prime \prime}(t)\right\}=\frac{v^{2}}{u^{2}} H(v, u)-\frac{v}{u} F(0)-F^{\prime}(0)$
c) $S\left\{F^{(n)}(t)\right\}=\frac{v^{n}}{u^{n}} H(v, u)-\sum_{k=0}^{n-1}\left(\frac{v}{u}\right)^{n-(k+1)} F^{(k)}(0)$

2.5 Convolution theorem for Shehu transforms [49]:

If Shehu transform of functions $F_{1}(t)$ and $F_{2}(t)$ are $H_{1}(v, u)$ and $H_{2}(v, u)$ respectively then Shehu transform of their convolution
$F_{1}(t) * F_{2}(t)$ is given by $S\left\{F_{1}(t) * F_{2}(t)\right\}=S\left\{F_{1}(t)\right\} S\left\{F_{2}(t)\right\}$
$\Rightarrow S\left\{F_{1}(t) * F_{2}(t)\right\}=H_{1}(v, u) H_{2}(v, u)$, where $F_{1}(t) * F_{2}(t)$ is defined by
$F_{1}(t) * F_{2}(t)=\int_{0}^{t} F_{1}(t-x) F_{2}(x) d x=\int_{0}^{t} F_{1}(x) F_{2}(t-x) d x$.
Proof: By the definition of Shehu transform, we have
$S\left\{F_{1}(t) * F_{2}(t)\right\}=\int_{0}^{\infty} e^{-\frac{v t}{u}}\left[F_{1}(t) * F_{2}(t)\right] d t$
$\Rightarrow S\left\{F_{1}(t) * F_{2}(t)\right\}=\int_{0}^{\infty} e^{-\frac{v t}{u}}\left[\int_{0}^{t} F_{1}(t-x) F_{2}(x) d x\right] d t$
By changing the order of integration, we have
$S\left\{F_{1}(t) * F_{2}(t)\right\}=\int_{0}^{\infty} F_{2}(x)\left[\int_{x}^{\infty} e^{-\frac{v t}{u}} F_{1}(t-x) d t\right] d x$
Put $t-x=p$ so that $d t=d p$ in above equation, we have
$S\left\{F_{1}(t) * F_{2}(t)\right\}=\int_{0}^{\infty} F_{2}(x)\left[\int_{0}^{\infty} e^{-\frac{v(p+x)}{u}} F_{1}(p) d p\right] d x$
$\Rightarrow S\left\{F_{1}(t) * F_{2}(t)\right\}=\int_{0}^{\infty} F_{2}(x) e^{-\frac{x v}{u}}\left[\int_{0}^{\infty} e^{-\frac{p v}{u}} F_{1}(p) d p\right] d x$
$\Rightarrow S\left\{F_{1}(t) * F_{2}(t)\right\}=H_{1}(v, u) H_{2}(v, u)$.

III. SHEHU TRANS FORM OF FREQUENTLY ENCOUNTER ED FUN CTIONS [44, 48-49]:

Table: 1

S.N.	$F(t)$	$S\{F(t)\}=H(v, u)$
1.	1	$\frac{u}{v}$
2.	t	$\left(\frac{u}{v}\right)^{2}$

3.	t^{2}	$2!\left(\frac{u}{v}\right)^{3}$
4.	$t^{n}, n \in N$	$n!\left(\frac{u}{v}\right)^{n+1}$
5.	$t^{n}, n>-1$	$\Gamma(n+1)\left(\frac{u}{v}\right)^{n+1}$
6.	$e^{a t}$	$\frac{u}{v-a u}$
7.	sinat	$\frac{a u^{2}}{\left(v^{2}+a^{2} u^{2}\right)}$
8.	cosat	$\frac{u v}{\left(v^{2}+a^{2} u^{2}\right)}$
9.	sinhat	$\frac{a u^{2}}{\left(v^{2}-a^{2} u^{2}\right)}$
10.	coshat	$\frac{u v}{\left(v^{2}-a^{2} u^{2}\right)}$
11	$J_{0}(a t)$	$\frac{u}{\sqrt{\left(v^{2}+a^{2} u^{2}\right)}}$

IV. INVERS E S HEHU TRANS FORM [44, 48-49]:

If $H(v, u)$ is the Shehu transforms of $F(t)$ then $F(t)$ is called the inverse Shehu transform of $H(v, u)$ and in mathe matical terms, it can be expressed as $F(t)=S^{-1}\{H(v, u)\}$, where S^{-1} is an operator and it is called as inverse Shehu transform operator.

