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Abstract :  Let X  be a Banach Space and A,B  be any two nonempty subsets of X.  In this article,  a new class of mapping, 

T:A∪B → A∪B, satisfying the condition T(A) ⊂ A and T(B) ⊂ B, called relatively k-alternate convexically nonexpansive map is 
introduced and proved that if X  is strictly convex and A,B are any two nonempty weakly compact convex subset of X then 

there exists x∈ A, y∈ B such that Tx=x, Ty=y and ||x-y||=d(A,B), called fixed points and best proximity point respectively. If 

A=B, then our result proves the existence of fixed point of an alternate convexically nonexpansive map proved by Amini-

Harandi and also proves the existence of fixed point of an k-alternate convexically nonexpansive map proved by Dowling. 
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I.Introduction 

Let X be a nonempty normed linear space. A mapping T: X→X is said to be nonexpansive mapping if ∥T x- T y∥≤  ∥x- y∥, for 

all x, y∈ X. It is easy to see that the translation map T: ℝ→ℝ  defined by Tx=x+a, where a is a non-zero real number, is an 

example of nonexpansive mapping having no fixed points. In 1965, Kirk[7], Browder[4], Gohde[5] independently provided 

sufficient conditions for the existence of fixed point for nonexpansive mappings. Among these results, Kirk used a geometric 

notion called “normal structure” which was introduced by Brodskii and Milman [9]. A nonempty convex subset K is said to 

have normal structure if every nonempty bounded convex subset H of K containing more than one point must contains a point 

x0 ∈ H, satisfying sup{||x- x0 || : x∈ H}< sup {||x-y||: x,y ∈ H}=diam(H). This point x0 ∈ H is called a non-diametral point of H. 

Kirk proved that every non-expansive self mapping on a weakly compact convex subset of K of a normed linear space has at 
least one fixed point provided K has normal structure. In [1], Alspach showed that the normal structure property is necessary 

for the existence of a fixed point for nonexpansive mapping, by providing an example of a fixed point free nonexpansive 

mapping on a weakly compact convex subset of L1[0,1]. In [2], Amini-Harandi introduced a subclass of nonexpansive 

mappings called alternate convexically nonexpansive mapping and investigate the existence of fixed points in absence of 

normal structure property. The main result of [2], showed that every alternate convexically nonexpansive mapping on a weakly 

compact convex subset of a strictly convex Banach space has atleast one fixed point. Later, Dowling [6], introduced a weaker 

version of alternate convexically nonexpansive mapping called k-alternate convexically nonexpansive mapping and obtained 

the same result. On the other hand, in [3], Eldred et.al., introduced a class of mappings called relatively nonexpansive mapping 

which extend the notion of usual nonexpansive mapping. Let A, B be any two nonempty subsets of a normed linear space X. 

Then a mapping T: A ∪ B → A ∪ B is said to be relatively nonexpansive map if it satisfies (1) T (A)⊂  B and T (B) ⊂  A and (2) 

∥T x- T y∥≤  ∥x- y∥ for all x∈ A and y∈ B. Note that if A = B, then the relatively nonexpansive mapping is nothing but the usual 
nonexpansive mapping. It is worth to mention that a relatively nonexpansive mapping need not be continuous, whereas the 

nonexpansive mappings are uniformly continuous. In [3], the authors established a notion called proximal normal structure 

which generalize the notion of normal structure. In [3], the authors considered a relatively nonexpansive mapping T: A ∪ B → 

