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Abstract: One of the growing research area in Graph theory is graph labeling which is defined by assigning non negative integer 

values to the vertices or edges of a graph subject to certain conditions. Labeling finds its application in social psychology, 

astronomy, electrical circuit theory, communication network, channel assignment problems and X-ray crystallography. In this paper 

different labelings are applied on cycles with parallel P3 chords. It is proved that cycles with parallel P3 chords admit square 

difference labeling, cube sum labeling, cube difference labeling and absolute difference of cube sum and square sum labeling. 
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1.INTRODUCTION 

 In 1967 Rosa [10] introduced the notion of graph labeling. An extensive survey on graph labeling can be seen in Gallian 

[4]. In the past five decades researchers have introduced many labeling techniques. Shiama introduced square difference labeling 

and proved that Pn, Cn, cycle cactus, wheels, comb, star graphs, crown, dragon, quadrilateral snakes admit square difference labeling 

[12]. Some results on square difference labeling can also be seen in [1], [12], [13], [15], [18]. Cube sum labeling was also studied 

by researchers in the literature of graph labeling [16]. The notion of cube difference labeling was also introduced by Shiama and 

proved in [14] that paths, cycles, stars, fan graphs, crown graphs, coconut trees and shell graphs admit cube difference labeling. 

Cube difference labeling of various classes of graphs are discussed in [2], [3] and [19]. Based on the definition of square sum 

labeling and cube sum labeling, Mathew Varkey T.K. et al [5] introduced absolute difference of cube sum and square sum labeling 

abbreviated as ADCSS labeling and proved that banana tree, coconut tree and bamboo tree admit ADCSS labeling. Many families 

of graphs that admit ADCSS labeling are found in [5], [6], [7], [8] and [9].  The main aim of this paper is to show that cycles with 

parallel P3 chords admit these labelings. Labelings on cycles with parallel chords and parallel P3 chords are discussed in [17], [20] 

and [21]. The basic definitions needed for this work are given below. 

 

Definition 1.1: [1] 

Let G be a graph with p vertices and q edges. G is said to be a square difference graph if there is a bijection f : V(G) 

→{0,1,...,p-1} such that the induced mapping f * : E(G) → Z+ given by f *(uv) = | [f (u)]2 - [f (v)]2 | for every edge uv ∈ E(G) are all 

distinct. 

Definition 1.2: [16] 

Let G be a graph with p vertices and q edges. G is said to be a cube sum graph if there is a bijective mapping f : V(G) 

→{0,1,...,p-1} such that the induced mapping  f * : E(G) → Z+  defined by  f *(uv) =  [f (u)]3 + [f (v)]3 for every edge uv ∈ E(G) are 

all distinct. 

 Definition 1.3: [3] 
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Let G be a graph with p vertices and q edges. G is said to be a cube difference graph if there is a bijection      f : V(G) 

→{0,1, ..., p-1} such that the induced mapping f *: E(G) → Z+ given by f *(uv) = | [f (u)]3- [f (v)]3 | for every  edge uv ∈ E (G) are 

all distinct. 

Definition 1.4: [10] 

 A graph G with p vertices is said to admit absolute difference of cubic and square sum labeling-ADCSS labeling if there 

is a bijective mapping f : V(G) →{1,2, ..., p} such  that  the induced mapping f *: E(G) → 2 Z+ defined by   f *(uv) = | [f (u)]3 + [f 

(v)]3 – ([f (u)]2 + [f (v)]2) | is injective.  

Definition 1.5: [11] 

A cycle with parallel P3 chords is a graph G obtained from the cycle Cn: u0u1u2…...un-1u0 by  adding  disjoint paths P3’s 

(chords) between the  pair of  vertices  u1un-1, u2un-2,... 𝑢∝ 𝑢𝛽 of Cn    where α = ⌊𝑛

2
⌋ -1, 𝛽 =  ⌊𝑛

2
⌋ + 2  if  n is odd (or) 𝛽 =  ⌊𝑛

2
⌋ + 1  if 

n is even.  Then│V(G)│= 𝑁 =  
3𝑛−2

2
  and │E(G)│= M = 2n – 2  if n is even and  𝑁 =  

3𝑛−3

2
  and M = 2n – 3 if n is odd as shown in 

Fig.1a and Fig.1b. 