V. LINEARITY PROPERTY OF INVERS E S HEHU TRANS FORMS [48-49]:

If $S^{-1}\left\{H_{1}(v, u)\right\}=F(t)$ and $S^{-1}\left\{H_{2}(v, u)\right\}=G(t)$ then $S^{-1}\left\{a H_{1}(v, u)+b H_{2}(v, u)\right\}=a S^{-1}\left\{H_{1}(v, u)\right\}+b S^{-1}\left\{H_{2}(v, u)\right\}$ $\Rightarrow S^{-1}\left\{a H_{1}(v, u)+b H_{2}(v, u)\right\}=a F(t)+b G(t)$, where a, b are arbitrary constants.

VI. INVERS E S HEHU TRANS FORM OF FREQUENTLY ENCOUNTERED FUNCTIONS [48-49]:

Table: 2

S.N.	$H(v, u)$	$F(t)=S^{-1}\{H(v, u)\}$
1.	$\frac{u}{v}$	1
2.	$\left(\frac{u}{v}\right)^{2}$	t
3.	$\left(\frac{u}{v}\right)^{3}$	$\left.\frac{t^{2}}{v}\right)^{n+1}, n \in N$
4.	$\left(\frac{u}{v}\right)^{n+1}, n>-1$	$\frac{t^{n}}{n!}$
5.	$\frac{t^{n}}{\Gamma(n+1)}$	

6.	$\frac{u}{v-a u}$	$e^{a t}$
7.	$\frac{u^{2}}{\left(v^{2}+a^{2} u^{2}\right)}$	$\frac{\operatorname{sinat}}{a}$
8.	$\frac{u v}{\left(v^{2}+a^{2} u^{2}\right)}$	cosat
9.	$\frac{u^{2}}{\left(v^{2}-a^{2} u^{2}\right)}$	$\frac{\operatorname{sinhat}}{a}$
10.	$\frac{u v}{\left(v^{2}-a^{2} u^{2}\right)}$	coshat
11.	$\frac{u}{\sqrt{\left(v^{2}+a^{2} u^{2}\right)}}$	$J_{0}(a t)$

VII. SHEHU TRANS FORM FOR SOLVING ABEL'S INTEGRAL EQUATION: In this section, we present Shehu transform for the solution of Abel's integral equation.

