
© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905I20 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 133

Comparative Analysis of Ambiguities Resolving

Tools in Natural Language Software Requirements

Ashima Gambhir

Assistant Professor

Department of Computer Science

Amity University Haryana,India

Abstract-- Requirement Engineering is the primarily important behavior in Software Development Life Cycle(SDLC). In

many software systems development projects, the documents available for software requirement analysis are in natural language.

Normally, the users express their requirements in natural language statements that primarily come out easy to state. In any case,

being expressed in regular language, the announcement of prerequisites frequently will in general experience the ill effects of

misinterpretations and off base deductions. Subsequently, the necessities indicated in this manner, may prompt ambiguities in the

product details.There are so many techniques and tools are available to determine the ambiguities from Software Requirement

documents. This paper presents a state-of-the-art survey and talk about presently available tools for resolving of ambiguity. The

main objective of this paper is distributed, divide and examine the research work available in the area, determine matrices for a

relative evaluation. Ongoing work, some observations are explained to improving the quality of the requirement analysis process.

Keywords— Requirement Engineering, Ambiguity, Natural language Processing.

I. INTRODUCTION

Requirements Engineering (RE) is the action that includes the capacities related with the extraction, modeling, analysis,

verification and specification of the clients necessities [1]. The RE movement frequently begins with the dubiously characterized

necessities [2] and results in the end in to a Software Requirements Specification (SRS) record. The industrial software specifier

writes the SRS in natural language. Even if a final SRS is written in a formal language, its first draft is usually written in a Natural

language(NL). A NL SRS enhances the communication between all the stakeholders. However, on the downside, often a NL SRS

is imprecise, unmanaged, indeterminate, inaccurate, unremarkable and ambiguous may ultimately leads to time and cost. An

ambiguity can be of different kinds i.e. lexical, semantic, syntactic, pragmatic, vagueness, generality and language error

ambiguity.

Manually resolving ambiguity from NL Software Requirements is a time consuming, tedious, expensive and error prone process.

An automated and semi automated approach is desirable to resolve ambiguities from software requirement document. There are a

number of different tools viz. WSD [11], QuaARS[12], ARM [13], RESI [14], SREE [15, 16], NAI [17, 18], SR-Elicitor [19], and

NL2OCL [20] developed to detect and resolve ambiguities. Subsequently, in this paper, we endeavor to display a knowledge into

how current ambiguities settling instruments work, the methodology pursued by each apparatus, the kinds of ambiguities settled

and the highlights they support. We utilize the presentation estimates, for example, Recall, Precision and F-measure to relatively

examine the exhibition of the vagueness settling tools.

II. AMBIGUITY

Ambiguity is termed as competence of being implicit in possible more than two different minds. An vagueness has two sources:

missing data and correspondence blunders. Mistakes are sorted in two different ways. The first is creator autonomous blunders –

ones, that can be settled without area information for example "syntactic mistakes." The other is creator subordinate blunders –

ones that need area information to determine for example "absence of detail" to address the blunder [6, 9].

There are two main categorize of ambiguities i.e. linguistic ambiguities and software engineering ambiguities. Table 1 shows the

two main types of ambiguities with subtypes and examples[25].

Table 1: Ambiguity Types

Language

Ambiguity

Ambiguity Types Subtype

Lexical

Ambiguity

Homonym Ambiguity Polysemy Ambiguity

Syntactic

Ambiguity

Analytical_Ambiguity, Attachment_Ambiguity,

Coordination Ambiguity, Elliptical Ambiguity

Semantic

Ambiguity

Scope Ambiguity

Pragmatic

Ambiguity

Referential_Ambiguity, Deictic Ambiguity

 Requirements Document Ambiguity

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905I20 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 134

RE-

Specific

Ambiguity

Application Domain Ambiguity

System Domain Ambiguity

Development Domain Ambiguity

Vagueness, Language error, Conceptual Translational Ambiguity

A. Lexical Ambiguity: Lexical ambiguity takes place if a word has multiple connotations. Example: “Malika walked to the

bank” This could mean that Malika walked to the edge of the river or financial institution.

