
© 2019 JETIR May 2019, Volume 6, Issue 5                                                              www.jetir.org (ISSN-2349-5162) 

JETIR1905L84 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 545 
 

EFFECT OF CYLINDER WIDTH AND 

REYNOLS NO ON VELOCITY PROFILE OF 

UNCONFINED FLOW PAST A SQUARE 

CYLINDER WITH FORCED CONVECTION 

HEAT TRANSFER 

1Avinash Dholiwal 
1Assistant Professor 

1Mechanical Engineering  
1Amity University Haryana, Gurgaon, India 

 

Abstract:  Flow past a square cylinder has been studied extensively for over a century, because of its interesting flow features and 

practical applications. This problem is of fundamental interest as well as important in many engineering applications. The 

characteristics of flow around a square cylinder placed at symmetric condition are governed by the Reynolds number (Re). In the 

present paper two dimensional simulations of flow past a square cylinder have been carried out for a Reynolds number of up to 

160. The modeling of the problem is done by GAMBIT 2.3 preprocessing software. The computations are carried out using a 

commercial CFD solver, FLUENT 6 .3, which uses a finite volume approach to discretise governing and model equations for 

incompressible laminar flow. 

 

Index Terms – Reynolds No., Heat Transfer, Cylinder Width. 

I. INTRODUCTION 

A body placed in the flow field is of considerable interest as both the flow field and body interact with each other. Several 

problems involving the flow of fluid around submerged objects are encountered in the various engineering fields. Such 

problems may have either a fluid flowing around a stationary submerged object, or an object moving through a large mass of 

stationary fluid, or both the object and the fluid are in motion. Knowledge of forces exerted by the fluid on object is of 

significant importance in their design and analysis. The force exerted by the fluid on a moving body or on a stationary body by 

fluid in motion can be resolved into two components, one in the direction of motion and other perpendicular to the direction of 

motion. The component parallel to the flow is called viscous drag and is due to the shear stress on the surface. The component 

perpendicular to the direction of motion of the flow is called pressure drag. This pressure drag tries to lift the body. However 

for a symmetric body, such as for a sphere or a cylinder, facing the flow symmetrically, there is no lift force and thus the total 
force exerted by the fluid is equal to the drag on the body. The flow past a body is of direct relevance to the design of 

structures, heat exchanger components and where even flow induced vibration is important. The analysis of flow past a body in  

non-uniform stream is more complex. The approaching flow of a curved river against the bridge pier is one such example. 

Submarines, ships, aircraft, automobiles and missiles are examples where the object is in motion and the fluid is stationary.  

High rise buildings, chimneys and tube banks of heat exchangers are examples where the fluid is in motion. It is important to 

know the velocity, pressure and temperature fields in detail in a large number of applications involving fluids, namely, liquid 

and gases. The performance of devices such as turbo-machinery and heat exchangers is determined entirely by the fluid motion 

within them and hence it is essential to know the pressure and velocity distribution to determine the effect on the body. The 

detailed nature of fluid flow over a square cylinder is one of the fundamental topics in classical fluid dynamics as it 

demonstrates flow separation and vortex shedding. At very low Reynolds numbers, the flow is steady and symmetrical. As the 

Reynolds number is increased, asymmetries and time-dependence develop, eventually resulting in the famous Von Karman 
vortex street, and then on to turbulence. 

     1.1 How Does a CFD Code Work? 

     CFD codes are structured around the numerical algorithms that tackle fluid and heat transfer problems. In order to provide easy   

access to their solving power all commercial CFD packages include  sophisticated  user  interfaces  input  problem  parameters  

and  to  examine  the  results. Hence all codes contain three main elements: 

1 Pre-processing. 

2 Solver 

3 Post-processing. 

 

2. PROBLEM FORMULATION  

     2.1 Statement of Problem:- In the present problem 2-D simulations of the unconfined flow past a square cylinder with forced 

convection heat transfer have been carried out up to Reynolds number 160 for different cylinder widths (B =1, 2 & 3). The 
dimensions of the geometry are 