Taking Shehu transform of both sides of (1), we have
$S\{f(x)\}=S\left\{\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t\right\}$
$\Rightarrow S\{f(x)\}=S\left\{x^{-1 / 2} * g(x)\right\}$
Applying convolution theorem of Shehu transform in (3), we have
$S\{f(x)\}=S\left\{x^{-1 / 2}\right\} S\{g(x)\}$
$\Rightarrow S\{f(x)\}=\left[\sqrt{\pi}\left(\frac{u}{v}\right)^{1 / 2}\right] S\{g(x)\}$
$\Rightarrow S\{g(x)\}=\frac{1}{\sqrt{\pi}}\left(\frac{v}{u}\right)^{1 / 2} S\{f(x)\}$
$\Rightarrow S\{g(x)\}=\frac{v}{\pi u}\left[\sqrt{\pi}\left(\frac{u}{v}\right)^{1 / 2} S\{f(x)\}\right]$
$\Rightarrow S\{g(x)\}=\frac{v}{\pi u}\left[S\left\{x^{-1 / 2}\right\} S\{f(x)\}\right]$
$\Rightarrow S\{g(x)\}=\frac{v}{\pi u} S\left\{x^{-1 / 2} * f(x)\right\}$
$\Rightarrow S\{g(x)\}=\frac{v}{\pi u}\left[S\left\{\int_{0}^{x} \frac{1}{\sqrt{x-t}} f(t) d t\right\}\right]$
$\Rightarrow S\{g(x)\}=\frac{v}{\pi u} S\{F(x)\}$
where $F(x)=\int_{0}^{x} \frac{1}{\sqrt{x-t}} f(t) d t$
Now apply ing the property, Shehu transform of derivative of the function, on (5), we have
$S\left\{F^{\prime}(x)\right\}=\frac{v}{u} S\{F(x)\}-F(0)$
$\Rightarrow S\left\{F^{\prime}(x)\right\}=\frac{v}{u} S\{F(x)\}$
$\Rightarrow S\{F(x)\}=\frac{u}{v} S\left\{F^{\prime}(x)\right\}$
Now from (4) and (6), we have
$S\{g(x)\}=\frac{1}{\pi} S\left\{F^{\prime}(x)\right\}$
Taking inverse Shehu transform on both sides of (7), we get
$u(x)=\frac{1}{\pi} F^{\prime}(x)=\frac{1}{\pi} \frac{d}{d x} F(x)$
Using (5) in (8), we have
$g(x)=\frac{1}{\pi}\left[\frac{d}{d x} \int_{0}^{x} \frac{1}{\sqrt{x-t}} f(t) d t\right]$
which is the required solution of (1).
VIII. APPLICATIONS: In this section, we present some numerical applications to demonstrate the effectiveness of Shehu transform to solve Abel's integral equation.
8.1 Consider the Abel's integral equation:
$x=\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t$
Taking Shehu transform of both sides of (10), we have
$S\{x\}=S\left\{\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t\right\}$
$\Rightarrow\left(\frac{u}{v}\right)^{2}=S\left\{x^{-1 / 2} * g(x)\right\}$
Applying convolution theorem of Shehu transform in (11), we have
$\left(\frac{u}{v}\right)^{2}=S\left\{x^{-1 / 2}\right\} S\{g(x)\}$
$\Rightarrow\left(\frac{u}{v}\right)^{2}=\left[\sqrt{\pi}\left(\frac{u}{v}\right)^{1 / 2}\right] S\{g(x)\}$
$\Rightarrow S\{g(x)\}=\frac{1}{\sqrt{\pi}}\left(\frac{u}{v}\right)^{3 / 2}$
Applying inverse Shehu transform on both sides of (12), we get
$g(x)=\frac{1}{\sqrt{\pi}} S^{-1}\left\{\left(\frac{u}{v}\right)^{3 / 2}\right\}$
$\Rightarrow g(x)=\frac{2}{\pi} x^{1 / 2}$
which is the required solution of (10).
8.2 Consider the Abel's integral equation:
$1+x+x^{2}=\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t$
Taking Shehu transform of both sides of (14), we have
$S\{1\}+S\{x\}+S\left\{x^{2}\right\}=S\left\{\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t\right\}$