B. Syntactic Ambiguity: A sequence of words with numerous suitable grammatical interpretations regardless of context .

Example: “Quickly read and discuss the tutorial”.

C. Semantic Ambiguity: A sentence with more than one explanation in its provided context. Example: Melissa and Freddy

are married.

D. Vagueness Ambiguity: A statement that admits borderline cases or relative interpretation. Example: “Freddy is tall”.

E. Incompleteness Ambiguity: A linguistically right sentence that gives too little detail to pass on a specific or required

significance. Model: "Consolidate flour, eggs, and salt to make new pasta." overlooks some essential data, for example,

amount of materials and strategies to be utilized.

F. Referential Ambiguity: A grammatically correct sentence with a reference that confuses the reader based on the context.

Example: “The boy told his father about the damage. He was very upset”.

III. APPROCHES TO DETECT AND RESOLVE AMBIGUITY

Software Requirements are specified in natural language tend to be ambiguous. Firstly pre-processed the specified document to

reduce ambiguity by using Natural language Processing Technique. The possible usage of NLP techniques are: extract

requirements from the document, tag the requirements sentence, find duplicate requirements, do the machine translation and

extract the ambiguous requirements.

The basic NLP issues are Part-of-Speech (POS) tagging, parsing and ambiguity. POS tagging marks every word of a sentence

with predefined parts-of-speech (noun, verb, adjective, etc.).The process of tagging becomes difficult when the word is

ambigious. For example:

(a) I want a book.

(b) I want to book a ticket.

In the first sentence (a) the word “book” is a noun and in second sentence (b) the word “book” is a verb. Following are some

approaches available to resolve the tag ambiguity.

A. Rule Based approach: It is extremely laborious because it requires keeping the rules up to date that cover all cases.

B. Statistical Based Approach: It is based on training data set.

C. Hybrid Based Approach: It combines the features of both statistical approach and rule based approach.

The author suggest following steps to resolve the ambiguities.

1. Input English Sentences and its UML class model.

2. Parse the sentence using Stanford parser.

3. Perform syntactic analysis.

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905I20 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 135

Figure 1 explains the more different approaches to detect the different types of ambiguities.

Figure 1:Different approaches to detect ambiguities

 IV. COMPARATIVE ANALYSIS OF AMBIGUITY RESOLVING TOOLS

TABLE 2: COMPARATIVE ANALYSIS OF AMBIGUITY RESOLVING TOOLS

Feature Support Approach Technolog

y Used

Pre

Processi

ng

Concerned

Ambiguity

User

Interactio

n

Elicit

OOT

Remarks

OOV of

NLRS(Automatic)

Knowledge

based to

ontology

GATE tool

, Brill

tagger

Yes Pronoun

anaphora

average True Non

functional

requirements

elicitation.

Ontology

generation.

RA in RS via

OOM(Semi-

Automatic)

Controlled

language

Dowser

Parser

No Semantic average True Cannot

agreement

with modal

verbs and

negations.

Evoke

78.8% (

Compound

noun) Evoke

93.9%(

Single noun

)

SREE(Semi-

Automatic)

Rule based,

Style guide

WordNet,

POS

tagger

No Identify

Plural,

Coordinatio

n, Pronoun,

Quantifier,

Vague

small False Report

Summary of

Ambiguous

and

incomplete

requirements

Approaches

Checklist
Based

Inspection
Approach

Controlled
Language

Style Guides
Knowledge

Based
Approach

Heuristic
Based

approach

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905I20 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 136

statements.

Evoke 100%

RESI(Semi-

Automatic)

Knowledge

Based to

ontology

Stanford

parser,

Cyc,

ConceptN

et,

WordNet

Yes Avoid

Lexical,

Scope,

Language

Error

elevated True Input should

be in the

graph

GrGen

format.

NAI(Automatic) Machine

learning/heuristi

cs based

LogitBoos

t, Named

entity

recognitio

n

Yes Noun and

Verb

compound

coordinatio

n,

Anaphora

ambiguity

average False Establish the

Degree of

nocuity that

the system

should

tolerate.