      B = width of square cylinder 

      L = length of domain 

     La = distance between the inlet and front surface of square cylinder 

     Lt = distance between the exit and rear surface of square cylinder 
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     H = height of the domain 
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Fig 2.1 Geometrical model of flow configuration 

 

 Forced Convection 

La / B Lt / B L / B H / B 

8.5 16.5 26 20 

 

Table 2.1 Computational Domain Parameters  

 

2.2 BOUNDARY CONDITIONS:  

Boundary conditions specify the flow and thermal variables on the boundaries of the physical model. They are, therefore, 

a critical component of simulations and it is important that they are specified appropriately. The computational domain uses 

following boundary conditions. The following boundary conditions are assigned in FLUENT.                 
                   

Zone Assigned Boundary Type 

INLET VELOCITY INLET 

OUTLET PRESSURE OUTLET 

SQUARE CYLINDER WALL(NO-SLIP) 

TOP SURFACE SYMMETRY 

BOTTOM SURFACE SYMMETRY 

 

Inlet Boundary Condition 
 

Since the flow is purely one dimensional hence no flow exists in y and z direction. 

 u = uin  , v = w = 0, Pinl = Patm = 1.03215 bar, u =0.0007338 m/s, Tatm = T∞ = 300 K  

Outlet Boundary Condition 
 

 

In fluent outlet condition is taken as pressure outlet. 
                       

Boundary Condition at the square Cylinder Surface 

The no-slip boundary condition is applied on the square cylinder surface. 

                                           (u = v = w = 0), T = 400 K  

Boundary Condition at the Top and Bottom 

The confining surfaces at y = ± H/2 are modeled as the symmetry condition. 
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2.3 Governing Equations 

The governing equations for this problem are the two dimensional continuity and Navier-Stokes momentum equations. 

Continuity Equation 

This equation states that mass of a fluid is conserved. 

 

Rate of increase of mass in            Net rate of flow of mass fluid 

element                     =           into fluid element 

  

For time dependent.3-D equation is  

                𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0                                                                                                                                 (2.1) 

For 2-D, incompressible and steady flow 

                          𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                                   (2.2)                                                                                      

X- Momentum Equation 

Momentum equations are based on Newton’s second law which states that, the rate of change of momentum equals the sum of 

forces on fluid particle. Time dependent and 3-d momentum in x-direction is 

𝜕(𝜌𝑢)

𝜕𝑡
+ 𝑢

𝜕(𝜌𝑢)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝑢)

𝜕𝑦
+ 𝑤

𝜕(𝜌𝑢)

𝜕𝑧
= −

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
[𝜆𝛻. 𝑉 + 2𝜇

𝜕𝑢

𝜕𝑦
]+ 

𝜕

𝜕𝑦
[μ(

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)]+ 

𝜕

𝜕𝑧
[μ(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)]+ρ𝑓𝑥     (2.3)                                                           

Where V=ui+vj+wk is velocity vector field, f denotes body force per unit mass, 𝑓𝑥
  

as its x component and 𝜆=−
2

3
𝜇 

For 2-D, incompressible, steady and with no body forces 

𝜌(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇(

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)                                                                                                                    (2.4)   

 

Y- Momentum Equation  

Time dependent and 3-d momentum in y-direction is 

𝜕(𝜌𝑣)

𝜕𝑡
+ 𝑢

𝜕(𝜌𝑣)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝑣)

𝜕𝑦
+ 𝑤

𝜕(𝜌𝑣)

𝜕𝑧
= −

𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑦
[𝜆𝛻. 𝑉 + 2𝜇

𝜕𝑣

𝜕𝑦
]+ 

𝜕

𝜕𝑥
[μ(

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)]+ 

𝜕

𝜕𝑧
[μ(

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)]+ρ𝑓𝑦                                                                                                

                                                                                                                                                                                                        (2.5)                                              

Where 𝑓𝑦 denotes y-component of body force (f) per unit mass. 