$\Rightarrow \frac{u}{v}+\left(\frac{u}{v}\right)^{2}+2 \cdot\left(\frac{u}{v}\right)^{3}=S\left\{x^{-1 / 2} * g(x)\right\}$
Applying convolution theorem of Shehu transform in (15), we have
$\frac{u}{v}+\left(\frac{u}{v}\right)^{2}+2 \cdot\left(\frac{u}{v}\right)^{3}=S\left\{x^{-1 / 2}\right\} S\{g(x)\}$
$\Rightarrow \frac{u}{v}+\left(\frac{u}{v}\right)^{2}+2 \cdot\left(\frac{u}{v}\right)^{3}=\left[\sqrt{\pi}\left(\frac{u}{v}\right)^{1 / 2}\right] S\{g(x)\}$
$\Rightarrow S\{g(x)\}=\frac{1}{\sqrt{\pi}}\left[\left(\frac{u}{v}\right)^{1 / 2}+\left(\frac{u}{v}\right)^{3 / 2}+2 \cdot\left(\frac{u}{v}\right)^{5 / 2}\right]$
Applying inverse Shehu transform on both sides of (16), we get
$g(x)=\frac{1}{\sqrt{\pi}} S^{-1}\left\{\left(\frac{u}{v}\right)^{1 / 2}+\left(\frac{u}{v}\right)^{3 / 2}+2 \cdot\left(\frac{u}{v}\right)^{5 / 2}\right\}$
$\Rightarrow g(x)=\frac{1}{\sqrt{\pi}}\left[S^{-1}\left\{\left(\frac{u}{v}\right)^{1 / 2}\right\}+S^{-1}\left\{\left(\frac{u}{v}\right)^{3 / 2}\right\}+2 S^{-1}\left\{\left(\frac{u}{v}\right)^{5 / 2}\right\}\right]$
$\Rightarrow g(x)=\frac{1}{\pi}\left[x^{-1 / 2}+2 x^{1 / 2}+\frac{8}{3} x^{3 / 2}\right]$
which is the required solution of (14).
8.3 Consider the Abel's integral equation:
$3 x^{2}=\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t$
Taking Shehu transform of both sides of (18), we have
$3 S\left\{x^{2}\right\}=S\left\{\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t\right\}$
$\Rightarrow 6 \cdot\left(\frac{u}{v}\right)^{3}=S\left\{x^{-1 / 2} * g(x)\right\}$
Applying convolution theorem of Shehu transform in (19), we have
6. $\left(\frac{u}{v}\right)^{3}=S\left\{x^{-1 / 2}\right\} S\{g(x)\}$
$\Rightarrow 6 \cdot\left(\frac{u}{v}\right)^{3}=\left[\sqrt{\pi}\left(\frac{u}{v}\right)^{1 / 2}\right] S\{g(x)\}$
$\Rightarrow S\{g(x)\}=\frac{6}{\sqrt{\pi}}\left(\frac{u}{v}\right)^{5 / 2}$
Applying inverse Shehu transform on both sides of (20), we get
$g(x)=\frac{6}{\sqrt{\pi}} S^{-1}\left\{\left(\frac{u}{v}\right)^{5 / 2}\right\}$
$\Rightarrow g(x)=\frac{8}{\pi} x^{3 / 2}$
which is the required solution of (18).
8.4 Consider the Abel's integral equation:
$\frac{4}{3} x^{3 / 2}=\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t$
Taking Shehu transform of both sides of (22), we have
$\frac{4}{3} S\left\{x^{3 / 2}\right\}=S\left\{\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t\right\}$
$\Rightarrow \sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{5 / 2}=S\left\{x^{-1 / 2} * g(x)\right\}$
Applying convolution theorem of Shehu transform in (23), we have
$\sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{5 / 2}=S\left\{x^{-1 / 2}\right\} S\{g(x)\}$
$\Rightarrow \sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{5 / 2}=\left[\sqrt{\pi}\left(\frac{u}{v}\right)^{1 / 2}\right] S\{g(x)\}$