Accuracy

70% and

Evoke 100%

(Coordinatio

n) Accuracy

82.4% and

Evoke

74.2%

(Anaphora)

SR-

Elicitor(Automatic

)

Controlled

Language

SBVR,

POS

Tagger

No Lexical,

Syntactic,

Scope-

Quantifier

small True SBVR rule

generation.

Recall

80.12% and

Precision

85.76%

NL2OCL(Automat

ic)

Knowledge

Based to

ontology

SBVR,

Stanford

parser

No Attachment

,

Homonymy

Small True A UML

class model

is required

as an input.

Evoke

92.85%

Accuracy

92.85% (

Attachment)

Accuracy

99.0%

(Homonymy

)

CKCO(Automatic) Knowledge

Based to

ontology

WordNet,

WSD

No Lexical –

Polysemy

(ambiguity

of nouns)

small False Resolved

Ambiguity

posed to

Question

Answering

(QA) system

Precision

83.4%

http://www.jetir.org/

© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1905I20 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 137

V. CONCLUSION

Encouraged by the significance of resolving ambiguities, in this paper, I overview the cutting edge in methodologies for settling

ambiguities in normal language prerequisites. I survey and talk about various kinds of methodologies and instruments accessible

for settling ambiguities in the normal language programming prerequisites determination. I see that the devices are extensively

delegated mechanized and semi-computerized. The coherence and comprehend capacity of the necessities increments by applying

space explicit language, limited punctuation/syntax and sentence designs.

However, it requires lot of human process, significant expertise and complex to apply in every environment.To identifying the

semantic ambiguities, tools that use machine learning approaches and knowledge based to ontology are efficient and give accurate

results. However, majority tools use natural language processing tools viz. Stanford parser, dowser parser that is still under

improvements. Accuracy of the disambiguation tools depends on the parser they use. If the parser does not recognize the right

tokens and their dependencies, then the whole process becomes insufficient, eventually leads to a waste of efforts.

REFERENCES

[1] Sommerville, I. and Sawyer, P. 1997. Requirements Engineering A good practice guide. Chichester: John Wiley & Sons Ltd.

[2] Nuseibeh, B., & Easterbrook, S. 2000, May. Requirements engineering: a roadmap. In Proceedings of the Conference on the Future of Software Engineering

(pp. 35-46).

[3] Belev, G. C. 1989, January. Guidelines for specification development. InReliability and Maintainability Symposium, 1989. Proceedings., Annual (pp. 15-21).

IEEE.

 [4] Christel, M. G., & Kang, K. C. 1992. Issues in requirements elicitation (No. CMU/SEI-92-TR-12). CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST.

[5] Donald G. Firesmith. 2007. Common Requirements Problems, Their Negative Consequences, and Industry Best Practices to Help Solve Them. In Journal of

Object Technology, vol. 6, no. 1, January-February 2007, pp. 17-33

[6] Berry, D. M., Kamsties, E., & Krieger, M. M. 2003. From contract drafting to software specification: Linguistic sources of ambiguity. Technical Report,

University of Waterloo, Waterloo, Canada. Available at. http://se.uwaterloo.ca/~dberry/handbook/ ambiguityHandbook.pdf

[7] Hutchison, D., Araki, K., Kanade, T., Kittler, J., Kleinberg, J. M., Liu, S. and Weikum, G. 2008. Formal Methods and Software Engineering: 10th International

Conference on Formal Engineering Methods, ICFEM 2008, Kitakyushu-City, Japan, October 27-31, 2008. Proceedings. Berlin, Heidelberg: Springer Berlin

Heidelberg.

[8] Wordsworth, John B. 1992. Software development with Z: a practical approach to formal methods in software engineering. Addison-Wesley Longman

Publishing Co., Inc., 1992.

 [9] Kamsties, E., & Peach, B. 2000, December. Taming ambiguity in natural language requirements. In Proceedings of the Thirteenth International Conference on

Software and Systems Engineering and Applications.

[10] Zave, Pamela. 1997. Classification of research efforts in requirements engineering. ACM Computing Surveys (CSUR) 29.4 (1997): 315-321.