Note that throughout this paper the word ‘chord’ is used to denote a path connecting two non-adjacent vertices of the cycle. Cn 

denotes a cycle of length n and Pk is a path of order k. 

 

 

 

2. MAIN RESULTS 

Theorem 2.1: Every cycle Cn (n ≥ 6) with parallel P3 chords is a square difference graph. 
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Proof: Consider G as a cycle Cn with parallel P3 chords having vertices 𝑣0 , 𝑣1, 𝑣2…, 𝑣𝑁−1 where N = |V (G)| =  
3𝑛−2

2
  if n is even 

and  
3𝑛−3

2
  if n is odd.  𝑣0 𝑣1𝑣2…𝑣𝑁−1 be the Hamiltonian path of G with v0 = u0 and vN-1 = 𝑢

⌊
𝑛

2
⌋
 of Cn considered in definition 1.5 

which is shown in fig. 2a and fig. 2b. The vertex labeling and the edge labeling for the two cases depending on n are given in case 

1 and case 2 respectively. 

Case 1: Let n be even.   

Define a bijection f : V(G) → {0,1,2,…N-1}as follows: 

𝑓(𝑣2𝑖) = 𝑖, 0 ≤ 𝑖 ≤
𝑁 − 1

2
 𝑖𝑓 𝑛 ≡ 0 𝑚𝑜𝑑 4 𝑎𝑛𝑑 0 ≤ 𝑖 ≤

𝑁 − 2

2
 𝑖𝑓 𝑛 ≡ 2 𝑚𝑜𝑑 4 

𝑓(𝑣2𝑖+1 ) =  
3𝑛 − 2𝑖 − 4

2
, 0 ≤ 𝑖 ≤

𝑁 − 3

2
 𝑖𝑓 𝑛 ≡ 0 𝑚𝑜𝑑 4 𝑎𝑛𝑑 0 ≤ 𝑖 ≤

𝑁 − 2

2
 𝑖𝑓 𝑛 ≡ 2 𝑚𝑜𝑑 4 

Edge set E(G) is given by E(G) = E1U E2 U E3 U E4 U E5 where 

𝐸1 = {𝑣2𝑖𝑣2𝑖+1, 0 ≤ 𝑖 ≤  ⌊
𝑁−3

2
⌋  𝑖𝑓 𝑛 ≡ 0 𝑚𝑜𝑑 4 𝑎𝑛𝑑 0 ≤ 𝑖 ≤  ⌊

𝑁−2

2
⌋  𝑖𝑓 𝑛 ≡ 2 𝑚𝑜𝑑 4} 

𝐸2 = {𝑣2𝑖−1𝑣2𝑖 , 1 ≤ 𝑖 ≤  ⌊𝑁−1

2
⌋ 𝑖𝑓 𝑛 ≡ 0 𝑚𝑜𝑑 4 𝑎𝑛𝑑 1 ≤ 𝑖 ≤  ⌊𝑁−2

2
⌋ 𝑖𝑓 𝑛 ≡ 2 𝑚𝑜𝑑 4} along the Hamiltonian path and  

𝐸3 = {𝑣6𝑖−5𝑣6𝑖 , 1 ≤ 𝑖 ≤ ⌊
𝑁−2

6
⌋}  

𝐸4 =  {𝑣6𝑖−2𝑣6𝑖+3, 1 ≤ 𝑖 ≤ ⌊
𝑁−4

6
⌋}  and  

𝐸5 =  {𝑣0𝑣3, 𝑣𝑁−4𝑣𝑁−1} along the non-Hamiltonian path. 

Define the injective function f * : E(G) → Z+ as follows: 