For 2-D, incompressible, steady and with no body forces 

𝜌(𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇(

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)                                                                                                                                            (2.6) 

 

Energy Equation 

𝜕𝜃

𝜕𝑟
+

𝜕𝑈𝜃

𝜕𝑥
+

𝜕𝑉𝜃

𝜕𝑦
=  

1

𝑅𝑒.𝑃𝑟
(

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2)                                                                                                                                                (2.7)         

 With 

U = 
𝑢

𝑢∞
, V= 

𝑣

𝑢∞
 , 𝜏 =

𝑡𝑢∞

𝐵
,  X= 

𝑥

𝐵
 ,  Y= 

𝑦

𝐵
 ,   P = 

𝑝

𝜌𝑢∞
2 ,   𝜃 =  

𝑇−𝑇∞

𝑇𝑤 −𝑇∞
  

 

3. SIMPLE ALGORITHEM 

The SIMPLE algorithm stands for Semi–implicit Method for Pressure Linked Equations. This is essentially a guess and correct 

procedure for the calculation of pressure on staggered grid for the discretised momentum equations. This pressure-velocity 

Coupling algorithm uses a relationship between velocity and pressure corrections to enforce mass conservation and to obtain the 

pressure field. 

  JiJiJIJInbnbJiJi bAPPuaua ,,,,1,,    

This method can be explained with the two dimensional steady state laminar flow equations. The guessed pressure for the above 

equations is p* while the velocities are u* and v* as follows. 

  JiJiJIJInbnbJiJi bAPPuaua ,,,
*

,1
**

,
*

,                                                                            (3.1) 
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  jIjIJIJInbnbjIjI bAPPvava ,,,
*

1,
**

,
*

,                                                                                     (3.2) 

Now the correction  𝑝′, 𝑢′ and 𝑣′ may be introduced as (correction formulae) 
'* ppp                                                       (3.3) 

'* uuu                                                                                            (3.4) 

'* vvv                                                                                          (3.5) 

Where P=correct pressure field and 𝑃∗ is =guessed pressure field.  

Substitution of correct pressure field p into momentum equations yield correct velocity field.  

Subtraction of equations (4.1) and (4.2) from (4.3) and (4.4) respectively would give us 

   
     JiJIJIJIJI

nbnbnbJiJiJi

Apppp

uuauua

,

*

,,

*

,1,1

**

,,,








                                               (3.6) 

                                                                                                                                                                                                   

   
     jIJIJIJIJI

nbnbnbJiJiJi

Apppp

vvavva

,

*

,,

*

1,1,

**

,,,








                                                (3.7)                                   

Using correction formulas the equation (4.8) and (4.9) may be written as: 

  JiJIJInbnbJiJi Appuaua ,

'

,

'

,1

''

,,                                                                                                 (3.8)                                                    

  jIJIJInbnbjiji Appvava ,

'

,

'

1,

''

,,                                                                                                                        (3.9)  

In order to simplify the above equations the two approximations  
''

nbnbnbnb vaandua   

are dropped. The omissions of these terms are the main approximations of SIMPLE algorithm. We obtained 

 '

,

'

,1,

'

, JIJIJiJi ppdu                                                                                            (3.10) 

 '

,

'

1,,

'

, JIJIjIjI ppdv                                                                            (3.11) 

Where  𝑑𝑖,𝑗 =
𝐴𝑖,𝑗

𝑎𝑖,𝑗
     and       𝑑𝐼,𝑗 =

𝐴𝐼,𝑗

𝑎𝐼,𝑗
 

So far we have considered momentum equations but velocity field also subjected to constraint that it should also satisfy 

continuity equations. The continuity equation for the control volume is 

          0
,1,,,1





 jI

vA
jI

vA
Ji

uA
Ji

uA                                                               (4.14) 

Substitution of corrected velocities of equations into discretised continuity equations gives:

      
       0'

,

'

1,,

*

,

*

,,

'

1,

'

,1,

*

1,1,1,

'

,

'

,1,

*

,,,

'

,1

'

,,1

*

,1,1,1









JIJIjIjIjIjIJIJIjIjIJijI

JIJIJijiJiJijIJIJiJiJiJi

ppdvAppdvA

ppduAppduA




                                                                                                                                                                                                                          