A ∪ B  where A,B are nonempty weakly compact convex subset of a normed linear space X. One of the main results in [3], 

showed that if the pair (A, B) has proximal normal structure property, then there exists a point (x0,y0)∈A×B satisfying ∥x0 - T 

x0∥ = ∥T y0 -y0∥ = inf {∥x- y∥ : x ∈  A, y∈  B} = d(A, B). The elements x0, y0 are said to be best proximity points of T in A and B 

respectively. In [12] Sankar Raj et.al,  introduced a subclass of relatively nonexpansive mappings called relatively k- alternate 

convexically nonexpansive and provided sufficient conditions for the existence of best proximity points with out using 

proximal normal structure property. In [12], the map they have considered is cyclic, that is the map T: A ∪ B → A ∪ B  satisfies 

the condition T(A)⊂ B and T(B)⊂ A. In this article, we will consider the map T: A ∪ B → A ∪ B  such that T(A)⊂ A and T(B)⊂ 

B . Our result extends the result of Harandi and Dowling for noncontinuous k-alternate convexically nonexpansive mapping 

defined on a strictly convex Banach space X. 

 

II.Preliminaries 

In this section, we discuss some of the basic notations and terminologies which we will use in our main results. Let A, B be 

nonempty subsets of a normed linear space X. We denote  

A0 ={x∈ A : ||x-y||= d(A,B) for some y∈ B} and  

B0 ={y∈ B : ||x-y||= d(A,B) for some x∈ A}, 
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In [8], Kirk et al. showed that A0 and   B0 are nonempty weakly compact and convex subsets provided A and B are nonempty 

weakly compact and convex . For each  x∈ X and r > 0; we define B[x, r] := {y∈  X : ∥x- y∥≤  r}. A Banach space X  is said 

to be strictly convex if for each x, y∈ X with ∥x∥ = ∥y|| = 1 and x ≠y then  ‖
𝑥+𝑦

2
‖ < 1.  

Definition 1.[10]. A pair (A, B) of nonempty subsets of a normed linear space X is said to have P -property if and only if ∥x1 -

y1∥ = d(A, B) and ∥x2 -y2∥ = d(A, B) implies ∥x1 - x2∥ = ∥ y1 -y2∥ whenever x1, x2 ∈  A and y1, y2∈  B. 

 

Definiton 2. [10]. A normed linear space X is said to have the P -property if and only if every pair (A,B) of nonempty and 

closed convex subsets of X  has the P -property. 

In [11], Anthony et.al. proved that a normed linear space X is strictly convex if and only if X has the P -property. In this article, 

we say that a map T: A∪B →A∪B is noncyclic if T(A) ⊂ A and T(B) ⊂ B.  Now we define a new class of noncyclic 

mapping T: A∪B →A∪B called relatively alternate convexically nonexpansive as follows:  

 

Definition 3. Let A and B be two nonempty subset of a Banach space X. A noncyclic map T: A∪B →A∪B is called alternate 

convexically nonexpansive with respect to A (respectively with respect to B) if 

 ‖∑
(−1)𝑖+1

𝑛
𝑇𝑥𝑖 − 𝑇𝑦𝑛

𝑖=1 ‖ ≤ ‖∑
(−1)𝑖+1

𝑛
𝑥𝑖 − 𝑦𝑛

𝑖=1 ‖for each n∈ℕ, xi ∈ A and y∈ B (respectively for each xi ∈ B and y ∈ A). 

 

Definition 4. Let A and B be two nonempty subset of a Banach space X and let k ∈ℕ. A noncyclic map T: A∪B →A∪B is 

called k-alternate convexically nonexpansive with respect to A (respectively with respect to B) if 

 ‖∑
(−1)𝑖+1

𝑛
𝑇𝑥𝑖 − 𝑇𝑦𝑛

𝑖=1 ‖ ≤ ‖∑
(−1)𝑖+1

𝑛
𝑥𝑖 − 𝑦𝑛

𝑖=1 ‖for each 1≤ n≤ k , xi ∈ A and y∈ B (respectively for each xi ∈ B and y ∈ 

A). 

 

Definition 5. A cyclic map T: A∪B →A∪B is called relatively alternate (respectively k-alternate) convexically nonexpansive 

if it is an alternate (k-alternate) convexically nonexpansive with respect to both A and B. 