𝑓∗(𝑣2𝑖 𝑣2𝑖+1 ) =  
3𝑛 − 4

4
(3𝑛 − 4 − 4𝑖), 0 ≤

𝑁 − 3

2
 𝑖𝑓 𝑛 ≡ 0 𝑚𝑜𝑑 4 𝑎𝑛𝑑 0 ≤ 𝑖 ≤

𝑁 − 2

2
 𝑖𝑓 𝑛 ≡ 2 𝑚𝑜𝑑 4 

𝑓∗(𝑣2𝑖−1 𝑣2𝑖 ) =  
3𝑛 − 2

4
(3𝑛 − 2 − 4𝑖), 1 ≤

𝑁 − 1

2
 𝑖𝑓 𝑛 ≡ 0 𝑚𝑜𝑑 4 𝑎𝑛𝑑 1 ≤ 𝑖 ≤

𝑁 − 2

2
 𝑖𝑓 𝑛 ≡ 2 𝑚𝑜𝑑 4 

𝑓∗(𝑣6𝑖−5𝑣6𝑖) =  
3𝑛 + 2

4
(3𝑛 − 12𝑖 + 2), 1 ≤ 𝑖 ≤ ⌊

𝑁 − 2

6
⌋ 

𝑓∗(𝑣6𝑖−2𝑣6𝑖+3) =  
3𝑛 − 2

4
(3𝑛 − 12𝑖 − 10) + 3(6𝑖 + 1), 1 ≤ 𝑖 ≤ ⌊

𝑁 − 4

6
⌋ 

𝑓∗(𝑣0𝑣3) =  (𝑁 − 2)2 

𝑓 ∗(𝑣𝑁−4𝑣𝑁−1) =  {
3𝑛 , 𝑖𝑓 𝑛 ≡ 0 𝑚𝑜𝑑 4

  3𝑛 − 6, 𝑖𝑓 𝑛 ≡ 2𝑚𝑜𝑑 4
 

All the edge labels are distinct and G is a square difference graph. 

Case 2: Let n be odd 

Define a bijection f : V(G) → {0,1,2,…N-1}as follows: 

𝑓(𝑣2𝑖) = 𝑖, 0 ≤
𝑁 − 2

2
 𝑖𝑓 𝑛 ≡ 1 𝑚𝑜𝑑 4 𝑎𝑛𝑑 0 ≤ 𝑖 ≤

𝑁 − 1

2
 𝑖𝑓 𝑛 ≡ 3 𝑚𝑜𝑑 4 

𝑓(𝑣2𝑖+1 ) =  
3𝑛 − 2𝑖 − 5

2
, 0 ≤

𝑁 − 2

2
 𝑖𝑓 𝑛 ≡ 1 𝑚𝑜𝑑 4 𝑎𝑛𝑑 0 ≤ 𝑖 ≤

𝑁 − 3

2
 𝑖𝑓 𝑛 ≡ 3 𝑚𝑜𝑑 4 

Edge set E(G) is given by E(G) = E1U E2 U E3 U E4 U E5 where 

𝐸1 = {𝑣2𝑖𝑣2𝑖+1, 0 ≤ 𝑖 ≤  ⌊
𝑁−2

2
⌋  𝑖𝑓 𝑛 ≡ 1 𝑚𝑜𝑑 4 𝑎𝑛𝑑 0 ≤ 𝑖 ≤  ⌊

𝑁−3

2
⌋  𝑖𝑓 𝑛 ≡ 3 𝑚𝑜𝑑 4} 

𝐸2 = {𝑣2𝑖−1𝑣2𝑖 , 1 ≤ 𝑖 ≤  ⌊𝑁−2

2
⌋ 𝑖𝑓 𝑛 ≡ 1 𝑚𝑜𝑑 4 𝑎𝑛𝑑 1 ≤ 𝑖 ≤  ⌊𝑁−1

2
⌋ 𝑖𝑓 𝑛 ≡ 3 𝑚𝑜𝑑 4}  along the Hamiltonian path and 

𝐸3 = {𝑣6𝑖−5𝑣6𝑖 , 1 ≤ 𝑖 ≤ ⌊
𝑁−2

6
⌋}  

𝐸4 =  {𝑣6𝑖−2𝑣6𝑖+3, 1 ≤ 𝑖 ≤ ⌊
𝑁−4

6
⌋} and    

𝐸5 =  {𝑣0𝑣3, 𝑣𝑁−5𝑣𝑁−1}  along the non-Hamiltonian path. 