Identifying the coefficient of p’ it may be written as  

'

,

'

1,1,

'

1,1,

'

,1,1

'

,1,1

'

,,

JIJIJI

JIJIJIJIJIJIJIJI

bpa

papapapa









                                                                (3.12)                                                                                                                                        
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Fig. 3.1 Scaler Control Volume Used For Discretisation of Continuity equation 

 
Where 

 

JIa ,1
 

        

JIa ,1
 

                  

1, JIa  

               

1, JIa  

 
'

,JIb  

 

  JidA ,1  

 

  JidA ,  

 

  1, jIdA

 

 

  JidA ,  

 

        1,

*

,

*

,1

*

,

*

  jIjIJiJi AvAvAuAu   

 

The above equation (4.16) represents the discretised continuity equation as an equation for pressure correction p’. By solving above 

pressure correction equation the correct pressure field may be known and correspondingly substitute pressure field into continuity 

equation would give us the correct velocity field. The omission of the terms such as   '

nbnbua  in the derivation does not affect 

much the final results. Because the pressure correction and velocity corrections will be zero in a converged solution giving p*=p 

and u*=u 

3.1 FLOW CHART FOR SIMPLE ALGORITHEM 

The SIMPLE algorithm follows the same step as he SIMPLE algorithm, with the difference that the momentum equations are 

manipulated so that the SIMPLEC velocity correction equations omit terms that are less significant than those omitted in simple. 

The u velocity correction equation of SIMPLEC is given by  

                            '

,

'

,1,

'

, JIJIJiJi ppdu          

Where      

                                     𝑑𝑖,𝑗 =
𝐴𝑖,𝑗

𝑎𝑖,𝑗−∑ 𝑎𝑛𝑏

                  

Similarly the modified v- velocity correction equation is     

                           '

,

'

1,,

'

, JIJIjIjI ppdv    

Where      

                                    𝑑𝐼,𝑗 =
𝐴𝐼,𝑗

𝑎𝐼,𝑗−∑ 𝑎𝑛𝑏

      

The discretise pressure correction equations are same the same as in SIMPLE except that the d-terms. The sequence of 

operations of the SIMPLEC algorithm is identical to that of SIMPLE. 
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4. RESULT AND DISCUSSION 

In this paper, for various cylinder width & Reynolds number, a two dimensional numerical simulation of flow past a square 
cylinder has been carried out and results are compared with experimental and numerical data. The flow features are represented 

with the help of Velocity Profile. 

The stream line velocity at the inlet is same for all cylinder width for the same Re number for unconfined flow. The velocity of 

the fluid accelerates with increasing cylinder width. This is shown in following figures 4.1, 4.2 & 4.3 for the instantaneous cross 

sectional U-velocity profiles at three different x-locations (leading, centre and trailing) of square cylinder for various cylinder 

widths. As the fluid passes over the square cylinder, it shows appreciable change in velocity profile at leading, centre, trailing 

location for different cylinder width as shown below in the figures. 

 

 

 

   Fig. 4.1 Instantaneous cross-sectional U-velocity profiles (B=1, Re=40) 

 

 

                    

          

Fig. 4.2 Instantaneous cross-sectional U-velocity profiles (B=2, Re=100) 
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Fig. 4.3 Instantaneous cross-sectional U-velocity profiles (B=3, Re=150) 

 

5. CONCLUSION 

Numerical investigation are conducted on unconfined flow past a square cylinder with forced convection heat transfer for different 

cylinder widths (B=1, 2 & 3) and 1≤Re≤160. As the cylinder width and Reynolds number changes, a significant change in the 

properties of flow is observed. The flow is steady for Re≤40 and become unsteady when Re≥50 and transition occurs at 40≤Re≤50. 

The sequence of different events involved in shedding at Re≥100 is shown clearly. 

The effect of change in cylinder width and Reynolds number is considered on velocity profile for different values of cylinder 

widths (B=1, 2 & 3) and 1<Re<160. 
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