 

Remark 6. If T: A∪B →A∪B is a relatively alternate (or k-alternate, where k≥ 2) convexically nonexpansive then for  n = 2 

and for x1 = x2 we get ∥T x∥≤ ∥x∥, for all x ∈ A and  ∥T y∥≤ ∥y∥, for all y ∈ B. Hence  if 0∈ A ∪B then clearly 0∈ A∩B 

and it will be a fixed point of T. 

 

III.Main Result  

 

Theorem 7. Let A and B be two nonempty weakly compact convex subsets of a strictly convex Banach space X. Let T: A∪B 

→A∪B be a relatively 2-alternate convexically nonexpansive. Then there exists an element x∈  A such that ∥x- T x ∥ = d(A, 

B). 
 

Proof: By Remark 6, if 0∈ A ∪B then clearly 0∈ A∩B and it will be a fixed point of T. This completes the proof. Hence, we 

assume that 0∉ A ∪B. Let d=inf{||y|| : y ∈A0  ∪B0 }. Since A0 ∪B0 is weakly compact, there exists  y0 ∈A0 ∪  B0  such that || 

y0 || =d > 0. Let R=inf{δ>0: d(𝐴0ꓵB[0,δ],𝐵0ꓵB[0,δ] ) = d(A,B) }. Since A ∪ B is bounded, R is nonempty and bounded below 

by|| y0 ||. Let r = inf{δ: δ∈ R} then for each n, there exists xn  ∈A0 ∩B[0, r+
1

𝑛
] and yn  ∈B0 ∩B [0, r + 

1

𝑛
] such that || xn  - yn 

||=d(A,B). Since 𝐴0 and 𝐵0  are weakly compact there exists weakly convergent subsequence {𝑥𝑛𝑘} and  {𝑦𝑛𝑘} such that {𝑥𝑛𝑘} 

converges to  x* and {𝑦𝑛𝑘} converges to y* weakly as k → ∞. Then by weak lower semicontinuity of the norm, ||x*||≤ lim inf 

||𝑥𝑛𝑘 || and   ||y*||≤ lim inf ||𝑦𝑛𝑘 ||. That is ||x*||≤  r and ||y*||≤ r. Also, d(A,B) ≤  d(𝐴0ꓵB[0,r],𝐵0ꓵB[0,r]) ≤ ||x*-y* || ≤ lim inf  || 

𝑥𝑛𝑘- 𝑦𝑛𝑘 ||=d(A,B). Let us now complete the proof by showing that Tx*=x* and Ty*=y*. By P-property it is enough to 

show that Tx* = x* or Ty*=y*. Suppose not then consider the elements, a= 
𝑥∗+𝑇𝑥∗

2
  and b = 

𝑦∗+𝑇𝑦∗

2
. Since ||x*||≤  r and ||y*||≤ r, 

by Remark 6 both ||Tx*||≤  r and ||Ty*||≤ r. By strictly convex  property of X, we get both ||a|| and ||b|| are strictly less than r. Let 

s = max{||a||,||b||} then s<r and ||a-b||=d(A,B) which implies d(𝐴0ꓵB[0,s],𝐵0ꓵB[0,s])=d(A,B). That is s∈ R but r is the 

infimum of the set R. This contradiction shows that either Tx*=x* or Tx*=y*. Hence by P-property we get both  Tx*=x* and 

Ty*=y*. 

The following fixed point theorem due to Amini-Harandi [2] for alternate convexically nonexpansive map and the fixed point 

theorem due to Dowling [6] for k-alternate convexically non-expansive can be obtained from Theorem 7. by taking A=B. 

 

Corollary 10. Let C be a weakly compact convex subset of a strictly convex Banach space X. Then every alternate 

convexically nonexpansive map T:C→ C has a fixed point. 

 

Corollary 11. Let X be a Banach space which is strictly convex. Let C be a nonempty weakly compact convex subset of X. 

Then  every 2-alternate convexically nonexpansive mapping T:C→ C has a fixed point. 
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