Define the induced function f * : E(G) → Z+ as follows: 

𝑓∗(𝑣2𝑖 𝑣2𝑖+1 ) =  
3𝑛 − 5

4
(3𝑛 − 5 − 4𝑖), 0 ≤

𝑁 − 2

2
 𝑖𝑓 𝑛 ≡ 1 𝑚𝑜𝑑 4 𝑎𝑛𝑑 0 ≤ 𝑖 ≤

𝑁 − 3

2
 𝑖𝑓 𝑛 ≡ 3 𝑚𝑜𝑑 4 

𝑓∗(𝑣2𝑖−1 𝑣2𝑖 ) =  
3𝑛 − 3

4
(3𝑛 − 3 − 4𝑖), 1 ≤

𝑁 − 2

2
 𝑖𝑓 𝑛 ≡ 1 𝑚𝑜𝑑 4 𝑎𝑛𝑑 1 ≤ 𝑖 ≤

𝑁 − 1

2
 𝑖𝑓 𝑛 ≡ 3 𝑚𝑜𝑑 4 
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𝑓∗(𝑣6𝑖−5𝑣6𝑖) =  
3𝑛 + 1

4
(3𝑛 − 12𝑖 + 1), 1 ≤ 𝑖 ≤  ⌊

𝑁 − 2

6
⌋ 

𝑓∗(𝑣6𝑖−2𝑣6𝑖+3) =  
3𝑛−3

4
(3𝑛 − 12𝑖 − 11) + 3(6𝑖 + 1), 1 ≤ 𝑖 ≤ ⌊

𝑁−4

6
⌋ 

𝑓∗(𝑣0𝑣3) =  (𝑁 − 2)2 

𝑓∗(𝑣𝑁−5𝑣𝑁−1) =  {
3𝑛 + 1 , 𝑖𝑓 𝑛 ≡ 1 𝑚𝑜𝑑 4
 3𝑛 − 9, 𝑖𝑓 𝑛 ≡ 3 𝑚𝑜𝑑 4

 

All the edge labels are distinct and G is a square difference graph. 

 

Theorem 2.2:  Every cycle Cn (n ≥ 6) with parallel P3 chords is a cube sum graph. 

Proof: Consider the graph G as a cycle Cn with parallel P3 chords. The Hamiltonian path of G is 𝑣0 𝑣1𝑣2…𝑣𝑁−1 where N = |V(G)| 

by definition 1.5. The vertex labeling and the induced edge labeling for the two cases depending on n are given below.  

Define a bijection f : V(G) → {0,1,2,…N-1}  as follows: 

f (vi) = i , 0 ≤ i ≤ N-1 

The edge set E (G) is given by  

E(G) = E1U E2U E3 where 

E1 = {vi vi+1, 0 ≤ i ≤ N-2} is the edge set along the Hamiltonian path. 

E2 = {v3i-2 v3i+3, 1 ≤ i ≤ ⌊
𝑁

4
⌋ if n is even & 1 ≤ i ≤ ⌊

𝑁−3

4
⌋ if n is odd} and E3 ={v0v3,  vN-4 vN-1 if n is even  & v0v3,  vN-5 vN-1 if n is odd} are 

the edge sets that are not in the Hamiltonian path.  

Define the injective function f * : E(G) → Z+ as follows 

f * (vi vi+1) = 2i3 + 3i2 + 3i +1, 0 ≤ i ≤ N-2  

f * (v3i -2 v3i+3) = 54i3 + 27i2 + 117i + 19, 1 ≤ i ≤ ⌊𝑁

4
⌋  if n is even and 1 ≤ i ≤ ⌊𝑁−3

4
⌋  if n is odd  

f * (v0 v3) = 27 

f * (vN-4 vN-1) = [N-1]3 + [N-4]3 

f * (vN-5 vN-1) = [N-1]3 + [N-5]3 

The eldge labels along the Hamiltonian path are in an increasing sequence and are distinct. Along the non-Hamiltonian path, the 

adjacent vertex of v3i -2 is v3i+3 whereas in the Hamiltonian path the adjacent vertices of v3i -2 is either v3i -1 or v3i -3. When i ≠ j, f * (vi 

vi +1) ≠ f * (v3j -2 v3j+3). Hence G is a cube sum graph.  

 

Theorem 2.3:  Every cycle Cn (n ≥ 6) with parallel P3 chords is a cube difference graph. 

Proof: Consider the graph G as a cycle Cn with parallel P3 chords. The Hamiltonian path of G is 𝑣0 𝑣1𝑣2…𝑣𝑁−1 where N = |V (G)| 

by definition 1.5. The vertex labeling and the induced edge labeling for the two cases depending on n are given below. 