$\Rightarrow S\{g(x)\}=\left(\frac{u}{v}\right)^{2}$
Applying inverse Shehu transform on both sides of (24), we get
$g(x)=S^{-1}\left\{\left(\frac{u}{v}\right)^{2}\right\}$
$\Rightarrow g(x)=x$
which is the required solution of (22).
8.5 Consider the Abel's integral equation:
$2 \sqrt{x}+\frac{8}{3} x^{3 / 2}=\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t$
Taking Shehu transform of both sides of (26), we have
$2 S\left\{x^{1 / 2}\right\}+\frac{8}{3} S\left\{x^{3 / 2}\right\}=S\left\{\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t\right\}$
$\Rightarrow \sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{3 / 2}+2 \sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{5 / 2}=S\left\{x^{-1 / 2} * g(x)\right\}$
Applying convolution theorem of Shehu transform in (27), we have
$\sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{3 / 2}+2 \sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{5 / 2}=S\left\{x^{-1 / 2}\right\} S\{g(x)\}$
$\Rightarrow \sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{3 / 2}+2 \sqrt{\pi} \cdot\left(\frac{u}{v}\right)^{5 / 2}=\left[\sqrt{\pi}\left(\frac{u}{v}\right)^{1 / 2}\right] S\{g(x)\}$
$\Rightarrow S\{g(x)\}=\frac{u}{v}+2 \cdot\left(\frac{u}{v}\right)^{2}$
Applying inverse Shehu transform on both sides of (28), we get
$g(x)=S^{-1}\left\{\frac{u}{v}\right\}+2 S^{-1}\left\{\left(\frac{u}{v}\right)^{2}\right\}$
$\Rightarrow g(x)=1+2 x$
which is the required solution of (26).
8.6 Consider the Abel's integral equation:
$\frac{3}{8} \pi x^{2}=\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t$
Taking Shehu transform of both sides of (30), we have
$\frac{3}{8} \pi S\left\{x^{2}\right\}=S\left\{\int_{0}^{x} \frac{1}{\sqrt{x-t}} g(t) d t\right\}$
$\Rightarrow \frac{3 \pi}{4}\left(\frac{u}{v}\right)^{3}=S\left\{x^{-1 / 2} * g(x)\right\}$
Applying convolution theorem of Shehu transform in (31), we have
$\frac{3 \pi}{4}\left(\frac{u}{v}\right)^{3}=S\left\{x^{-1 / 2}\right\} S\{g(x)\}$
$\Rightarrow \frac{3 \pi}{4}\left(\frac{u}{v}\right)^{3}=\left[\sqrt{\pi}\left(\frac{u}{v}\right)^{1 / 2}\right] S\{g(x)\}$
$\Rightarrow S\{g(x)\}=\frac{3}{4} \sqrt{\pi}\left(\frac{u}{v}\right)^{5 / 2}$
Applying inverse Shehu transform on both sides of (32), we get
$g(x)=\frac{3}{4} \sqrt{\pi} S^{-1}\left\{\left(\frac{u}{v}\right)^{5 / 2}\right\}$
$\Rightarrow g(x)=x^{3 / 2}$
which is the required solution of (30).
IX. CONCLUSION: In this paper, we have successfully discussed Shehu transform for the solution of Abel's integral equation. The given numerical applications in the application section explain the complete procedure for the solution of Abel's integral equation using Shehu transform. The results show that Shehu transform is a powerful integral transform method for the solution of Abel's integral equation. In the future, Shehu transform can be used for solving other singular integral equations.