[11] Nancy Ide and Jean Véronis. 1998. Introduction to the special issue on word sense disambiguation: The state of the art. Computational Linguistics - Special

issue on word sense disambiguation, Volume 24 Issue 1,2-40.

[12] Fabbrini, F., M. Fusani, S. Gnesi, and G. Lami. 2001. The Linguistic Approach to the Natural Language Requirements Quality: Benefit of the use of an

Automatic Tool. SEW’01 proceeding of the 26th annual NASA Goddard Software En gineering Workshop, IEEE Computer Society Washington, DC, USA, 97.

[13] Willis, Alistair, Francis Chantree, and Anne De Roeck. 2008. Automatic Identification of Nocuous Ambiguity. Research on Language &Computation, (3-4),

1-23.

[14] Sven Körner and TorbenBrumm. 2009. RESI-A natural language specification improver. IEEE International Conference on Semantic Computing (ICSC).

[15] Sri Fatimah Tjong. 2008. Avoiding ambiguity in requirements specifications.Thesis submitted to the University of Nottingham for the degree of Doctor of

Philosophy.

[16] Tjong, Sri Fatimah, and Daniel M. Berry. 2013. The Design of SREE—A Prototype Potential Ambiguity Finder for Requirements Specifications and Lessons

Learned. Requirements Engineering: Foundation for Software Quality. Springer Berlin Heidelberg, 2013. 80-95.

 [17] Hui Yang, Alistair Willis, Anne De Roeck, Bashar Nuseibeh. 2010. Automatic Detection of Nocuous Coordination Ambiguities in Natural Language

Requirements. Proceedings of the IEEE/ACM

international conference on Automated software engineering, 5362.ISBN: 978-1-4503-0116-9. DOI=10.1145/1858996.1859007.

[18] Hui Yang, Anne de Roeck ,Vincenzo Gervasi, Alistair Willis Bashar Nuseibeh. 2011. Analyzing anaphoric ambiguity in natural language requirements.

Requirements Engineering - Special Issue on Best Papers of RE'10: Requirements Engineering in a Multifaceted World, Volume 16 Issue 3,

163189.DOI=10.1007/s00766-011-0119-y.

 [19] Basili, Victor R., Scott Green, Oliver Laitenberger, Filippo Lanubile, Forrest Shull, Sivert Sorumgard. 1995. The Empirical Investigation of Perspective-

Based Reading. Technical report the empirical investigation of perspective based reading.

[20] Imran SarwarBajwa. 2012. Resolving Syntactic Ambiguities in Natural Language Specification of Constraints. CICLing'12 Proceedings of the 13th

international conference on Computational Linguistics and Intelligent Text Processing, Volume 1, 178-187.

[21] Abderrahman Matoussi and RégineLaleau. 2008. A Survey of Non-Functional Requirements. In Software Development Process Technical report TR-LACL-

2008-7, LACL (Laboratory of Algorithms, Complexity and Logic), University of Paris-Est (Paris 12).

 [22] Heitmeyer, Constance L., Ralph D. Jeffords, and Bruce G. Labaw., 1996. Automated Consistency Checking of Requirements Specifications. ACM

Transactions on Software Engineering and Methodology (TOSEM), ACM vol. 5, no. 3, 231–261. DOI=>10.1145/234426.234431.

[23] Ryan and K. 1993. The role of natural language in requirements engineering. Proceedings of the IEEE Int. Symposium onRequirements Engineering. San

Diego, CA, 240-242.

[24] Kof and L. 2004. Natural Language Processing for Requirement Engineering: Applicability to large Requirements Documents. Available at.

http://www.dsl.uow.edu.au/~jp989/Scalability_ WITSE04.pdf [25] Eric Brill. 1995. Transformation-Based Error-Driven Learning and Natural Language

Processing: A Case Study in Part-of-Speech Tagging. Journal computational linguistics volume 21 issue 4 December, 543-565.

[25] Ashima rani and Gaurav Aggarwal 2018. Advanced Practices to detect ambiguities and inconsistencies from software requirements. Proceedings of the IEEE

Int. Conference on system modelling & advancement in research trends,17-21.

http://www.jetir.org/