Define a bijection f : V(G) → {0,1,2,…N-1}  as follows: 

f (vi) = i , 0 ≤ i ≤  N-1 

The edge set E (G) is given by  

E(G) = E1U E2U E3 where 

E1 = {vi vi+1, 0 ≤ i ≤ N-2} is the edge set along the Hamiltonian path. 

E2 = {v3i-2 v3i+3, 1 ≤ i ≤ ⌊
𝑁

4
⌋ if n is even & 1 ≤ i ≤ ⌊

𝑁−3

4
⌋ if n is odd} and 

E3 = {v0v3  vN-4 vN-1 if n is even  & v0v3,  vN-5 vN-1 if n is odd}are the edge sets that are not in the Hamiltonian path.  

Define the injective function f * : E(G) → Z+ as follows: 

f * (vi vi+1) = 3i2 + 3i +1, 0 ≤ i ≤ N-2  

f * (v3i -2 v3i+3) = 135i2 + 45i + 35, 1 ≤ i ≤  ⌊𝑁

4
⌋    if n is even and 1 ≤ i ≤ ⌊𝑁−3

4
⌋     if n is odd  

f * (v0 v3) = 27 
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f * (vN-4 vN-1) = [N-1]3 - [N-4]3 

f * (vN-5 vN-1) = [N-1]3 - [N-5]3 

The eldge labels along the Hamiltonian path are odd and not a multiple of 5 whereas the edge labels along the non-Hamiltonian 

path are multiples of 5. Hence G is a cube sum graph. 

 

Theorem 2.4:  Every cycle Cn (n ≥ 6) with parallel P3 chords admits ADCSS labeling. 

Proof: Consider the graph G as a cycle Cn with parallel P3 chords having vertices 𝑣1 , 𝑣2 , 𝑣3, ……𝑣𝑁 . The Hamiltonian path of G is 

𝑣1 𝑣2𝑣3…𝑣𝑁 where N = |V (G)| by definition 1.5. The vertex labeling and the induced edge labeling for the two cases depending on 

n are given below. 

Define a bijection f : V(G) → {1,2,…N}  as follows: 

f (vi) = i, 1≤ i ≤ N 

The edge set E (G) is given by  

E(G) = E1U E2U E3 where 

E1 = {vi vi+1, 1≤ i ≤ N-1} is the edge set along the Hamiltonian path. 

E2 = {v3i-1 v3i+4, 1 ≤ i ≤ ⌊
𝑁

4
⌋ if n is even & 1 ≤ i ≤ ⌊

𝑁−3

4
⌋ if n is odd} and 

E3 ={v1v4, vN vN-3 if n is even & v1v4, vN-4 vN if n is odd}are the edge sets that are not in the Hamiltonian path.  

Define the injective mapping  f * : E(G) → 2 Z+ as follows 

f * (vi vi+1) = 2i3 + i2 + i, 1 ≤ i ≤ N-1 

f * (v3i -1 v3i+4) = 54i3 + 63i2 + 135i + 46, 1 ≤ i ≤ ⌊𝑁

4
⌋ if n is even and 1 ≤ i ≤ ⌊𝑁−3

4
⌋  if n is odd  

f * (v1 v4) = 48 

f * (vN-3 vN) = [27n3 - 153n2 + 366n - 328] / 4 

f * (vN-4 vN) = [27n3 - 207n2 + 669n - 809] / 4 

The eldge labels of E1 along the Hamiltonian path are in an increasing sequence and distinct as the labels of the vertices are also in 

an increasing sequence and distinct. Along the non-Hamiltonian path the adjacent vertex of v3i -1 is v3i+4 whereas in the Hamiltonian 

path the adjacent vertices of v3i -1 is either v3i or v3i -2. Hence f *(vi vi +1 ) ≠ f *(v3j-1 v3j+4) when i ≠ j . The graph under consideration 

admits ADCSS labeling.  

 

CONCLUSION 

 In this paper it is proved that cycles Cn (n ≥ 6) with parallel P3 chords admit square difference labeling, cube sum labeling, 

cube difference labeling, ADCSS labeling. Our future research work is on extending this result for constructing new graph families 

by applying graph operations on cycles with parallel P3 chords. 
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