REFERENCES

[1] Wazwaz, A.M., Linear and nonlinear integral equations: Methods and applications, Higher Education Press, Beijing, 2011.
[2] Rah man, M., Integral equation and their applications, Wit Press Southampton, Boston, 2007.
[3] Lokenath Debnath and Bhatta, D., Integral transforms and their applications, Second edition, Chapman \& Hall/CRC, 2006.
[4] Aggarwal, S., Gupta, A.R., Singh, D.P., Asthana, N. and Kumar, N., Application of Lap lace transform for solving population growth and decay problems, International Journal of Latest Technology in Engineering, Management \& Applied Science, 7(9), 141-145, 2018.
[5] Aggarwal, S. and Gupta, A.R., Solution of linear Volterra integro-differential equations of second kind using Kamal transform, Journal of Emerg ing Technologies and Innovative Research, 6(1), 741-747, 2019.
[6] Aggarwal, S., Chauhan, R. and Sharma, N., Application of Elzaki transform for solving linear Volterra integral equations of first kind, International Journal of Research in Advent Technology, 6(12), 3687-3692, 2018.
[7] Aggarwal, S., Singh, D.P., Asthana, N. and Gupta, A.R., Application of Elzaki transform for solving population growth and decay problems, Journal of Emerging Technologies and Innovative Research, 5(9), 281-284, 2018.
[8] Aggarwal, S., Sharma, N., Chauhan, R., Gupta, A.R. and Khandelwal, A., A new application of Mahgoub transform for solving linear ordinary differential equations with variable coefficients, Journal of Computer and Mathematical Sciences, 9(6), 520-525, 2018.
[9]Aggarwal, S., Chauhan, R. and Sharma, N., A new application of Mahgoub transform for solving linear Volterra integral equations, Asian Resonance, 7(2), 46-48, 2018.
[10] Aggarwal, S., Sharma, N. and Chauhan, R., Solution of linear Volterra integro-differential equations of second kind using Mahgoub transform, International Journal of Latest Technology in Engineering, Management \& Applied Science, 7(5), 173-176, 2018.
[11] Aggarwal, S., Sharma, N. and Chauhan, R., Application of Mahgoub transform for solving linear Volterra integral equations of first kind, Global Journal of Eng ineering Science and Researches, 5(9), 154-161, 2018.
[12] Aggarwal, S., Pandey, M., Asthana, N., Singh, D.P. and Kumar, A., Application of Mahgoub transform for solving population growth and decay problems, Journal of Computer and Mathematical Sciences, 9(10), 1490-1496, 2018.
[13] Aggarwal, S., Sharma, N. and Chauhan, R., Application of Aboodh transform for solving linear Volterra integro-differential equations of second kind, International Journal of Research in Advent Technology, 6(6), 1186-1190, 2018.
[14] Aggarwal, S., Sharma, N. and Chauhan, R., A new application of Aboodh transform for solving linear Volterra integral equations, Asian Resonance, 7(3), 156-158, 2018.
[15] Aggarwal, S., Asthana, N. and Singh, D.P., Solution of population growth and decay problems by using Aboodh transform method, International Journal of Research in Advent Technology, 6(10), 2706-1190, 2710.
[16] Aggarwal, S., Chauhan, R. and Sharma, N., A new application of Kamal transform for solving linear Volterra integral equations, International Journal of Latest Technology in Engineering, Management \& Applied Science, 7(4), 138-140, 2018.
[17] Gupta, A.R., Aggarwal, S. and Agrawal, D., Solution of linear partial integro-differential equations using Kamal transform, International Journal of Latest Technology in Engineering, Management \& Applied Science, 7(7), 88-91, 2018.
[18] Aggarwal, S., Sharma, N. and Chauhan, R., Application of Kamal transform for solving linear Volterra integral equations of first kind, International Journal of Research in Advent Technology, 6(8), 2081-2088, 2018.
[19] Aggarwal, S., Gupta, A.R., Asthana, N. and Singh, D.P., Application of Kamal transform for solving population growth and decay problems, Global Journal of Engineering Science and Researches, 5(9), 254-260, 2018.
[20] Aggarwal, S., Sharma, N. and Chauhan, R., Solution of population growth and decay problems by using Mohand transform, International Journal of Research in Advent Technology, 6(11), 3277-3282, 2018.
[21] Aggarwal, S., Sharma, N. and Chauhan, R., Solution of linear Volterra integral equations of second kind using Mohand transform, International Journal of Research in Advent Technology, 6(11), 3098-3102, 2018.
[22] Aggarwal, S., Chauhan, R. and Sharma, N., Mohand transform of Bessel's functions, International Journal of Research in Advent Technology, 6(11), 3034-3038, 2018.
[23] Aggarwal, S., Sharma, N. and Chauhan, R., Application of Aboodh transform for solving linear Volterra integral equations of first kind, International Journal of Research in Advent Technology, 6(12), 3745-3753, 2018.
[24]Chauhan, R. and Aggarwal, S., Solution of linear partial integro-differential equations using Mahgoub transform, Periodic Research, 7(1), 28-31, 2018.
[25] Aggarwal, S. and Chaudhary, R., A comparative study of Mohand and Laplace transforms, Journal of Emerging Technologies and Innovative Research, 6(2), 230-240, 2019.
[26] Aggarwal, S., Sharma, N., Chaudhary, R. and Gupta, A.R.,A comparative study of Mohand and Kamal transforms, Global Journal of Engineering Science and Researches, 6(2), 113-123, 2019.
[27] Aggarwal, S., Mishra, R. and Chaudhary, A., A comparative study of Mohand and Elzaki transforms, Global Journal of Engineering Science and Researches, 6(2), 203-213, 2019.
[28] Aggarwal, S. and Chauhan, R., A comparative study of Mohand and Aboodh transforms, International Journal of Research in Advent Technology, 7(1), 520-529, 2019.
[29] Aggarwal, S. and Sharma, S.D., A comparative study of Mohand and Sumudu transforms, Journal of Emerg ing Technologies and Innovative Research, 6(3), 145-153, 2019.
[30] Elzaki, T.M. and Ezaki, S.M., On the Elzaki transform and ordinary differential equation with variable coefficients, Advances in Theoretical and Applied Mathematics, 6(1), 41-46, 2011.
[31] Elzaki, T.M. and Ezaki, S.M., Applications of new transform 'Elzaki transform'' to partial differential equations, Global Journal of Pure and Applied Mathematics, 7(1), 65-70, 2011.
[32] Aboodh, K.S., Application of new transform "Aboodh Transform" to partial differential equations, Global Journal of Pure and Applied Mathematics, 10(2), 249-254, 2014.
[33] Aboodh, K.S., Farah, R.A., Almardy, I.A. and Osman, A.K., Solving delay differential equations by Aboodh transformation method, International Journal of Applied Mathematics \& Statistical Sciences, 7(2), 55-64, 2018.
[34] Aboodh, K.S., Farah, R.A., Almardy, I.A. and Almostafa, F.A., Solution of partial integro-differential equations by using Aboodh and double Aboodh transforms methods, Global Journal of Pure and Applied Mathematics, 13(8), 4347-4360, 2016.
[35]Mohand, D., Aboodh, K.S. and Abdelbagy, A., On the solution of ordinary differential equation with variable coefficients using Aboodh transform, Advances in Theoretical and Applied Mathematics, 11(4), 383-389, 2016.
[36] Kumar, P.S., Saranya, C., Gnanavel, M.G. and Viswanathan, A., Applications of Mohand transform for solving linear Volterra integral equations of first kind, International Journal of Research in Advent Technology, 6(10), 2786-2789, 2018.
[37] Kumar, P.S., Gomathi, P., Gowri, S. and Viswanathan, A., Applications of Mohand transform to mechanics and electrical circuit problems, International Journal of Research in Advent Technology, 6(10), 2838-2840, 2018.
[38]Abdelilah, K. and Hassan, S., The use of Kamal transform for solving partial differential equations, Adv ances in Theoretical and Applied Mathematics, 12(1), 7-13, 2017.
[39] Sathya, S. and Rajeswari, I., Applications of Mohand transform for solving linear partial integro-differential equations, International Journal of Research in Advent Technology, 6(10), 2841-2843, 2018.
[40] Kumar, P.S., Gnanavel, M.G. and Viswanathan, A., Application of Mohand transform for solving linear Volterra integrodifferential equations, International Journal of Research in Advent Technology, 6(10), 2554-2556, 2018.
[41] Watugula, G.K., Sumudu transform: A new integral transform to solve differential equations and control engineering problems, International Journal of Mathematical Education in Science and Technology, 24(1), 35-43, 1993.
[42] Belgacem, F.B.M. and Karaballi, A.A., Su mudu transform fundamental properties investigations and applications, Journal of Applied Mathematics and Stochastic Analysis, 1-23, 2006.
[43]Aggarwal, S. and Sharma, S.D., Solution of Abel's integral equation by Aboodh transform method, Journal of Emerging Technologies and Innovative Research, 6(4), 317-325, 2019.
[44] Maitama, S. and Zhao, W., New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations, International Journal of Analysis and Applications, 17(2), 167-190, 2019.
[45] Aggarwal, S. and Gupta, A.R., Sumudu transform for the solution of Abel's integral equation, Journal of Emerging Technologies and Innovative Research, 6(4), 423-431, 2019.
[46] Aggarwal, S. and Sharma, S.D., Application of Kamal transform for solving Abel's integral equation, Global Journal of Engineering Science and Researches, 6(3), 82-90, 2019.
[47]Aggarwal, S., Sharma, S.D. and Gupta, A.R., A new application of Mohand transform for handling Abel's integral equation, Journal of Emerging Technologies and Innovative Research, 6(3), 600-608, 2019.
[48]Aggarwal, S., Sharma, S.D. and Gupta, A.R., Application of Shehu transform for handling growth and decay problems, Global Journal of Engineering Science and Researches, 6(4), 190-198, 2019.
[49] Aggarwal, S.,Gupta, A.R. and Sharma, S.D., A new application of Shehu transform for handling Volterra integral equations of first kind, International Journal of Research in Advent Technology, 7(4), 439-445, 2019.

